
Evaluating the Information Power Grid using the NAS Grid Benchmarks

Rob E Van der Wijngaart* and Michael A. Frumkin
NASA Advanced Supercomputing Division
M/S T27A-1, NASA Ames Research Center

Moffett Field, CA 94035-1000
{wijngaar, frumkin}@nas .nasa.gov

Abstract

The NAS Grid Benchmarks (NGB) are a collection of
synthetic distributed applications designed to rate the per-
formance and functionalit?, of computational grids. We
compare seveml imp!ementdons of the NGB to deter-
mine programmabilig and eficiency of NASA's I n f o m -
tion Power Grid (IPG), whose services are mostly based on
the Globus Toolkit. We report on the overheads involved in
porting existing NGB reference implementations to the IPG.
No changes were made to the component tasks of the NGB.

guarded optimism that IPG may be beneficial for NASA's
application workload, but programmability and reliability
can still be improved.

The rest of this paper is structured as follows. In Section
2 we briefly review the NGB, including the non-IPG ref-
erence implementations. We a!so discuss some other cwId
benchmarking and monitoring projects. In Section 3 we de-
scribe the software and hardware inkastructure of IPG rel-
evant to our experiments. In Section 4 we give important
details of our actual IPG NGB implementations. We dis-
cuss performance and propmmability results in Section 5.

Some concluding remarks about the current state of the
IPG, as well as recommendations for enhancement, are pre-
sented in Section 6.

1 Introduction
2 Background

As computational grids are gaining more acceptance and
prominence. tools are required tn determine which rnmpn-

, nents of ,gids function well and which require improve-
ment. To do th2s in a systematic way, a staqdard rating
mechanism must be developed, i.e. grid benchmarks. Our
approach is to develop such benchmarks primarily to serve
,gd users. since increased application programmer produc-
tivity and application perfomaxe are sle main goals of
compiitational ,grids. Consequently, we have focused on
characterizing actual distributed applications that are suit-
able for execution on grids. The outcome of that work, the
iirst pubiiciy avaiiabie =gid benc-bark suite, was reieaied
ur?der the nzme NAS Grid Bencbmxks (NGB), whose pre-
cise specification is described in [7]. The motivation, back-
ground and early experiences with NGB are reported in [?],
along with a brief description of a reference implementation
in Java.

In this paper we discuss two implementations of NGB on
NASA's production computational grid called the informa-
tion Power Grid (IPG), and compare that to the earlier se-
rial implementation. The performance results are reason for

* Cornpurer Sciences Corpomtion

Embarrassingly Distributed (ED)

Figure 1. Data flow graph representing ED
NAS Grid Benchmark.

applications are among the simplest in terms of software in-
frastructure required, and hence they should be represented
in a basic +grid benchmarkins suite. The DFGs for these
benchzzrks, n a ~ e d Emba~ass i~giy Dist=;buted (ED). He-
lical Chain (HC), Ksualization Pipe (VP). and Mixed Bag
(MB). are depicted in Figures 1 and 2 . The nodes of the

Helical Chain (HC) Visualization Pipe (VP) Mixed Bag (MB)

I- - - - - - - -{Launch]

8.64

I - - - - - - - iLaljnch / - - - - - - - - ,

Figure 2. Data flow graphs representing HC, VP, and MB NAS Grid Benchmarks; numbers in italics and
bold indicate thousands of words communicated between tasks for Classes S and W, respectively.
Tasks are numbeied according to the labels in the semi-circles.

graphs, indicated by the rectangular boxes. are computa-
tionai tasks. Dashed arrows indicate controi iiow between
the tasks, and solid arrows indicate data as well as control
flow. Communication volumes between tasks are indicated
in Figure 2. Launch and Report do little work; they initi-
ate execution of the task graph and collect performance and
verification results, respectively. The other computational
tasks, SP, BT, LU, MG, and FT, have some internal struc-
ture, see Figure 3 in Section 4. They are derived from the
NAS Parallel Benchmarks (NPB) and involve computations
en sizable multi-dimensiona! arrays. %%en tk mays 0::
connected nodes are of the same size, no data transforma-
tion needs to take place, but if a node has more than one
input arcs and/or if the arrays on connected nodes are of
different size, an additional computation needs to occur to
merge and/or interpolate data. This computation is carried
out by a function called Mesh Filter [7]. The NGB are pa-
rameterized and can be run for different array sizes, which
are usually referred to as Classes. In this study we use the
two smallest Classes, named S and W.

EE, HC, V?, aild MB highiight diffeisiit aspects of corn-

and all the tasks within the graph can be executed indepen-
dently. It tests basic functionality of grids and does not tax
their communication performance; but it does allow us to
measure the cost of remote task creation. HC is totally se-
quential at the graph level. Hence, any time spent on com-
municating data between graph nodes is fully exposed and
will show up in performance results. VP requires specify-
ing concurrent execution of tasks in a DFG with nontrivial

nication times with computational work. MB is similar to
VP, but the nodes of the graph all have different amounts of

niitot4nn-l + A - En T e - , 7 & o ~ . , ; ~ t ~ ~ - l l ~ , nn rnmm~~n;r~t;r\n
~'"L"""""' cI'u". YU "'1""'U I ULU"" , -1" c . " l * u . A r . A * " u L L v l l ,

dependencies. fi a!!ows pipelinin- - -A - ar ,I- .-g Anmrnl. 6 u11u Gl'Lr!uppLp c"IIu,Iu-

computational work.
Other projects in the area of grid benchmarking and eval-

uation have thus far mainly concentrated on monitoring
health and status of particular grid components. Examples
are the Globus Heart Beat Monitor [101 (part of the Globus
Toolkit [1 l]), the Network Weather Service [SI, and Wren
[9]. Recently, some efforts were made to determine which
rcalistic applications and application classes qualify as po-
tential grid benchmark examples [6, 121, but no final selec-
tions have yet been made. The GRASP project [2] provides
2 collectio:: of IGW level pmbes that mestly =leasure the net-
work capabilities of grids. It distinguishes itself from most
other grid measurement projects in the sense that the probes
are formulated and implemented as complete grid applica-
tions, including authentication, validation, and resource ver-
ification.

3 Information Power Grid

The Information Power Grid [5] was conceived to unify
NASA's izinji aiid geogiapkcaily dispersed compuiaiiona!

r"-*-LU --a

its layered architecture, for work flow creation and man-
agement, scheduling, etc. At present much of the mid-
dleware is provided by the Globus Toolkit, version 2.4.2
[1 I], and this is the software that we use for implementing
NGB on the IPG. In our experiments we also investigate
the file transfer properties of two protocols that are not part
of GT2.4. but that can be used with it: GridFTP, based on
gsincf t p tools (version 3.0.6), and gsiscp version 3.4.
GiidFTP, 5s 1 s cp, and G!obi;s d l use :he same authentica-
tion method (Grid Security Infrastructure GSI).

Systems that are currently part of the IPG include four

~ ~ ~ ~ ~ r r ~ ~ . 1: coctai~' 2 n-rAber of 2& CczAnnnPntq ;n

SGI Origin 2000 (02K) and two Origin 3000 (03K) sys-
tems at NASA Ames in California, a PC Cluster and an
0 2 K system at NASA Glenn in Ohio, and two 0 2 K and
one 0 3 K systems at NASA Langley in Virginia [13]. For
this study we use just the Origin systems at Ames.

4 Implementations

We describe two Globus implementations of NGB. The
first, called NGBIPG-Ksh, uses Korn shell scripts to launch
the tasks in the DFGs and to control data transfers. It is a
direct extension of the serial NGB reference implementa-
tion using a single local file system, available from NAS as
part of the GridNPB3.0 package [141. We will refer to this
serial implementation as SHF-Ksh. The second Globus im-
plementation, called NGBIPG-Jav, uses Java code to com-
municate directly with GR4M [1 I] and GridFlT clients.
Both Globus implementations use Fortran executables to do
the computational work. At present these executables are
serial themselves, but several can run simultaneotisly, de-
pending on the parallelism present in the NGB DFGs.

Most of the Origin systems at NAS employ schedulers
that act as the default Globus jobmanagers. To prevent jobs
from gethng stalled in queues we specify the fork jobman-
ager for all tasks. This is possible because all submitted
jobs are of short duration and use m i n i m d machine re-
sources. Hence, they can run in machine partitions usu-
ally dedicated to interactive debugging and administrative
operations. Once the larger NGB Classes are run, how-
ever, individual NGB tasks will require significantly more
machine resources, and hence must be queued. Since HC,
VP, ax! featlire dependencies between tasks, indepen-
dent scheduling of tasks would be deleterious to IPG per-
formance, and an approach must be taken that submits an
entire NGB task graph-including all dependencies-to a
grid scheduler, for example as it is done in the Grid Naviga-
tion System, [4], or in GRID Superscalar [l].

4.1 NGBIPG Korn shell implementation

To express the concurrency of ED, V?, and MB x e adopt
2z q.zct.,-czc2: 3c&! i:: ::.hi& k e z&es cf t!e EFSS
are issued independently at the NGB launch, using the
globusrun command with the batch flag "-b." The nodes
poll their local file systems for the presence and complete-
ness of the required input files (if any) through the use of
semaphores (which are zero byte files themselves). After all
nodes are started, the launch script periodically queries their
completion using Globus- job-status. To avoid using
too many machine resources. the launch and node scripts
poi1 odjy once a secoiid.

The structure of the DFG nodes is indicated in Figure 3.
Although HC is serial in nature, it can also be implemented

1 check for inputs

[apply mesh filter+
1

(rename filter input ' 1 to NPB input 1

send NPB output@)
to successor node@)

Figure 3. Flow chart of single node of Data
Flow Graph.

using the asynchronoils model; the nodes must in se-
quence, but can be started asynchronously. Hence, we pro-
vide two versions of HC, one synchronous, the other asyn-
chronous. In the synchronous version, which is the most
natural way of transforming the SHF-Ksh version for exe-
cution on the g id , the nodes are launched in blocking mode
(i.e. using globusrun in'non-batchmode). Only when the
remote execution request returns is the next node launched.
The following sequence describes the actions of the launch
process. Run node n on host n; transfer output file from
host n to host n+ 1; run node n+ 1 on host n+ 1. Note that
tnis require> i i~i~d-pzii j copying if hcst z 2nd hest E + 1
are different from each other and from the host running the
launch process. Other tkan synchronous HC, all NGBIPG-
Ksh benchmarks allow the choice between GridFTP and
gs i s cp to transfer files.

1 .

4.2 NGBPG Java impiementation

NGEPG-Jav kF!ementation zses GrlmJcb ax!
C.riLTC!icnt C!zcscs cf the c c p 1.1 gnch,oe tn accws
the GRAM and GridFTP servers. The actual access to
the SHF-Ksh executables was accomplished by automatic
creating shell scripts and coping them to the systems
where the executables were invoked. The tlansfer of files
was accomplished using the trazsfer method of the
G r i m c l i e n t class and execution of the scripts was
accomplished using the request method of the GramJob
class. Time required for creation of the shell scripts and
their trznsfcrs to the ,orid machines WFS included in the
turnaround time of the benchmarks.

For each NGB task we have to copy the following files:

3

the shell script which executes the mesh filter and the actual
NPB task, the final report of the task, each of the resulting
data files, and the semaphore indicating that the result is
ready. We also have to execute the chmod command on the
remote system to allow execution of the script. Oveiall, it
translates into 2 * (1 + tusk output degree) accesses to the
GridFTP clients and two GramJob requests for each graph
node, where task output degree equals the number of output
files. We estimate that our code adds 1-2% overhead to the
actual benchmark turnaround time in the form of time spent
to write scripts and to poll internal job submission threads.

The submission of the NGB tasks was performed in a
data flow manner. In other words, a task was submitted
for execution on a statically specified host as soon as all
its predecessors had finished their work and transferred the
necessary files to the target machine. For ED it translates
into simultaneous submission of all tasks; for HC into syn-
chronous submission described in the previous subsection;
and for VP and MB into submission of all tasks that were
dynamically determined to be ready.

4.3 Comiiioii iiq!ementatioii p-ob!eizs

We identified the following issues in the development of
the IPG versions of NGB, independent of the API chosen.

Preliminaries :

Gridmap files containing IPG user information need
to be updated on all grid machines by various system
administrators before a proxy can be used there. The
procedure is m t transparent to the wer. -Messages From
various administrators are confusing.

Globus jobs can only be started from systems on which
the user has obtained a proxy. This makes access to
the grid asymmetrical, and the user has to remember
where the proxy was obtained.

It is possible to obtain a proxy on a host by copying the
gridmap file from a machine on which an earlier proxy
was obtained. This constitutes a security breach.

File transfer:

GridFTP

1. Does not allow third-party copying of files.
2. Does not allow the renaming of the target file

in the gsincftp command line interface (but
does allow it in the Java API).

3. Does not retain the access permissions on files at
the destination. For executables this necessitates

a ''-L.--d'' n---
~ l l ~ t ~ ~ u Lullllllatlu airci ,he fi!e ti~iiis-

fer completes. with the concomitant overhead of
a remote execution.

. . - A ,C+n.. t

4. Will clobber a file that is copied onto itself, while
no mechanism to avoid clobbering is provided.

Elimination of the first and second GridFTP restric-
tions is highly desirable for flexible programming.
Third-party copying can always be accomplished
through two two-party copies, but this is costly and
usually leads to sequential bottlenecks. Target file re-
naming is useful, for example, in the semaphore tech-
nique used in NGBIPG-Ksh to signal successor nodes
in the DFG that inputs have arrived. If a semaphore of
the same name must exist on the sending host, it will
not be possible to determine whether sending and re-
ceiving host share the same file system (as is the case
for a number of hosts at NAS). Hence, a file transfer
that is intended to be a move (destroy the copy at the
source if sender and receiver use different file systems)
caiinot be safely implemented. kern 4 is especially
harmful, as for the user it is often difficult or costly
to determine whether two files on different hosts are
actually the same. Safety measures to avoid accidental
destruction of files are cumbersome to implement.

globus-URL-copy

1. Suffers from most of the ills that GridFTP does.

2. Requires knowledge of absolute paths of files on
the various hosts on which grid users have ac-
counts, since there is no concept of user home
directories. This severely inhibits transparency
of grid use and makes applications non-portable.

0 gsiscp

1. This file transfer protocol has all the properties
desirable for convenient programming (target file
renaming, no clobbering, persistence of permis-
sions, third-party copying), but is reported to be
slower than GridFTP and globus-URL-copy
(however, see Section 5 for a comparison).

Execution environment:

The exit status of a remotely executing command is not
available to the globusrun command that launched
it. It has to be stored in a file and transferred to the
place from which the globusrun command was is-
sued.

If the fork jobmanager is used to launch a re-
mote script, the user's shell resources files are not
sourced. which means that no path will be avail-
able. except that to globus commands through the
$GLGSUSL9CATION enviroimeii: vziizble. If the
batch scheduler jobmanager (Portable Batch System
at NAS) is selected. resource files will get sourced.

This means that jobs may succeed or fail, depending
on what jobmanager is selected. A solution is always
to source resource files in scripts executing through
globus run.

5 Results

We present performance results for the following exper-
iments and configurations. To ensure repeatability no ,orid
schedulers were used; we explicitly prescribe the machines
on which the tasks are to be run. The machines used in our
experiments are listcd in Table 1.

Configurations boyd and dean consist of just those ma-
chines. respectively. Configuration duo consists of dean and
boyd. Configuration mir consists of dean, boyd, a h , dean,
joe, grace, dean, haw, and boyd. Tasks in the DFGs are
mapped round robin to the sequence of machines in these
configurations.

The turnaround time does not include deployment (copy-
ing) of execurables; it does include dep!oyment of scripts
and the verification.

5.1 KornShell

In the experiments reported in Table 2 we always used
gs i s cp to copy semaphore files between hosts (GridFTP
was not satisfactory, since its command line interface does
not d l v w file renaming). An alternative to copying is to
create semaphore files directly on remote systems by is-
suing touch commands through globusrun. However,
in experiments with EC on configuration duo, the touch
semaphore approach generally showed significantly poorer
pcrl'urmance than gsiscp. as weii as much greater van-
ability. For instance, 28 interleaved runs of HC Class S
with both approaches showed average turnaround times that
were 3.9 seconds longer for touch than for gsiscp. And
whereas variability with gsiscp was within 17%, touch
produced differences of up to 57%.

In our first NGBPG-Ksh implementation, which did not
yet include MB, we did not provide methods to determine
which hosts' file systems were crossmounted and which
were not. Consequently. some redundant copying (over-
writing) of files occurred in the gsiscp HC and VP ex-
periments on configuration mix. We did not obtain per-
formance results for the G r i m versions of VP and HC
on configuration mix, since file clobbering occurred on the
cross-mounted file systems'.

'Once we had implemented MB and supplied it with a mechanism to
detect file systems shared by hosts, the IPG had changed and aZ1 configura-
tions shared the same file system. Thus. in the duo and mix confi= wrations
of hlB no redundant copylng of files ever occurred. and accidental clob-
bering of files could be avoided. We did not rerun all other benchmarks
using the same technique, because then we v,ould not have been able to
test the file transfer properties of gs iscp and Gr idnP.

AS expected, in the single-system configuration experi-
ments. dean performed significantiy better than boyd. since
dean has much faster processors. Moreover. ED, which
has the highest level of concurrency. quickly saturates the
CPUs available to the fork jobmanager on boyd, whereas
dean. which has many more processors, can accommodate
all nine tasks simultaneously without performance deteri-
oration. The reason why ED Class S does not benefit as
much from the faster processors as does Class W is that its
performance is dominated by remote process creation and
polling for results. This is demonstrated by comparing the
IPG and non-PG (loc) performance results of HC Class
S; virtually all execution time is spent on process manage-
ment in the IPG implementation. The effect of saturation is
highlighted by the ED Class W experiments on configura-
tion duo. Even though performance of ED is determined, in
principle, by the slowest system in the configuration (duo
utilizes both boyd and dean), turnaround time on duo is less
than half that on boyd.

While HC is synchronous in nature, the asynchronous
implementation always runs fastest. The reason is that re-
mote process CieZitiGn caii be overlapped with computation,
which the synchronous version does not allow.

The combined results of the HC and VP runs show that
gs i scp is significantly faster than GridFTP on our testbed.
When files are shared by tasks on the same host, we never
copy, which explains why the gsi scp and GridFI'P results
on configurations boyd and dean are not afFected by the file
transfer protocol. However, on configuration duo, where
two hosts with different file systems are used, VP with
gsiscp is 19 seconds faster than with GridFTP for both
benchmark classes. For HC, which cannot hide transmis-

ecutables and scripts is not reported in Table 2, since it takes
place before the actual job launch. However, we did mea-
sure these file copy speeds, and for HC and VP, GridFTP
was between four and six times slo%er than gsiscp. For
ED the difference was a factor of three to four.

L-,. +L,. A:CE ------ :- 1 -__-_ n--i-- _ - _ _ -r ..
J L U U LVJW, uicl UUILILIILL 13 L V L I I L a l g G I . Y G ~ I U ~ L U C I I L Ul GA-

5.2 Java

T y m a ~ r r c \ ~ ~ ~ t+?s ef +p N ~ ~ R ~ P G - J ~ V I n ~ J e ~ ~ n t p t j n n

are presented in Table 3. As was mentioned in Section 4, we
perform 2 * (1 +task output degree) accesses to the GridlTP
clients and make two GramJob requests within each graph
node (Because of the shared file system on some machines.
not all GridFTP calls actually result in a file copy.) For
Class W of HC and VP we estimate that about 2/3 of the
turnaround time is spent accessing and delivering these IPG
services, and 113 of the time for the actual processing. Ac-
cess 2nd use cf the services mat!]: ir?vc!ves zemork and
memory subsystems. which blunts the raw processor speed
advantage of dean. Otherwise. the same arguments used to

5

Table 1. Grid Machines. The file systems of boyd, alan, joe, grace, and harv are cross-mounted, while
dean has its own file system.

bovd 250 02K 1 16 1 MIPS RlOOOO
alan
grace
joe
harv
dean

02K
02K
02K
03K
03K

250
250
400
400
600

32
128
128
5 12
1024

Class conf

boyd
dean

S duo
mix

boyd
dean

W duo
mix

MIPS RlOOOO
MIPS RlOOOO
MIPS R12000
MIPS R12000
MIPS R14000

ED HC VP MB
GridFTP gsiscp GridFTP gsiscp gsiscp loc GridFTP gsiscp GridFTP gsiscp

38 40 33 33 55 2 34 34 87 86
32 30 27 27 47 1 28 27 31 31
36 34 51 29 78 50 31 33 34
39 37 37 115 51 37 36

656 650 159 159 214 125 84 83 87 86
71 69 59 58 129 50 39 39 41 42

273 273 142 112 203 81 62 65 65
171 172 157 283 88 56 56

sync

Table 2. Turnaround times (sec) for IPG (NGBIPG) and non-IPG (SHF) implementations using Korn
shell scripts. Here conf indicates configuration, loc refers to running all tasks locally from a single
script (SHF-Ksh). HC gsiscp-sync refers to the explicitly synchronous version. MB: see footnote on
p.5.

320
247
296
346

243 228
179 165
231 203
214 204

explain the NGBIPG-Ksh turnaround times are valid

Table 3. Turnaround times (sec) for IPG
(NGBIPG) implementations using Java. Here
cur$ indicates configuration.

I Class 1 conf 1 ED

duo 404
mix 230

We have to be careful when interpreting the performance
results, because a number of factors were beyond our con-
1101 ~ I I U l l u L aE could be measured iiidependentlj;. These
include actual machine load, network traffic stability. and
interference with other IPG users. setup of the IPG ser-

L "-a ^ ^ &

vices (timeout. polling intervals etc.). To reduce influence
of these random factors we repeat our experiments multi-
ple times and report the best results (shortest turnaround
times). Variation of tiirnaround times among runs reported
in Tables 2 and 3 was within 20%. Also, a number of our
experiments failed because of P G authentication failure. In
these cases we just repeat the experiment with a 10 minutes
delay.

Voiatiiity of the performance of the grid machines is the
major factor which can distort the performance of the IFG
benchmarks. To gauge performance volatility we used the
non-IPG Java version of the NGB [141 and monitored grid
machines &wing s ~ m e of our experiments. The monitoring
results using ED.S, depicted in Figure 4, show that perfor-
mance of the grid machines usually is within 20% of the av-
erage when all machines are up and the benchmark servers
are properly installed.

6 Conclusions

It is important to recognize that our performance experi-
ments are not exhaustive. and are focused on determining

6

E5 on Wed Dec 03 2003
I T 1

sec

0
2011 20 05 56 47 1 5 4 2 1 4

Figure 4. Typical turnaround time of Java
E D S benchmark running on nine grid ma-
chines. Grey dots indicate benchmark did not
pass verification because of machine unavail-
ability. Large peak indicates a setup process
of a fresh sewer on one of the grid niachifies.

overheads of currently implemented IPG services, which
are likely to improve over time. The experiments, however,
demonstrate the use of NGB to measure grid characteristics
and as a pathfinding tool for ogid application developers.

One important aspect, programmability of the IPG, was
found to be in need of some improvement. Unexpected
file clobbering by GridFlT, absence of third-party copy-
ing, a id hck of fimctioiidjty of its coiimand line intei-
face (no file renaming) leads to cumbersome programming.
1 ne exit status of jobs executed through globusrdr, can-
not be communicated to the calling process, other than
through explicit capture and file transfer by the programmer.
globus-url-copy requires explicit knowledge of remote
absolute paths, which hampers portability. Execution of
Unix commands through g l o b u s m requires knowledge
of the paths to these commands on remote machines, which
also hampers portability.

-

Keferences

R.M. Badia, J. Labrata, R. Sirvent, J.M.
PCrez, J.M. Cela, and R. Grima. Program-
ming Grid Applications with Grid Superscalar:
http:Nwww.zib.delggf7appslmeetingslggf8hadia1 .pdf

G. Chun, H. Dail. H. Casanova, A. Snavely. Bench-

Report CS2003-0760, University of California, San
Diego, CA. 2003.

tzaik P T G ~ ~ S f G i G i S A s s e ~ ~ ~ e i l t . UCSD Technical

[3] M.A. Frumkin. R.F. Van der Vv‘ijngaart. IVAS Grid
Benchmarks: .4 Tool for Grid Space Exploration.
Cluster Computing Vol. 5, No. 3, pp.- 247-255,2002.

[4] M.A. Frumkin, R. Hood. Using Grid Benchmarksfor
Dynamic Scheduling of Grid Applications. Proceed-
ings of the 15th IASTED International Conference
on Parallel and Distributed Computing and Systems
(PDCS’2003), Marina Del Rey, USA, Nov. 3-5,2003,
p. 31-36, NAS Technical report NAS-03-015.

[5] W.E. Johnston, D. Gannon. B. Nitzberg. Grids as Pro-
duction Computing Environments: The Engineering
Aspects of NASA’s Information Power Grid. Proc. gth
IEEE Intl. Symp. High Performance Distributed Com-
puting, Redondo Beach. CA, August 1999.

161 A. Snavely, G. Chun, H. Casanova, R. Van der Win-
gam, M.A. Frumkin. Benchmarks for Grid comput-
ing: A Review of Ongoing Efforts and Future Direc-
tions. SIGMETRICS Performance Evaluation Review
(PER), Vol. 30. No. 4, March 2003.

[7] R.F. Van der Wijngaart, M.A. Frumkin. NAS Grid
Benchmarks Version 1.0. NAS Technical Report NAS-
02-005, NASA Ames ResearLh Center, bloffett Field,
CA, 2002.

[8] R. Wolski, N.T. Spring, J. Hayes. The Network
Weather Service: A Distributed Resource Pelrfor-
mance Forecasting Service for Metacomputing. J. Fu-
ture Generation Computing Systems, 1999.

[9] M. Zan,Orilli, B.B. Lowekamp. Comparing Passive
A T n c . . , , b B , f n ~ : + n - . . . n ,C f .-:A A , , l f , , i , , T-,&,. .,,:+I.

‘ . c & r * u l & ’ r l U , ‘ ‘ ‘ u ~ ’ ~ ’ ~ u, V I ‘ U ‘ 1 & / & / I ’ L U ’ C U I , *#U,J’L ,*’,l‘

Active Probes. SIGMETRICS Performance Evalua-
tion Review (PER), Vol. 30, No. 4, March 2003.

Globus Heartbeat Monitor www.globus.org/hbm/.

Globus Toolkit. www.globus.org.

GRDBench
www2.cs.ucy.ac.cyl-georget~’~gidblgridb. html.

hlA C A ’- TISe,,&.,, D-...”” C-.A
‘ 1 L l L I l i J L l l J “ l I I I U l r ” . (. 1 “I*c.’ ”’IU.

www.ipg.nasa.gov.

NAS Grid benchmarks.
www.nas.nasa.gov1So ftwareNPB.

7

