Time-sensitive Computation of
Aggregate Functions over Distributed Imprecise Data

Qi Han, Matthew Ba Nguyen, Sandy Irani and Nalini Venkatasubramanian
School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{ghan,nguyenmb;,irani,nalini } @ics.uci.edu

Abstract

Many distributed applications in the real world now re-
quire real time services in which aggregate queries need
to be computed over a set of values. These applications
can often tolerate varying degrees of inaccuracy in the re-
sults. System designers, on the other hand, would like to
provide services with low inaccuracy and minimal manage-
ment overhead. In this paper, we focus on addressing the
tradeoffs between timeliness, accuracy and cost for data
aggregation in distributed environments. Specifically, we
address the problem of time-sensitive computation of ag-
gregate queries(count, sum and min) over a set of val-
ues represented by intervals with lower and upper bounds.
These intervals are approximations based on most recent
values about distributed sources. In order to meet the pre-
cision constraints from users, a subset of sources needs to
be probed for exact values. We first propose algorithms for
batch selection of the probing set, where selection is done
before probing without the knowledge of the actual val-
ues. In addition, we propose an iterative selection approach
where the selection of the next probing source depends on
the previous returned value.

1. Introduction

Recent advances in communication, mobile computing
and embedded systems have enabled a variety of real-time
distributed applications (e.g. stock information exchange,
network fault diagnosis, multimedia streaming, environ-
mental sensing etc.). These applications often make deci-
sions based on timely results aggregated over distributed
data from varying sources.

Consider project RAIL(Real-time Active Inference and
Learning) [9] from IBM as an an example. As distributed
computer systems and networks continue to grow in size
and complexity, real-time fault localization and problem di-

agnosis become significantly more challenging. As a re-
sult, more sophisticated tools are needed that can assist
in performing these management tasks by both responding
quickly and accurately to the ever-increasing volume of sys-
tem measurements, and also actively selecting the minimum
number of most-informative tests to run. In other words, it
is crucial to build an active, real-time information-gathering
and inference system that can “ask the right questions at the
right time”. A distributed system can be represented as a
dependency graph, where nodes can be either hardware ele-
ments (e.g., workstations, servers, routers) or software com-
ponents/services, and links can represent both physical and
logical connections between the elements. The following
questions can be asked:

(21. how many nodes are overloaded?

(2. what is the total latency along a path Ny — Ny —
(23. what is the bottleneck (minimum link bandwidth) along
apath Ny — Ny — --- = N?

Typically, it is desirable to answer these questions in a
timely fashion so that diagnosis can be done as quickly as
possible.

Answering the above aggregate queries poses several
challenges. While obtaining current and precise answers is
desirable, techniques to collect and maintain accurate infor-
mation may not be cost-effective. One strategy would be to
collect fresh values from each source every time a query is
posed; given roundtrip latencies in unreliable networks, this
process might violate timing constraints of the queries. An-
other possibility would be to require all sources to periodi-
cally report changes in readings; this is likely to be expen-
sive in dynamic distributed environments with a large num-
ber of sources and fast changing source data. Fortunately,
many applications can tolerate data imprecision at a certain
level; hence, maintaining absolutely accurate data becomes
unnecessary. Therefore, system designers can use the error
tolerance of the executing applications to reduce the con-
sumption of communication and computation resources. In
our work, we take advantage of an applications’ tolerance of

information imprecision to balance the timeliness and accu-
racy requirements of a request.

Previous research has addressed the tradeoff between ac-
curacy and cost. Given the data intensive nature of these
applications, a database is a must for the system to function
efficiently. Storing data in a database using a range with a
lower bound and an upper bound [2] (instead of using a sin-
gle instantaneous value) has been identified as an effective
strategy to speed up data retrieval while reducing message
exchange overhead. Queries such as Q1,02 and ()3 can be
executed over the cached ranges and return a range which
contains the associated value. When a user poses a query,
he can specify a precision constraint indicating how wide a
range is tolerable in the answer. If the data precision in the
database is high enough, user requests can be satisfied by
only consulting the repository; otherwise, the data sources
can be queried/probed for current exact values, which im-
proves the accuracy at the price of communication over-
head. This tradeoff between database accuracy and main-
tenance overhead has been addressed [14] under the con-
straint of user precision requirements. When the query is
an aggregate query over more than one source, probing all
related distributed sources can be expensive both in com-
munication and computation. We can usually satisfy the
accuracy requirements of the aggregate functions with ex-
act values from only a subset of the sources. Strategies for
probing set selection were proposed [15] that deliver suffi-
ciently accurate answers at minimal cost.

Directly applying the approaches described above to dis-
tributed real-time applications will not be effective, since
queries not only have accuracy constraints, but also have
time constraints which specify the latest time by which the
results of an aggregate query are expected to be available.
Depending on the characteristics of sources and the network
paths leading to the sources, the cost and also the latency of
probing vary from source to source. Probing set selection
should take into account the probing latency and query time
constraints. Our previous work has addressed the timeli-
ness/accuracy/cost tradeoffs in real-time collection of single
source value [7]. This paper complements previous work
by addressing how the server selects an appropriate subset
of sources to probe so that the overall probing cost is min-
imized without violating accuracy and timeliness require-
ments of aggregate queries. Specifically, three representa-
tive aggregate queries (count, sum and min) are consid-
ered. Note that computation of average can be derived
from count and sum. We propose batch selection algo-
rithms which choose a set of sources in advance that guar-
antees adequate precision regardless of actual exact values.
We also propose an iterative selection algorithm that probe
sources iteratively until the precision constraint is met. In
addition, we illustrate in which context the iterative ap-
proach is preferrable to the batch method.

The rest of this paper is organized as follows. We for-
mulate the problem in Section 2. In Section3, we conduct a
worst case analysis on the computation of aggregation func-
tions count, sum and min. Furthermore, we present an
average case analysis for min. In Section 4, performance
results are presented. We discuss related work and conclude
in Section 5.

2. Problem Characterization

In this section, we describe system, source and query
models used in this paper, and develop a formal characteri-
zation of the real-time computation of aggregate queries.

System Model: Our system consists of a number of
sources and one server that maintains a database. In a
real system, a server may correspond to a data aggregation
hub for a set of sources. Various aggregation hubs, taken
together, may form the overall distributed database. We,
therefore, address the aggregation problem in a simplistic
setting of a single access point (server) attached to a set of
sources. Our solution can serve as a building block for large
scale distributed systems.

Source Model: The system consists of a set of n
sources. Let S = {1,...,n}. Each source stores a vari-
able that can change frequently. For each ¢ € S, let e; de-
note the exact value of the variable stored at the ** source.
The database stores an approximation for each exact value.
The approximation of e; is represented by a range r; with
lower bound I; and upper bound u;: r; = [l;,u;]. For
any interval [l, u], we will denote interval length u — [by
[Z, w]|. Whenever the source value e; changes to e}, source
s; checks whether r; is still a valid approximation for the
new value. If e; falls outside r;, a new approximation of
e; is sent to the server to update the database. Otherwise,
there is no need to transmit the update to the server, hence
reducing communication overhead.

Query Model: Queries are executed over the cached
ranges at the server. Each incoming query requests the value
of f(ey,...,ey,) (in this paper, the function is feount, fsum
or fmin for count, sum or min), and is associated with an
accuracy constraint A indicating its tolerance to error in an-
swer precision. Furthermore, a query has a latency bound
D which requires each query to be answered within D time
units. The only thing we know about each e; is that it lies
in the range [l;,u;]. Given that each e; lies in the range
r; = [l;,u;], it can be determined that f(eq,...,e,) lies
in some range which will be denoted by f(r1,...,7,). We
define the uncertainty of f(r1,...,r,) as the length of the
interval. If the error tolerance of the query is larger than
the data error, it is processed without any communication
with the source. Otherwise, the approximation offered by
the database is insufficient, the server may request the ex-
act value from part of the remote sources. The sources re-

spond with current exact values and new approximations to
be used by subsequent queries. If a subset P of sources is
probed, then this may increase the accuracy of the estimate

for f(e1,...,en). Letry =r;ifi ¢ Pandletr! = [e;, €]
if i € P, then the new interval for f(ey,...,e,) becomes
f(rE,...,rP). However, there is a delay d; associated

with the probing as well as a cost ¢;. The cost of prob-
ing a subset of sources is the total cost of probing each of
them, i.e.,), p ¢;. The latency of computing function f
denoted by Ty due to probing depends on how the prob-
ing is conducted: if the probing is performed in parallel,
then Ty = max;cp d;; otherwise, if the probing is issued
sequentially, then Ty = > . d;.

Given a request with an accuracy constraint A and a time
constraint D, we would like to identify a subset of the vari-
ables P C S to be probed such that the accuracy and delay
constraints are satisfied and the cost is minimized. In other
words, we would like to

minimize), p ¢,
subject to

MW ferf,. DI < A,
)Ty < D.

We will use Sp to denote the subset of sources whose
delay d; is at most D. Note that a successful computation
not only finishes by the deadline, but also returns the answer
at the desired accuracy. However, many deadline misses
or accuracy violations can occur depending on system load
and time/accuracy constraints. When the time and accuracy
constraints can not be met at the same time, we give higher
priority to time constraints.

3. Time-sensitive Computation of Aggregate
Functions

In order to achieve the goal of minimizing the probing
cost under the time and accuracy constraints of user queries,
two basic approaches to probing set selection can be ap-
plied. One is batch selection, where the entire set of sources
to probe is selected before the probings actually occur. In
this approach, the precision constraint must be guaranteed
for any possible precise values for the sources in probing
set. The second approach is iterative selection, where the
source is probed one at a time, computing an answer af-
ter each probing and stopping when the answer is precise
enough. This is an online approach, where the user is pre-
sented with an answer that gradually refines to be more pre-
cise over time. In this case, the goal is to shrink the answer
as fast as possible. In this section, we present batch se-
lection algorithms for three aggregate queries: count, sum

and min. Furthermore, we motivate and present an itera-
tive selection algorithm for computing min, where the next
source to be probed depends on the previous returned value.

3.1. Batch Selection of Source Probing Set

For each request, we compute the answer based on the
stored approximations in the database. If the answer does
not satisfy the accuracy constraints of the user request, we
decide on a set of sources to probe for exact values in or-
der to improve the answer precision. In the following, we
present batch selection algorithms for computing count,
sum and min.

Computing count (Algorithm BATCH_COUNT): The
problem is to calculate the number of source values that fall
inside an input range r = [l, u], that is

fcount = |{ei|€i € [l7u]}|

For each variable range r; there are three cases to consider:
r; is completely contained in r, r; is disjoint from r, and
r; intersects but is not contained in . We can divide the
variables into three sets: I (inside),O (outside) and U (un-
certain) depending on which of the three cases the variable
is in. In other words,

e if [; >l and u; < wu,theni € I;

e ifu; <lorl; > u,theni € O,

o ifl; <l >wu;orl; >u<wu;theni € U.
Therefore, we know that

| < |feount| < [+ [Ulsie. feount = 1], 1] + |U]]-

If |U| > A, then we must probe |U| — A variables to deter-
mine the function f;,y,; Within the desired accuracy. Each
time a variable is probed, we learn its exact value and can
decide whether or not it lies in the range r. Thus, each
probe reduces the uncertainty of the answer by exactly 1.
Since we have a deadline, we will only consider those vari-
ables whose delay d; is at most the deadline D. This set of
variables is called Sp. If [U N Sp| < |U| — A, then we can
not determine the function count to within the desired ac-
curacy. If [U N Sp| > |U| — A, then we order the variables
in |[U N Sp| according to increasing cost and probe the first
|U| — A variables in this ordering.

Computing sum (Algorithm BATCH_SUM): The prob-
lem is to calculate the sum of all the source values, that is

n
fsum = Z €i-
i=1

To satisfy time constraints, we do not consider probing
those variables whose delay is larger than D. For the re-
maining set of sources,Sp, if we compute the query based
on the stored intervals in the database, then the smallest pos-
sible sum occurs when all values are the lower bounds, and
the largest possible sum occurs when all values are the up-
per bounds, i.e.,

fsumz[Z li; Z ui]-

$;€Sp $i€ESD

Choosing the subset of sources to probe is equivalent of
choosing the subset of sources not to probe: P = S — P.
We observe that

‘fsumlz Z Ui — Z li = Z (Uz—l,)

$;€Sp $;€Sp $i€ESp

After probing all sources s; € P, we have u; — I; = 0,
so these values contributes nothing to the uncertainty. i.e.,
after probing, | fsum| = D_,.cp(ui — 1;). These equalities
combined with the accuracy constraint |fsym| < A give us

the constraint
s;€P

The optimization objective is to satisfy this constraint while
minimizing the total cost of probing sources in P. We ob-
serve that minimizing the total cost of the sources in P is
equivalent to maximizing the total cost of the sources not in
P. Therefore, the optimization problem can be formulated
as choosing P so as to

maximize). . p Ci

subjectto . p(u; — ;) < A.

As also observed in [15], this problem can be reduced
to 0/1 Knapsack problem, which is known to be NP-
Complete, but there is a polynomial-time approximation
scheme for the Knapsack problem that for any € will return
a solution within (1 + €) of optimal in time O(1n?) [13].

Computing min (Algorithm BATCH_MIN): The prob-
lem is to pinpoint the minimum value among all the source
values, that is

n

Before any sources are probed, a lower bound for the min
function is min;¢ g [; and an upper bound for the min func-
tion is min;cg u;. If min;cg u; — min;egl; > A, then in
the worst case, it will be necessary to probe each variable
whose left endpoint /; is less than min;cg u; — A. Let this
set of variables be L. With the delay constraints, we can not
consider probing any variable whose delay is greater than
D. Thus, we are limited to those variables in Sp. We will
probe all the variables in L N Sp. However, it is possible

that even after these probes, we do not have the value of
the minimum pinned down to the desired level of accuracy.
Furthermore, it may not be possible to know until the probes
are completed and their values are returned.

Computing the minimum of a set of variables in our
model presents interesting questions that do not arise in the
context of computing the fgym, Or feount - The difference
is that in fgym OF feount, ONe knows in advance exactly the
benefit of probing any particular variable. In the case of
feount»> probing any variable decreases the uncertainty by 1.
In the case of fsy.m,, probing variable e; decreases the un-
certainty by u; — [;. Thus, one can decide in advance which
variables to probe. However, the situation with f,;, is dif-
ferent. Consider the following example. Suppose we have
two sources s1 and so whose ranges are [0, 5] and [1, 6], re-
spectively. Suppose that we would like to find an interval of
length at most one that contains the minimum. If we probe
s1 and its value is 2, we know that the minimum must lie in
the interval [1, 2] and the accuracy constraint is met. How-
ever, if the value is 5, the interval for the minimum value is
[1, 5] and we must probe s5. Thus, the number of probes re-
quired may vary depending on the values of the sources. In
the following subsection, we present an iterative approach
to selecting probing set for computing min. In other words,
we decide what to probe next based on previous probing
result.

3.2. Iterative Selection of Source Probing Set

The analysis of mén in the previous section is a worst-
case analysis which assumes that the values returned always
maximize the remaining uncertainty. One may consider an
average-case approach in which we assume that the value of
each variable is distributed uniformly over its range. Note
that we still try to guarantee that the minimum value lies
within a range of size at most A. This means that the same
set of sources may have to be probed in the worst case.
However, it is possible that it may be beneficial in the aver-
age case to probe some sources before others.

Algorithm ITERATIVE_MIN: Consider a source s;
with range [l;, u;]. Let wm, denote the current upper bound
for the range of the minimum value:min;ecs u;. Now we
consider probing the source s;. The new upper bound for
the minimum value will be min{e;, Umin }. Assuming that
e; is uniformly distributed over the range [l;,u;], we can
calculate the expected amount by which the range for the
minimum decreases when e; is probed. This is:

tmin Umin — T (lz - umz’n)2
dr =
/l wi—li 2(u; —1;)

i

We will call this the benefit of probing s; and will denote
it by ben(e;). We could probe sources in Sp one at a time
and make each probing decision based on the values that
have already been returned. Taking into account the cost
and latency involved, we define benefit to cost ratio (BCR)
as %. We probe the source that maximizes BCR. After
each probe, the current range for the minimum is updated.
If it is still larger than A, the benefits for each variable are
updated and a new source is chosen for probing based on

the updated values.

4. Performance Evaluation

The objective of this simulation is to study in detail the
performance of the proposed algorithms by comparing them
with other simpler algorithms. For each type of aggregate
query discussed in this paper, we choose three baseline poli-
cies (GREEDY _X, LAZY _X and RANDOM_X, with X be-
ing COUNT, SUM or MIN) for comparison:

(a) GREEDY_X: This algorithm probes all the related
sources for current exact values. The answer returned is
based on all the newly obtained fresh values. Therefore the
total cost involved is > ics Ci and the latency is max;ecs d;.
(b) LAZY _X: This algorithm probes none of the sources,
so the answer of a query is purely dependent upon the ac-
curacy of the stored values in the cache. Clearly, both cost
and latency involved is 0.

(c) RANDOM_X: This algorithm randomly picks a subset
of sources for probing, so the answer of a query is based on
partially accurate and partially stale values.

The following metrics are used to compare the perfor-
mance of different algorithms:

e cost: It is the total cost of probing sources for exact
values. If a subset P of source are probed, the total
cost will be) 7. p ¢;.

e accuracy ratio a: This metric measures how close the
answer interval (of size a) matches the accuracy con-
straint A. We define o = %, so smaller ¢« indicates
more accurate answer. When o < 1, the accuracy con-
straint is met.

e latency ratio 7: Similar to accuracy ratio, this metric
measures how close the time d spent answering the
query matches the time constrains D. If a subset P
of sources are probed in parallel, the delay in obtain-
ing the probed values is max;cp d;, so 7 = max"TGPd";
otherwise, 7 = #. Smaller 7 indicates that less
time is spent to answer the query. When 7 < 1, the
time constraint is met.

e accuracy satisfaction ratio: It is the percentage of
queries with their accuracy constraints satisfied.

e deadline satisfaction ratio: It is the percentage of
queries with their time constraints satisfied.

Our performance study consists of the following experi-
ments: (a) evaluation of all the policies for each type of
query; and (b) evaluation of the proposed algorithm for het-
erogeneous requests in terms of varying accuracy and time
constraints.

We built a simulation with 100 sources. Each source
holds its exact value, and the local cache holds its inter-
val approximation. The minimum interval size is 10 and
the maximum interval size is 20. All the interval sizes are
generated randomly from 10 to 20, and the lower bounds
of these intervals are randomly generated in the range [5,
12]. The cost of probing each source varies randomly from
1 to 10, and the latency of probing each source also varies
randomly from 1 to 10. Each query is accompanied by an
accuracy constraint and a time constraint. The accuracy
constraints are generated randomly from the range [0, 40].
Time constraints are generated randomly from 5 to 15. All
the results are averaged over 20 runs of the experiments.

4.1. Basic Performance Results

In this section, we apply our proposed algorithms and
the three baseline algorithms to answer the same set of
queries over the data of the same changing pattern. The per-
formance is compared against the five metrics introduced
above. Figure 1 shows the basic performance results for
computing feount. Not surprisingly, GREEDY_COUNT
achieves maximum answer accuracy at the price of high-
est probing cost and latency. In contrast, LAZY _ COUNT
provides the most coarse answer instantly by not prob-
ing any sources. BATCH_COUNT exhibits similar an-
swer accuracy and latency to RANDOM_COUNT with
slightly lower probing cost. However, more queries meet
their deadlines by using BATCH_COUNT. This is because
BATCH_COUNT gives higher priority to time constraints
than accuracy constraints, i.e., the best possible answer (in
terms of accuracy) is provided only if the deadline is met.
In addition, the sources of less probing cost are chosen in
BATCH_COUNT, while random selection of sources as in
RANDOM_COUNT could result in arbitrary total cost.

The basic performance for fgy,y, is similar to feoyunt. Fig-
ure 2 shows the basic performance results for computing
fmin. Comparing to RANDOM_MIN, BATCH_MIN pro-
vides more accurate answers by spending slightly more in
probing. However, its deadline satisfaction ratio is much
higher. This is because BATCH_MIN does not probe those
sources whose probing latency is higher than the query
deadline, while RANDOM_MIN does not take probing la-
tency into account. In addition, studies also indicate that the
probabilistic analysis of computing f,:y, is beneficial. It re-
duces the probing cost significantly. Since source probing is

count

count

count

500
450

=

wa
e

400

™

350

ra

L300
8 250
©

[Y

200

accuracy ratio

150

latency ratio

100

=
e

=
=

GREEDY RANDOM BATCH LAZY GREEDY

RANDOM

e T N - =]

s I

BATCH LAZY GREEDY RANDOM BATCH LAZY

count

[¥]

=1
5]
i

=)
i
|

accuracy satisfaction ratio
o
@

o
i
i

/

GREEDY RANDOM BATCH LAZY

count

0.8

0.6

deadline satisfaction ratio

GREEDY RANDOM BATCH LAZY

Figure 1. Basic performance comparison for computing f....:

done sequentially under ITERATIVE_MIN, the latency of a
query is the summation of the latency of each probe. Given
the same deadline and this probing limitation, the number
of sources to be probed is decreased greatly, which leads to
higher accuracy ratio (i.e., less accurate result) and lower
accuracy satisfaction ratio.

4.2. Extended Performance Results

We now further study the behavior of BATCH_COUNT,
BATCH_SUM and BATCH_MIN as the accuracy con-
straints of queries vary. Figure 3 shows the performance of
BATCH_COUNT under varying accuracy constraints. In or-
der to satisfy the time constraint, only those sources whose
probing latency is within the deadline are probed. How-
ever, when the accuracy constraint is very tight, this subset
cannot provide an accurate enough answer. Therefore, the
first part of the curve for cost is horizontal and the first part
of the curve for accuracy ratio is decreasing but larger than
1. When the accuracy constraint is relaxed further, fewer
probings can provide satisfactory answer. The performance
of BATCH_SUM and BATCH_MIN under varying accuracy
constraints follows similar trend as BATCH_COUNT. Wor-
thy of mentioning is the sharp increase of accuracy ratio of
BATCH_MIN when the accuracy constraint is 11. This is
because when the accuracy constraint is relaxed to a certain
degree, the cached value can easily satisfy it, therefore no
probing is necessary. The accuracy constraint is met, but the

accuracy ratio is increased compared to the previous cases
where probing is necessary.

Similarly, =~ we evaluate the performance of
BATCH_COUNT, BATCH.SUM and BATCH_MIN as
deadlines change. In the case of BATCH_.COUNT, the
several turning points in the curve of probing cost matches
exactly the several stages of the algorithm. We only
probe the subset Sp whose probing latency is smaller
than the deadline. Small deadline leads to small Sp, and
Sp increases as the deadline increases. Therefore, the
probing cost increases. At the same time, the accuracy
ratio decreases, but still larger than 1. When the deadline
reaches a point where we can select a subset of Sp to
probe, the probing cost is decreased since we select those
with less probing costs. When the deadline increases
further, no more improvement will be obtained since the
same subset of sources will be probed to meet the accuracy
and time constraints. For BATCH_SUM, as the deadline
increases, more sources can be probed to decrease accuracy
ratio. Similar results are exhibited by BATCH_SUM and
BATCH_MIN.

5. Related Work and Conclusions

There has been extensive research in different caching
strategies. One such strategy is adaptive caching, which ad-
justs when, how and what to cache dynamically as condi-
tions change. For instance, a technique called divergence

min

min

2 e
E O 1
s =
-E 0.8 T E 0.8 —
06— = 06 —
7 H
E- 0.4 — E 0.4 —
3021 T 02 —
=
© -
GREEDY RAMNDOM BATCH ITERATIVE LAZY GREEDY RANDOM BATCH ITERATIVE LAZY
Figure 2. Basic performance comparison for computing f,...
count count

400 4

350 35

300 O\\ 2 3 g\\
. 250 E 25
2 200 AN g 2 AN

g
100 = 1
50 05
0 T T T T T 0 T T T T T
3 10 15 20 25 30 5 10 15 20 25 30
accuracy constraints accuracy constraints

Figure 3. Performance of f.,.,; under varying accuracy constraints

caching considers setting the precision of approximate val-
ues in a caching environment [8], where precision is in-
versely proportional to the number of updates to the source
value not reflected in the cached approximation, indepen-
dent of the actual updates. Along the same line, range based
data caching for numerical values is used to deal with the
tradeoff between performance and precision [14], where in-
telligent cache refreshment strategies are proposed to ensure
queries for each single data item can be answered within
their precision constraints. Their work is further applied
into the TRAPP system [15], where aggregate queries ac-
companied by precision constraints are answered by auto-
matically selecting a combination of locally cached bounds
and exact master data stored remotely. Furthermore, our
previous work considered the scenario where both precision
and time constraints are imposed on single-item queries [7].
The algorithms proposed in this paper are for aggregate
queries and can be integrated into the framework.

Researchers have been re-investigating traditional data
management and processing techniques in the presence
of multiple continuous time-varying data streams. Data
streaming is now a vibrant research field for both tradi-
tional Internet environments (such as OpenCQ, Niagara,
Telegraph, STREAM and Aurora) and emerging ad-hoc sen-
sor networks (such as COUGAR and Quasar). Research

in this area has addressed a whole gamut of issues such
as system architectures, concepts/semantics of continuous
queries, QoS specifications for fresh information delivery,
system scalability etc. The work presented in this paper is
complementary to the research in data streaming.

Computing a function over n inputs is studied in the
framework of boolean and/or trees [3], where the source
data is accurate and each input has an associated price.
However, the authors look for answers without precision
requirements or time bounds. Similarly, they considered
the problem of competitively finding the maximum of n el-
ements but with additional costs for comparisons between
pairs of elements. The problem of computing aggregate
functions over approximate data has been addressed to de-
liver results within specified accuracy constraints while in-
troducing minimal overhead [6, 11, 5], where no time is-
sues are considered. The problem of answering aggregate
queries in multi-dimensional databases in an approximate
manner is addressed by using a modified tree index data
structure multi-resolution aggregate(MRA) to store aggre-
gate information about data at successive levels of resolu-
tion as defined by the space partitioning/data group hier-
archy. A progressive algorithm is developed to iteratively
give increasing quality answers until some error bound is
satisfied or timing constraints is reached [12]. The tradeoff

count

300

250 //\\ /‘
200 /; 7
g 150 ‘/
100
50
0 T T T T T
1 3 5 7 9 1
deadline

] w
mowom

accuracy ratio

=] -
o m o4 R

count

deadline

Figure 4. Performance of f.,.,; under varying time constraints

between transaction timeliness and data freshness has also
been addressed from the database transaction management
perspective, such as STRIP [1], ARCS [4] and QMF [10].

Concluding Remarks: In this paper, we studied the prob-
lem of computing aggregate functions over a set of values
which are bounded by lower and upper bounds and whose
exact values can be probed at the cost of various latency.
Our worst case analysis provides a bound on the cost to sat-
isfy queries regardless of the values returned when probed.
More interesting problems raise when a more sophisticated
model such as Gaussian distribution is used to capture the
change of data values. It is also interesting to conduct a
competitive analysis for answering aggregate queries. Fur-
thermore, handling multiple requests with overlapping in-
terested sets of values will pose more challenging issues.
Time-sensitive data aggregation is an essential step to pro-
viding real-time information services in distributed environ-
ments.

References

[1] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying up-
date streams in a soft real-time database system. In ACM
SIGMOD, 1995.

[2] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi.
Quality of service based routing: A performance perspec-
tive. In ACM SIGCOMM, 1998.

[3] M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg,
P. Raghavan, and A. Sahai. Query strategies for priced in-
formation. In ACM STOC, 2000.

[4] A. Datta and I. Viguier. Providing real-time response, state
recency and temporal consistency in databases for rapidly
changing environments. Information Systems, 22(4), 1997.

[5] T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and
R. Panigrahy. Computing shortest paths with uncertainty.
In Proceedings of STACS, 2003.

[6] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and
J. Widom. Computing the median with uncertainty. In ACM
STOC, 2000.

(7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

[15]

Q. Han and N. Venkatasubramanian. Addressing timeli-
ness/accuracy/cost tradeoffs in information collection for
dynamic environments. In Proceedings of IEEE RTSS, 2003.
Y. Huang, R. Sloan, and O. Wolfson. Divergence caching in
client-server architectures. In /IEEE PDIS, 1994.

LRish, M. Brodie, S. Ma, G. Grabarnik, and N. Odintsova.
Using adaptive probing for real-time problem diagnosis in
distributed computer systems. In Proceedings of AAI-02/
KDD-02/ UAI-02 workshop on Real-Time Decision Support
and Diagnosis Systems, 2002.

K. D. Kang, S. H. Son, J. A. Stankovic, and T. F. Abdelza-
her. A qos-sensitive approach for miss ratio and freshness
guarantees in real-time databases. In The 14th Euromicro
Conference on Real-Time Systems, 2002.

S. Khanna and W. C. Tan. On computing functions with
uncertainty. In ACM PODS, 2001.

I. Lazaridis and S. Mehrotra. Progressive approximate ag-
gregate queries with a multi-resolution tree structure. In
ACM SIGMOD, 2001.

O.H.Ibarra and C. Kim. Fast approximation algorithms for
the knapsack and sum of subset problems. Journal of the
ACM, 22(4), October 1975.

C. Olston, B. T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. In ACM SIGMOD,
2001.

C. Olston and J. Widom. Offering a precision-performance
tradeoff for aggregation queries over replicated data. In
VLDB, 2000.

