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Abstract

In this paper, we consider the communications involved by the execu-
tion of a complex application, deployed on a heterogeneous “grid” plat-
form. Such applications intensively use collective macro-communication
schemes, such as scatters, personalized all-to-alls or gather/reduce oper-
ations. Rather than aiming at minimizing the execution time of a single
macro-communication, we focus on the steady-state operation. We as-
sume that there is a large number of macro-communication to perform
in pipeline fashion, and we aim at maximizing the throughput, i.e. the
(rational) number of macro-communications which can be initiated ev-
ery time-step. We target heterogeneous platforms, modeled by a graph
where resources have different communication and computation speeds.
The situation is simpler for series of scatters or personalized all-to-alls
than for series of reduces operations, because of the possibility of com-
bining various partial reductions of the local values, and of interleaving
computations with communications. In all cases, we show how to de-
termine the optimal throughput, and how to exhibit a concrete periodic
schedule that achieves this throughput.

Keywords: Scheduling, steady-state, collective communications, heterogeneous platform:s

Résumé

Nous nous intéressons ici aux communications qui ont lieu lors de I’exécu-
tion d’une application complexe distribuée sur un environnement hétéro-
gene de type “grille de calcul”. De telles applications font un usage intensif
de communications collectives, telles que des diffusions ou des échanges
totaux personnalisés, ou encore des opération de réduction. Nous nous
intéressons ici & optimiser le débit de telles opérations en régime perma-
nent, en supposant qu’un grand nombre de communications collectives
semblables doivent étre effectuées successivement, comme c’est le cas
pour le parallélisme de données. La plateforme hétérogéne que nous vi-
sons est modélisée par un graphe ou les différentes ressources (calcul
ou communication) ont des vitesses différentes. Pour les opérations de
communications précédentes, nous montrons comment calculer le débit
optimal et comment construire un ordonnancement périodique qui réalise
ce débit.

Mots-clés: Ordonnancement, régime permanent, communications collectives, plateforme
hétérogeéne



1 Introduction

In this paper, we consider the communications involved by the execution of a complex a
cation, deployed on a heterogeneous “grid” platform. Such applications intensively use m:
communication schemes, such as broadcasts, scatters, all-to-all or reduce operations.

These macro-communication schemes have often been studied with the goal of minimizing
makespan, i.e. the time elapsed between the emission of the first message by the source, anc
last reception. But in many cases, the application has to perform a large number of instanc
the same operation (for example if data parallelism is used), and the makespan is not a signifi
measure for such problems. Rather, we focus on the optimization of the steady-state mode, an
aim at optimizing the throughput of a series of macro-communications instead of the makesp:
each macro-communication taken individually.

In this paper, we focus on scatter and reduce operations (note that broadcasts are dealt wi
the companion report [5]). Here are the definitions of these operations:

Scatter One processor Psource has to send a distinct message to each target processor F;,, ...

Series of Scatters The same source processor performs a series of Scatter operations, i.e. cons
tively sends a large number of different messages to the set of target processors {P,,, ..., I

Reduce Each processor P; among the set P, ..., P, of participating processors has a local
v;, and the goal is to calculate v = vy @ - -- ® vy, where @ is an associative, non-commut:
operator. The result v is to be stored on processor Pigrget-

Series of Reduces A series of Reduce operations is to be performed, from the same set of pa
ipating processors and to the same target.

For the SCATTER and REDUCE problems, the goal is to minimize the makespan of the oy
tion. For the SERIES version of these problems, the goal is to pipeline the different scatter/re
operations so as to reach the best possible throughput in steady-state operation. In this pape:
propose a new algorithmic strategy to solve this problem. The main idea is the same for the SE
OF SCATTERS and SERIES OF REDUCES problems, even though the latter turns out to be 1
difficult, because of the possibility of combining various partial reductions of the local values,
of interleaving computations with communications.

The rest of the paper is organized as follows. Section 2 describes the model used for the t:
computing platform model, and states the one-port assumptions for the operation mode of
resources. Section 3 deals with the SERIES OF SCATTERS problem. Section 3.5 is devoted tc
extension to the gossiping problem. The more complex SERIES OF REDUCES problem is descr
in Section 4. Section 4.7 presents some experimental results. Section 5 gives an overview of rel
work. Finally, we state some concluding remarks in Section 6.

2 Framework

We adopt a model of heterogeneity close to the one developed by Bhat, Raghavendra and Prasan:
The network is represented by an edge-weighted graph G = (V, E,¢). This graph may well inc
cycles and multiple paths. Each edge e is labeled with the value c(e), the time needed to tra:
of a message of unit size through the edge.

Among different scenarios found in the literature (see Section 5), we adopt the widely used
realistic) one-port model: at each time-step, a processor is able to perform at most one emis



and one reception. When computation is taken into account, we adopt a full-overlap assump
a processor can perform computations and (independent) communications simultaneously.

To state the model more precisely, suppose that processor P; starts to send a message of le
m at time ¢. This transfer will last m x ¢(i,7) time-steps. Note that the graph is directed, so t
is no reason to have ¢(i,7) = ¢(4,4) (and even more, the existence of edge (7, 7) does not imply
of link (7,7)). The one-port model imposes that between time-steps ¢ and ¢ + m x ¢(4, j):

e processor P; cannot initiate another send operation (but it can perform a receive oper:
and an independent computation),

e processor Pj cannot initiate another receive operation (but it can perform a send oper:
and an independent computation),

e processor P; cannot start the execution of tasks depending on the message being transfe:

Our framework is the following. We will express both optimization problems (SERIES OF St
TERS and SERIES OF REDUCES) as a set of linear constraints, so as to build a linear prog
Basically, the linear constraints aim at determining which fraction of time does each proc
spend communicating which message on which edge. We solve the linear program (in rati
numbers) with standard tools (like 1psolve [6] or Maple [10]), and we use the solution to bu
schedule that implements the best communication scheme.

Notations A few variables and constraints are common to all problems, because they arise
the one-port model assumption. We call s(P; — P;) the fraction of time spent by processor .
send messages to P; during one time-unit. This quantity is a rational number between 0 and |

VP,VP;,  0<s(P— P)<1

The one-port model constraints are expressed by the following equations:

VE;, Z s(Pp—P;) < 1 (outgoing messages from P;)
VP, Z s(Pj—P) < 1 (incoming messages to P;)
Pj,(ji)€E

We will later add further constraints corresponding to each specific problem under study.
first illustrate how to use this framework on the simple SERIES OF SCATTERS problem.

3 Series of Scatters

Recall that a scatter operation involves a source processor Psg,rce and a set of target proce:
{P,,t € T}. The source processor has a message m; to send to each processor P,. We focus her
the pipelined version of this problem: processor Psoyurce aims at sending a large number of diffe
same-size messages to each target processor P;.

3.1 Linear program

First, we introduce a few definitions for the steady-state operation:

e my is the type of the messages whose destination is processor Py,



o send(P; — Pj,my) is the fractional number of messages of type mj which are sent or
edge (i, 7) within a time-unit.

The relation between send(P; — Pj,my) and s(P; — P;) is expressed by the following equa

VP, P, s(P,— Py = Y send(P; — Pj,my) x c(i, j)

mg

5mk
3mk

4mk
ka

Figure 1: Conservation Law
(P # Pr)

The fact that some packets are forwarded by a node P; can be seen as a sort of “conserv:
law”: all the packets reaching a node which is not their final destination are transferred to «
nodes. For example, in Figure 1, node F; receives 7 messages for P, and forwards them all
other processors. This idea is expressed by the following constraint:

VP, YNy, k # 1, Z send(P; — P;,my) = Z send(P; = Pj,my,)
Pj,(ji)EE Pj,(i,j)€E
Moreover, let the throughput at processor Py be the number of messages my received at

node, i.e. the sum of all messages of type my received by Py via all its incoming edges. We im
that the same throughput TP is achieved at each target node, and we write the following constr

VP, ke, > send(P; — Py,my) = TP
Pi,(i,k})EE
We can summarize the previous constraints in a linear program:

STEADY-STATE SCATTER PROBLEM ON A GRAPH SSSP(G)
Maximize TP,
subject to

VP, VP, 0<s(P—P) <1

VP ZPj,(i,j)EES(F)i — Pj) <1

VP, >op; Gayer S(P) = Pi) <1

VP;, Pj, s(P; — Pj) = Emk send(P; — Pj,my) X (i, )

VP, Vmy, k # 1, ZPj,(j,i)eE send(P; — P;,my) = ZPj,(i,j)eE send(P; — Pj,my,)
VP, keT ZPi,(i,k)eE send(P; — Py, my) = TP

This linear program can be solved in polynomial time by using tools like 1psolve[6], Maple
or MuPaD [12]. We solve it over the rational numbers. Then we compute the least common mul
of the denominators of all the variables, which leads to a periodic schedule where all quantitie;
integers. This period is potentially very large, but we discuss in Section 4.6 how to approxi
the result for a smaller period.



3.2 Toy example

To illustrate the use of the linear program, consider the simple example described on Figu
Figure 2(a) presents the topology of the network, where each edge e is labeled with its communice
cost ¢(e). In this simple case, one source Ps sends messages to two target processors Py and F

Figures 2(b) and 2(c) show the results of the linear program: on Figure 2(b) we represen
number of messages of each type going through the network, whereas Figure 2(c) describes
occupation of each edge.

The throughput achieved with this solution is TP = 1/2, which means that one scatter oper:
is executed every two time-units. We point out that all the messages destined to processor F
not take the same route: some are transferred by P,, and others by Py,. The linear constraints :
for using multiple routes in order to reach the best throughput.

(a) Topology (b) send values (c) s values

Figure 2: Toy example for the SERIES OF SCATTERS problem. The values are given for a peric
12: the achieved throughput is 6 messages every 12 time-units.

3.3 Building a schedule

Once the linear program is solved, we get the period T" of the schedule and the integer numb
messages going through each link. We still need to exhibit a schedule of the message transfers w
emissions (resp. receptions) never overlap on one node. This is done using a weighted-matc
algorithm, as explained in [4]. We recall the basic principles of this algorithm. From our plat:
graph G ,and the result of the linear program, we build a bipartite graph Gp = (Vp, Ep, er
follows:

e for each node P; in G, create two nodes Pz-se”d and P/°“, one in charge of emissions, the c
of receptions.

e for each transfer send(P; — Pj, my), insert an edge between Pend and Pjec? labeled witl
time needed by the transfer: send(P; — Pj, my) % c(1, 7).

We are looking for a decomposition of this graph into a set of subgraphs where a node (send
receiver) is occupied by at most one communication task. This means that at most one edge rea
each node in the subgraph. In other words, only communications corresponding to a matc



in the bipartite graph can be performed simultaneously, and the desired decomposition of
graph is in fact an edge coloring. The weighted edge coloring algorithm of [23, vol.A chapte:
provides in polynomial time a polynomial number of matchings, which we are used to perform
different communications. Rather than going into technical details, we illustrate this algorithr
the previous example. The bipartite graph constructed with the previous send and s value:
returned by the linear program) is represented on Figure 3(a). It can be decomposed into
matchings, represented on Figures 3(b) to 3(e).

These matchings explain how to split the communications to build a schedule. Such a sche
is described on Figure 4(a). We assume that the transfer of a message can be split into several |
(for example, the fourth message transferred from P, to P; is sent during the first and the t
part of the period, corresponding to the first and third matchings. If needed, we can avoid spli
the transfer of a message by multiplicating again by the least common multiple of all denomin:
appearing in the number of messages to be sent in the different matchings. In our example, s
this least common multiple is 4, this produces a schedule of period 48, represented on Figure -

3.4 Asymptotic optimality

In this section, we prove that the previous periodic schedule is asymptotically optimal: basicall
scheduling algorithm (even non periodic) can execute more scatter operations in a given time-fi
than ours, up to a constant number of operations. This section is devoted to the formal stater
of this result, and to the corresponding proof.

Given a platform graph G = (V, F,c), a source processor Psyyree holding an infinite nu
of unit-size messages, a set of target processors Pr = {P,,..., P, } and a time bound K, d
opt(G, K) as the optimal number of messages that can be received by every target processc
a succession of scatter operations, within K time-units. Let TP(G) be the solution of the li
program SSSP(G) of Section 3.1 applied to this platform graph G. We have the following res

Lemma 1. opt(G,K) < TP(G) x K

Proof. Consider an optimal schedule, such that the number of messages sent by the source proc
within the K time-units is maximal. For each edge (P;, P;), let N(P; — Pj,my) be the numb
messages for Py, sent by P; to P;. Let S(P; — P;) be the total occupation time of the edge (P,
Then the following equations hold true:

e VP, P;,S(P; — P;) ZN (P; — Pj,my) x c(i, §)

e VP,VP;,0 < S(P, - P;) < K

e VP, Z S(P; — Pj) < K (time for P; to send messages in the one-port model)

o VP, Z S(P; — P;) < K (time for P; to receive messages in the one-port model)
PJ 7(]7 )EE

o VP, Vmy, k # 1, Z N(P; — P;,my) = Z N(P; — Pj,my) (conservation lav
Pj,(J0)EE Pj(i,j)€E
messages forwarded by P; to Py)

e VP, € Pr,opt(G,K) = ij,(j,k)eE N(Pj — Py, my,) (same number of messages receive
each target node)



(b) Matching 1

2 (Zmo)
!2 (3my) :2 (3my)
(d) Matching 3 (e) Matching 4

Figure 3: Bipartite Graph of the example and its decomposition into matchings. Edges are lal
with the communication times for each type of message going through the edge. The correspon
number of messages is mentioned between brackets.



matchings:

P, — P
P, — F,
P,— F,
P, — B

P, — P,

matchings:

.

P, — P

P(,—>P0

P, — B,

Ps_>Pb

|

!"""é' 1
popo | HEE

[I)"""" 1

~Y

(a) Schedule if we allow for splitting messages (period = 12)

1 2 3 4
r~ - -~ 7 e - -

MOOIOIOID 000
| - IEmm 0T

O -F-=-=-=-=--

10 20 30 40 48
(b) Schedule without any split message (period = 48)

Figure 4: Different possible schedules for the example.



Let send(P; — Pj,my) =

Pi—)Pj)

w and s(P; — Pj) = S(T All the equations o

linear program hold, hence w < TP(G), since TP is the optimal value.

Again, this lemma states that no schedule can send more messages that the steady-state. T
remains to bound the loss due to the initialization and the clean-up phase in our periodic solu
to come up with a well-defined scheduling algorithm based upon steady-state operation. Con:
the following algorithm (assume that K is large enough):

Solve the linear program for SSSP(G), compute the throughput TP(G). Determine the pe
T such that every communication time is an integer. We describe the schedule in tern
periods, i.e. in steps of length 7.

For each processor P;, for each type of message my (i # k), we use a buffer of messag
type my, on processor P;. We call bufferp, ,,, the number of messages of type my in the b
of processor P;. In steady-state mode, the buffer should contain at least as many mess
of each type as the number sent during one period, that is, the minimum size of a b
bufferp, ,,,, is buff-min-sizep, ,, = ZPj send(P; — Pj,my). Note this is the same quanti
the number of messages of type my received by P; within each period.

Initialization phase: at each period, if the buffer is not filled (that is while bufferp, ,
buff-min-sizep, ., ), P; sends no message my. After that the number of messages has rea
its minimum capacity, the sending policy of node P; is the same as in the steady-state: it s
send(P; — Pj, my) messages my, to Pj, using the communication schedule of the steady-s
solution. As P; receives not more messages my than buff-min-sizep, ., in one period,
buffer will never exceed a maximal capacity of 2 X buff-min-sizep, ., .

Let I be the maximal width of the graph G (its diameter) times the duration of a pe
I is a constant independent of K. As the maximum latency between the source and
node is not greater than the maximal width of the graph G, after I time-steps, bufferp, ,
ZPj send(P; — Pj, my,) for each processor P; and each message type my.

This is the beginning of the following steady-state phase, all processors send as many mes
K—21-T

as computed earlier, during r = L#J period of time T

Clean-up phase: the source processor stops sending any message, and the other proces
send messages as in the previous phase until their buffers get empty. As each buffer cont
not more messages than 2 x buff-min-sizep, ,,, , and since the maximum time for a messa,
reach its destination node is I, this may not take a time greater than I + 7'

The number of messages sent to each node by this algorithm within K time-units is not
than the number of messages sent during the steady-state phase, which is steady(G, K
r x T x TP(G).

Proposition 1. The previous scheduling algorithm based on the steady-state operation is asym
scally optimal:

steady(G, K)

=1.
Koies  opt(G, K)

Proof. Using the previous lemma, opt(G, K) < TP(G) x K. From the description of the algori
we have steady(G,K) = r x T x TP(G) = [2=2=L| x T x TP(G). Since TP(G), I and 1
constants independent of K, the result holds.



3.5 Extension to gossiping

We have dealt with the SERIES OF SCATTERS problem, but the same equations can be used i
more general case of a SERIES OF GOSSIPS, i.e. a series of personalized all-to-all problems. In
context, a set of source processors {Ps,s € S} has to send a series of messages to a set of t:
processors { Py, t € T }. The messages are now typed with the source and the destination proces
myg, is a message emitted by P and destined to to F;. The constraints stand for the one-
model, and for conservation of the messages. The throughput has to be the same for each ser
and at each target node. We give the linear program summarizing all this constraints:

STEADY-STATE PERSONALIZED ALL-TO-ALL PROBLEM ON A GRAPH SSPA2A(G)
Maximize TP,
subject to

VP, VP, 0<s(P,—>P) <1

VP, >op (ig)er (P = Pj) <1

VP ZPj,(j,i)EE s(Pj— P) <1

VP;, P;, s(Pp — Pj) = me send(P; = Pj,my ;) x c(i,7)

VP, Nmy, k # 1,1 # 1, ZPj,(j,i)eE send(Pj — P;,my) = ZPj,(i,j)eE send(P; = Pj,my)
\V’Pk,\V’mk’l ZPi,(i,k)eE send(PZ- — Pk,mk) =TP

After solving this linear system, we have to compute the period of a schedule as the least com
multiple of all denominators in the solution, and then to build a valid schedule, using the weig!
matching algorithm just as previously. Furthermore, we can prove the same result of asymp
optimality:

Proposition 2. For the SERIES OF GOSSIPS problem, the scheduling algorithm based on the ste
state operation is asymptotically optimal.

4 Series of Reduces

We recall the sketch of a reduce operation: some processors Py, ..., P, own a value vy, ...,vn.
goal is to compute the reduction of these values: v = vg @ --- ® vy, where @ is an associative,
commutative' operator. This operation is useful for example to compute a maximum /minin
sort or gather data in a particular order (see [11]| for other applications). We impose that at
end, the result is stored in processor Pyq;get-

The reduce operation is more complex than the scatter operation, because we add comg
tional tasks to merge the different messages into new ones. Let vj;,, denote the partial r
corresponding to the reduction of the values v, ..., vn:

Ulkym] = Vk D - D vm

The initial values v; = vl[i,i] will be reduced into partial results until the final result v = vy,
reached. As & is associative, two partial results can be reduced as follows:

Ulkm] = Vik,1] D Vi41,m]

!When the operator is commutative, we have more freedom to assemble the final result. Of course it is a
possible to perform the reduction with a commutative operator, but without taking advantage of the commutat



We let T}, i ,,, denote the computational task needed for this reduction.

We start by giving an example of a non-pipelined reduce operation, in order to illustrate ho
interpret this operation as a reduction tree. Next, we move to the SERIES OF REDUCES prot
we explain how to derive the linear program, and how to build a schedule using the result of
linear program.

4.1 Introduction to reduction trees

Consider the simple example of a network composed of three processors Py, P;, P> owning the v:
vp, U1, v2, and linked by a fully connected topology. The target processor is Fy. One way to per
the reduction of {vg,v1,ve} is the following schedule:

1. P, sends its value vy to Py,

2. Py computes the partial reduction vj ) = v1 @ v2 (task T 1 2)
3. P, sends its value vy to Py,

4. Py computes the final result vjg o) = vo ® v[1 ) (task Tpp2),

5. Py sends the final result v = v 9 to Py

Obviously, this may well not be the shortest way to perform the reduction! But we merely
the above schedule to introduce reduction trees. Indeed, we represent the schedule by a tree.
create one node for for each value v; on processor P;, and for each task (either a communicatic
a computation). We insert one edge ny — ng when the result of node n is an input data of :
ng. The reduction tree of the schedule described above is represented on Figure 5.

Ylo,2]
P, — P,

Figure 5: Simple example of a reduction tree

A schedule for a single reduction operation uses a single reduction tree. As we are intereste
the SERIES OF REDUCES problem, we assume that each processor P; has a set of values, ind
with a time-stamp: one of these values is denoted as v!. The series of reductions consists ir
reduction of each set {vf,..., v} for each time-stamp ¢. We can interpret each of these reduct



as a reduction tree, but two different reductions (for distinct time-stamps #; and ¢9) may wel
different reduction trees.

4.2 Linear Program

To describe the linear constraints of the SERIES OF REDUCES problem, we use the following
ables:

e send(P; — Pj,vy, ) is the fractional number of messages containing vy, ;) values and w
sent from P; to Pj, within one time unit

o cons(P;, Ty m) is the fractional number of tasks T}, computed on processor F;,

e «(PF;) is the time spent by P; computing tasks within each time-unit. This quantity is obvic
bounded:
VP 0<a(f) <1

o size(v),) is the size of one message containing a value vy, ),
o w(P;, T}, m) is the time needed by processor P; to compute one task T} ;.

The number of messages sent on edge (i, 7) is related to the communication time on this e

VP, Pj, s(Pi— Pj) = Z send(P; = Pj, v ) X size(vy ) x (1, 7)

Ulk,1]

In the same way, the number of tasks computed by P; is related to the time spent for -
computation:

VI)Z a(IDZ) = Z conS(RaTk,l,m) X w(}DiaTk,l,m)

Tk 1,m

We can write the following “conservation law” which expresses that the number of packe
type vy, reaching a node (either created by a local computation of a task Ty, or by a trai
from another node) is used in a local computation (T}, j m or Tk m,,) or sent to another node:

VP, Yo ) With (k # 4 or m # i) and (target i or k#0 or m #n —1)

Z send(Pj — Pi, vjgm)) + Z cons(P;, Ty, 1.m)
P;(ji)EE k<l<m

= Z send(P; — Pj, vjm]) + Z cons(P;, Ty mn) + Z cons(P;, Ty j—1,m)
Pj:(ZJ)GE n>m n<k

Note that this equation is not verified for the message v}; ;; on processor P; (we assume we
an unlimited number of such messages). It is is also not verified for the final complete mes
v = v[g,u—1) ON the target processor. In fact, the number of messages v reaching the target proce
Piyrger is the throughput TP that we want to maximize:

P = Z Send(Pj - Ptargetav[(),N}) + Z conS(PtargetaTU,l,N)
Pj,(j,target)e E 0<l<n—1



If we summarize all these constraints, we are led to the following linear program:

STEADY-STATE REDUCE PROBLEM ON A GRAPH SSR(G)
Maximize TP

subject to

VP,VP;, 0<s(P— Pj) <1

VP Yo upens(Pio P <
V}Dia ZP],(],Z (P - P)

VEP;, 0<a )

VP, Pj, s(P;— Pj)= Z'U[k,l] send(P; — Pj,vp ) X size(vy,) X c(i, j)

VP, a(B) =g, . cons(Py, Tm) X w(Py, Tim)
VP, Yo, ) With (K # i or m # i) and (target #i or k # 0 or m #n — 1),
ZPj,(j,i)eE send(Pj — Py, ik m)) + 2k <i<m conS( Py Tit,m)
= ZPj,(i,j)eE send(P; — Py, v m) + 2 s €on8(Py, Thmm) + 3, < cons(Pi, T g 1.m
(jtarget)€E Send(Pj — Ptargeta U[O,N]) + 20§l<n71 conS(Ptargeta TO,l,N) =TP

2P,

Jo

As for the SERIES OF SCATTERS problem, after solving this linear program in rational numl
we compute the least common multiple of all denominators, and we multiply every variable by
quantity. We then obtain an integer solution during a period T'. We formally define the int
solution as an application A which associates an integer value to each variable.

4.3 Building a schedule

Once the solution is computed, we have to exhibit a concrete schedule that achieves it. To compl
matters, the description of the schedule during a single period is not enough, we need to explici
initialization and termination phases. A naive way would be to describe a schedule for a dur:

T multiple of T in extension, explaining how the values vy to Upp 2 Can be computed in
T
!

T', and to prove that this schedule can be pipelined. This is done on Figure 6 for the si
example, where T'= 3 and 7" = 6. The main problem of this approach is that the period 7' is
polynomially bounded? in the size of the input parameters (the size of the graph), so descri
the schedule in extension cannot be done in polynomial time. Furthermore, it might not eve
feasible from a practical point of view, if T" is too large.

To circumvent the extensive description of the schedule, we use reduction trees. For each t
stamp ¢ between 0 and 7" — 1 a reduction tree is used to reduce the values vf,..., v ;.
reduction trees corresponding to the example of Figure 6 are illustrated on Figure 7. A given
T might be used by many time-stamps ¢. We will see that the description of a schedule as a fa
of trees weighted by the throughput of each tree is more compact than the extensive descriptic
Figure 6(d).

To formally define a reduction tree, we first define a task and its inputs. First, a task is eitl
computation Tk s ,, on node P; (written cons(Ty,im, I)) or the transfer of a message vy, ) from
P; to node P; (written send(P; — Pj, vy ;). An input of a task is a couple (message, locat
The inputs of a computational task cons(T, i m, P;) are (v, ;) and (vj41,m], ), and its rest
(V(k,m), P;)- The single input of a communication task send(P; — Pj, v ) 18 (Vjm], %), an
result is (Vg m), P)-

%In fact, because it arises from the linear program, log T is indeed a number polynomial in the problem size
T itself is not, and describing what happens at every time-step would be exponential in the problem size.



(a) Topology

(b) Solution of linear program (period T = 3)

Link/Node 0 1 2 3 4 5
node 1 T[ilﬂ} T[21,1,2]
1 =2 vﬂvu
1—=0 0[1172} 0[21,2}
node 2 T[?,L?}
2—=1 ”[11,1} U[Ql’l}
2—=0 UFL?}
Lup g 252 node 0 Tooz | Tooz | Tho
(c) Results on topology (d) Example of schedule - basic scheme
Link/Node 0 1 2 3 4 5 6 7 8 9 10 11
node 1 Tia | Tiaa Tiaz | Do Tz | T T | T,
122 | vhy Uy Ufy Uy
=0 U | g Ui | " Uha | Yha ULy
node 2 T[(i,l,?] T[?,lg] T[?,I,Z] [%,1,2]
221 vy | Y iy | Yy vha | Yy ity | Yy
220 Uz Vo () o2
node 0 Too2 | Toog | Toog | Tooa | Toog | Tooa | Tooa | Tooa | oo

(e) Example of schedule - pipelined

6(a) The topology of the network. Each edge e is labeled with its communication cost c(e). E
processor can process any task in one time-unit, except node 0 which can process any two task
one time-unit. The size of every message is 1. The target node is node 0.

6(b) The solution of the linear program.

6(c) The results of the linear program mapped on the topology graph.

6(d) and 6(e) The exhaustive description of a valid schedule using the values given in 6(c). T
reductions are performed every three time-units. The values reduced are labeled with their t:
stamp (upper indice). Figure 6(d) shows the non-pipelined schedule, while Figure 6(e) presents
pipelined version, leading to a throughput of one reduce operation per time-unit.

Figure 6: Exhaustive schedule derived from the results of the linear program



Ty Tiap2
Py Py
Y

YlL2] 1,2]

P1 — P(] P2 - PO
To,0,2 To,0,2
I50 I50
(a) Reduction tree Ty (throughput 1/3) (b) Reduction tree Ty (throughput 2/3)

Figure 7: Two reduction trees used in the schedule described on Figure 6(d)

Definition 1. A reduction tree T is a list of tasks (computations or communications), such the
input of a task in T s either the result of another task in T, or a message vy; ; on processor I

To a reduction tree T, we associate the incidence function y7 such that:

1 iftask €T

Y task € {cons(Tk,l,m,Pi),send(Pi — Pj,v[k,m})}, x7(task) = { 0 if task ¢ T

We state the following result:
Lemma 2. We can build in polynomial time a set of weighted trees S = {(T,w(T))}, such th
e VT € S,w(T) €N

e card(S) is polynomial in the size of the topology graph G,

o > w(T)xxr=A
TeS
The constructive proof of this lemma will be given in Section 4.4, as an algorithm to ex
reduction trees from a solution A. Assume for the moment that Lemma 2 is true. Using
decomposition of the solution into reduction trees, we can build a valid schedule for the pipel
reduce operations. We use the same approach as for the scatter operation, based on a weigl
matching algorithm. We construct a bipartite graph Gp = (Vp, Ep,ep) as follows:

e for each processor F;, we add two nodes to Vp: Pise”d and P/,

e for each communication task send(P; — Pj, v ) in each reduction tree 7, we ad

edge between Pise”d and P weighted by the time need to perform the transfer: w(

si2e(V[g,m]) X c(i,7)-

P
)



The one-port constraints impose that the sum of the weights of edges adjacent to a process
smaller than the period 7. Using the same weighted-matching algorithm, we decompose the g
into a weighted sum of matchings such that the sum of the coefficient is less than T'. As previo
this gives a schedule for achieving the throughput TP within a period T

For the previous simple example, there are two reduction trees, as illustrated below:

R P

° ° oo %
Pl P2 Pl y

On this example, there are two steps corresponding to the two matchings. At each step,
the communications occurring for a single reduction tree take place. This is not true in the ge
case: each matching may well involve communications belonging to several reduction trees.

4.4 Extracting trees

We present here an algorithm to extract reduction trees from a solution A. We assume that A
integer solution of period 7. The algorithm is described on Figure 8. It constructs a set TREI
reduction trees with a greedy approach: while we have not reached the throughput TP, we se
for a reduction tree 7 in the remaining tasks; we weight this tree by the maximum throug
w(T) that it can produce, which is the minimum throughput of all tasks used in the tree. T
we update the solution A by decreasing all tasks used in 7 by a factor w(7). We will now
the correctness and the termination of the algorithm:

Theorem 1. The algorithm EXTRACT TREES(A) produces a set of trees TREES such that:

o« A= Y w(T)xxr,

T €TREES

e the number of trees is polynomial in the size of the topology graph G,
e the complexity of the algorithm is polynomial in the size of G.

Proof. We call A°"% the solution at the beginning of the algorithm, and A the solution update
each step. We prove that the following property is verified during the execution of the algoritl

AT = A+ > w(T) x x7
T € TREES
H:= ¢ Ais a valid solution to reach a throughput of TP — Z w(T)

T ETREES
VT € TREEs, T is a valid reduction tree

At the beginning of the program, we have A°"% = A and TREES = (), so that H is true. We p
that every step of the loop in EXTRACT _TREES preserves this property.

FIND TREE computes a list of tasks such that each input of every task is produced by anc
task in the list or is a value v}; ; on processor I, and the output of these tasks is vjg y). So FIND "



FIND TREE(A)
1: inputs := (U[O,N] on node Pjgrget)

2: tasks := ()
3: while Jinput € inputs with input # (v;; on node P;) do
4:  find a input € inputs such that input # (vj;; on node P)
5. (VUpg,m) on node P;) := input
6:  if 3l such that A(cons(Ty,m, P;)) > 0 then
{the message vjy, p) is computed in place}
7: suppress input from inputs
8: add two inputs to inputs : (vy ;) on node ;) and
(V[141,,m) on node P;)
9: add the task cons(Ty m), Pi) to tasks
10: next 6

11:  else if 3P; such that A(send(P; — Pj,v[;m))) > 0 then
{the message v, ) is received from P}

12: suppress input from inputs

13: add one input to inputs : (v, on node P;)
14: add the task send(P; — P;, v m)) to tasks
15: next 6

16: RETURN T

EXTRACT _TREE(.A)
1: TREES := ()
2 while »  w(T) < TP do
TeETREES
3: T :=FIND_TREE(A)
4:  w(T) = min {A(task), task € T}
5. for all task € T do
6 Al(task) = A(task) — w(T)
7. PUSH((T,w(T)), TREES)
8: RETURN TREES

Figure 8: Extracting reduction trees from a solution A




computes a valid reduction tree 7. Moreover, in T all the tasks have a positive value in A.
throughput w(7) computed is such that for each cons(Tj,m, P;) and each send(P; — Pj, v
appearing in 7, we have A(cons(Tk,m, Pi)) = w(T) and A(send(P; — Pj, v m))) = w(T). !
is a reduction tree, the conservation law stands for the values given by x7, that is:

VP, Y, m) with (k # i or m # 1) and (target #i or k #0 or m # n — 1)
Y xr(send(Pj = Piogem)) + Y x7(cons(Py, T ym))

Pj,(ji)eL k<l<m
= Z XT(Send(Pi - Pjav[lc,m])) + Z XT(COHS(PZ'aTk,m,n)) + ZXT(cons(PiaTn,k—l,n
Pj,(i,j)€EE n>m n<k

As A is a valid solution, this equation is also true for the value of A. So it also tru

A—w(T) x x7:

(under the same conditions)

Y (A=w(T) x x7)(send(Pj = Pivp ) + Y (A= w(T) x x7)(cons(Pi, Ty,

P;,(jA)EE k<l<m
= > (A=w(T) x xr)(send(Pi = P, vjpm) + Y (A= w(T) x x7)(cons(Pi, Ty m,
P]7(7'7])€E n>m
+ Z (A—=w(T) x x7)(cons(P;, Ty, —1,n
n<k

So A is a valid solution after being updated. Besides, we updated the value of A for the t
appearing in 7 such that the A after modifications is the sum of A before modifications ar
w(T) x x7. So H is verified after the execution of a step of the algorithm. At the end, we get .
of trees such that Y .. w(T) = TP.

We now prove that we extract only a polynomial number of trees. At each step, we com
the minimum throughput of each task on a tree to get w(7), and we decrease the values of all t
tasks in A by w(7). So there is at least one task realizing the minimum whose new value in A
be 0. In other words, we delete at least one task for every new tree extracted. The total numb
tasks is not greater than

e N3 x n for the computational tasks, where N is the number of processors participating tc
reduction and n > N is the total number of processors: there are N3 possible values for 7
on each of the n processors,

e N? x n? for the communication tasks: there are N? possible message types on each link,
the number of links is bounded by n?.

Therefore, the algorithm extracts at most 2n* reduction trees. Finally, a new task is added tc
current tree at each step of FIND _TREE, so the algorithm can be executed in polynomial time.

4.5 Asymptotic optimality

We can prove the same result of asymptotic optimality as for the scatter and gossip operation

Proposition 3. For the SERIES OF REDUCES problem, the scheduling algorithm based or
steady-state operation is asymptotically optimal.



4.6 Approximation for a fixed period

The framework developed here gives a schedule for a pipelined reduce problem with an int
throughput TP during a period 1. However, as already pointed out, this period may be too .
from a practical viewpoint. We propose here to approximate the solution with a periodic sol
of period T'fizeq-

Assume that we have the solution A and its decomposition into a set of weighted reduction
{T,w(T)}. We compute the following values:

r(T) = {w(j?') X Tfi:nedJ

The one-port constraints are satisfied for {7,w(7)} on a period T, so they are still satisfie
{T,r(T)} on a period Tfizeq. So these new values can be used to build a valid schedule w
period is T'fizeq-

We can bound the difference between the throughput ﬁ X Y 7eTress Of the approxim
solution and the original throughput TP:

TP — L X Z r(T) = TP - Z ! X \"UJ(T) X Tfi:vedJ

sz'med T E€TREES T E€TREES sz'med T
1
< TP - Z T X <w¥) X Ttized — 1)
T €TREES fized
o card(TREES)
N Tfi:ved

This shows that the approximated solution asymptotically approaches the best throughp
Tized grows. We have proven the following result:

Proposition 4. We can derive a steady-state operation for periods of arbitrary length, u
throughput converges to the optimal solution as the period size increases.

4.7 Experimental Results

We work out a complete example in this section. The platform used is generated by Tiers, a ran
generator of topology [9]. The bandwidths of the links and the computing speeds of the proce:
are randomly chosen. The platform is represented on Figure 9. We assume that all the v .,
the same size (10) and that the time needed to compute a task on processor P; is 10/s;, where
the speed of P; shown in the figure. The nodes taking part to the computation are the nodes o
LAN networks generated by Tiers, they are shaded in gray on the figure. The other (white) n
are routers.

Figure 10 presents the results of the linear program mapped on the topology (so the peri
normalized to 1). The optimal throughput is TP = 2/9. Two reduction trees can be extracted :
these results with our algorithm, they are presented on Figures 11 and 12.



10
index 7

speed: 17

13
index 2
speed: 79

14

Figure 9: A complex topology, generated by Tiers. Each processor in gray has some value v; t
reduced, and takes part in the computation. The logical index 4 of the processors is mentic
The target node is node 6 (whose logical index is 4).



[1,1:1/9 [1,1):1/9

e AR
[5.5]:1/9 Ezg};gg {g:g};ﬂg [5.5]:1/9
_ [11]:09 )
{ggﬂg (1619 [1,1]:1/9 {8'%];53
[5,51:1/9 {gzg};gg (689 | (55w
node 12
node 9 [0,6]:1/9 . (index 5)
@ 3arve | [2AY9 | congz.a8):19
cons[3,5,6]:1/9
[L1]:1/9 [0,01:1/9 ) [0,01:1/9
ferve / [33:209 22w /| [o729 {3‘3}153 Wi \ [L6]:
{3329 {34109 : {36109

(irr]:t)jd; {i) ooggg(ﬁ-)yg node 11
cons[1,3,4]:1/9 s ns[ollve];]JQ (index 0)
cons[L4,6]:1/9 cons[2.2,6]:1/9

[3.4]:1/9
[4,4]:1/9
[5,6]:1/9
[6,6]:1/9

[0,0]:1/9

[1,3):1/9 .
[1,1]:1/9 (071219

[5,6]:1/9 [0,0:2/9

[0,6]:1/9

node 10

(index 7)
cons[0,0,6]:1/9
cons[0,6,7]:2/9

[1,3):1/9

node 6
(index 4)
cons(1,1,2]:1/9

[1,21:19 \ [13]:1/9
[33):219 | [3.4]:19
[441:1/9 | [5.6]:19
[55]:1/9 | [66]:1/9

node 7
(index 6)
cong[1,2,3]:1/9
cons[3,3,4]:1/9
cons[5,5,6]:1/9

Figure 10: Results of the linear program. The target node is node 6 with index 4. Each li
labeled with the transfers scheduled through it during one time-unit. For example, [1,6] : 1/9 m
that 1/9 message of type vj; g pass through the edge during one time-unit. In the same way
computing nodes are labeled with the tasks which they execute.



transfer [3,3]
9->8->2->6
>7

transfer [4,4]
6->7

cong[3,3,4]
in node 7 (6)

transfer [3,4]
7->6->2->1
>0->5->4->1

transfer [6,6]
7->6->2->1

cons[3,4,5]
>0->5->12 in node 12 (5)
cong[3,5,6]
in node 12 (5)
transfer [3,6]
12->13

cons[2,2,6]
in node 13 (2)

transfer [1,1]
8->2->1->0
>5->12->13

transfer [0,0]
11->10->4->12
->13

cons[0,0,1]
in node 13 (2)

cong[0,1,6]
in node 13 (2)

transfer [0,6]
13->12->5->4
->10

cong[0,6,7]
in node 10 (7)

transfer [0,7]
10->4->12->5

result: [0,7]
in node 6 (4)

Figure 11: First reduction tree, with throughput 1/9 (= TP/2)



transfer [2,2]
13->12->4->5 render 1]
>0->1->2->6
cong[1,1,2]
in node 6 (4)

transfer [3,3]
9-58-52-56 transfer [1,2]
>7 6->7

cong[1,2,3]

transfer [5,5]
12->5->0->1
>2->6->7

in node 7 (6)

transfer [1,3]
7->6->3->8

transfer [4,4]
6->2->8
cong[1,3,4]
in node 8 (1)
cons[1,4,6]
in node 8 (1)
transfer [1,6]

8->2->1->0
->5->10

transfer [5,6]
7->6->2->3
->8

transfer [0,0]
11->10
cong[0,0,6]
in node 10 (7)
cons{0,6,7]
in node 10 (7)

transfer [0,7]
10->4->12->5

result: [0,7]
in node 6 (4)

Figure 12: Second reduction tree, with throughput 1/9 (= TP/2)



5 Related Work

We briefly discuss related results from the literature, which we classify in the following three
gories:

Models Several models have been considered in the literature:

e Banikazemi et al. [1] consider a simple model in which the heterogeneity among proce:
is characterized by the speed of the sending processors. In this model, the interconnec
network is fully connected (a complete graph), and each processor P; requires t; t
units to send a (normalized) message to any other processor. Some theoretical re
(NP-completeness and approximation algorithms) have been developed for the prol
of broadcasting a message in this model: see [13, 19, 18|.

e A more complex model is introduced in [2]: it takes not only the time needed to se
message into account, but also the time spent for the transfer through the network,
the time needed to receive the message. All these three components have a fixed |
and a part proportional to the length of the message.

e Yet another model of communication is introduced in [8, 7|: the time needed to tra
the message between any processor pair (P;, P;) is supposed to be divided into a sta:
cost T; ; and a part depending on the size m of the message and the transmission
B; j between the two processors, %

e All previous models assume the one port protocol, which we used throughout this p:
a given processor can send data to at most one neighbor processor at a time. Ust

overlapping this operation with one receiving (of independent data) is allowed.

Collective communication schemes Macro-communications have been widely studied, in
ticular for homogeneous topologies. For instance, some papers address the problem of
forming collective operation on meshes using a wormhole routing model. In [25], a pipel
broadcast is described for such a mesh, and its performances are tested on a Cray T3D
the same topology, Barnett et al. [3] study another collective operation : the GLOBAL C
BINE operation, very close to our REDUCE operation, excepted that the operator used ir
reduction is now associative and commutative (the order of the elements to reduce ha
importance). In [3], the authors describe several efficient algorithms to perform this oper:
based on a wormhole routing model, but they are interested in the non-pipelined versic
the operation, and their goal is to minimize the makespan of one COMBINE operation. C
collective communications, such as multicast,scatter, all-to-all, gossiping and gather/re
have been studied in the context of heterogeneous platforms: see [21, 14, 20, 17, 22| an
others.

Communication libraries MPI and its extensions provide several routines for various m:
communications:

e The common standard MPI [24] describes many collective communications, suc
BROADCAST, GATHER, ALLTOALL, and REDUCE.

e A recent implementation, called MPICH-G2 [15], is typically designed for clusters
the grid. To perform collective communications, the MPICH-G2 implementation gr
processors into different subnets, gathered into layers, according to the communicz
possibilities available between to different processors (MPI, Globus and/or TCP),



then perform hierarchical communications using these layers. However, pipelining
munication is still a project for a next implementation of MPI.

e There exist other communication libraries using the same hierarchical approach:
ECO library [21] measures the round-trip time between different processors to g
them into subnets, and then perform the communications using this two-layer topo
The algorithms used inside a given subnet depends upon some of its characteris
for example, the width of a broadcast tree will differ in a switch-based network
in a bus-based network. MagPIe [16] is another library which groups processors
subnets. The use of only two layers (inter-subnet and intra-subnet communication
justified as follows in [16]: the high cost of a wide-area communication makes negli
the use of improvements of the communications inside a given cluster. To perforr
efficient collective communication, the main goal is to minimize the use of inter-su
communications.

6 Conclusion

In this paper, we have studied several collective communications, with the objective to opti
the throughout that can be achieved in steady-state mode, when pipelining a large numbe
operations. Focusing on series of scatters, gossips and reduces, we have shown how to expli
determine the best steady-state scheduling in polynomial time. The best throughout can easil
found with linear programming, whereas a polynomial description of a valid schedule realizing
throughout is more difficult to exhibit. In particular, we had to use reduction trees to descri
polynomial schedule for the SERIES OF REDUCES problem. It is important to point out thaf
concrete scheduling algorithms based upon the steady-state operation are asymptotically opti
in the class of all possible schedules, (not only periodic solutions).

An interesting problem is to extend the solution for reduce operations to general parallel p
computations, where each node F; must obtain the result vjg; of the reduction limited to t
processors whose rank is lower that its own rank.
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