
An Experimental Study of Parallel Biconnected

Components Algorithms on Symmetric Multiprocessors

(SMPs)

Guojing Cong

IBM T.J. Watson Research Center

Yorktown Heights, NY 10598 USA

David A. Bader �

College of Computing

Georgia Institute of Technology

February 25, 2006

Abstract

We present an experimental study of parallel biconnected components algorithms

employing several fundamental parallel primitives, e.g., pre�x sum, list ranking, sort-

ing, connectivity, spanning tree, and tree computations. Previous experimental studies

of these primitives demonstrate reasonable parallel speedups. However, when these

algorithms are used as subroutines to solve higher-level problems, there are two fac-

tors that hinder fast parallel implementations. One is parallel overhead, i.e., the large

constant factors hidden in the asymptotic bounds; the other is the discrepancy among

the data structures used in the primitives that brings non-negligible conversion cost.

We present various optimization techniques and a new parallel algorithm that sig-

ni�cantly improve the performance of �nding biconnected components of a graph

on symmetric multiprocessors (SMPs). Finding biconnected components has appli-

cation in fault-tolerant network design, and is also used in graph planarity testing.

Our parallel implementation achieves speedups up to 4 using 12 processors on a Sun

E4500 for large, sparse graphs, and the source code is freely-available at our web site

http://www.ece.unm.edu/~dbader.

�This work was supported in part by NSF Grants CAREER ACI-00-93039, ITR ACI-00-81404, DEB-99-
10123, ITR EIA-01-21377, Biocomplexity DEB-01-20709, DBI-0420513, ITR EF/BIO 03-31654 and DBI-04-
20513; and DARPA Contract NBCH30390004.

1 Introduction

A connected graph is said to be separable if there exists a vertex v such that removal of v

results in two or more connected components of the graph. Given a connected, undirected

graph G = (V;E) with jV j = n and jEj = m, the biconnected components problem �nds

the maximal induced subgraphs of G that are not separable. Tarjan [19] presents an optimal

O(n+m) algorithm that �nds the biconnected components of a graph based on depth-�rst

search (DFS). Eckstein [7] gave the �rst parallel algorithm that takes O
�
d log2 n

�
time with

O((n+m)=d) processors on CREW PRAM, where d is the diameter of the graph. Sav-

age and J�aJ�a [17] designed two parallel algorithms on CREW PRAM. The �rst one takes

O
�
log2 n

�
time with O(n3= logn) processors. The second one is suitable for sparse graphs,

and requires O
�
log2 n log k

�
time and O(mn + n2 logn) processors where k is the number

of biconnected components in the graph. Tsin and Chin [21] developed an algorithm on

CREW PRAM that takes O
�
log2 n

�
time with O

�
n2= log2 n

�
processors and is optimal for

dense graphs. Tarjan and Vishkin [20] present an O(logn) time algorithm on CRCW PRAM

that uses O(n+m) processors. The fundamental Euler-tour technique is also introduced in

[20]. Liang et al. [14] studied the biconnected components problems for graphs with special

properties, e.g., interval graphs, circular-arc graphs and permutation graphs and achieved

better complexity bounds. There are also other biconnected components related studies,

e.g., �nding the smallest augmentation to make a graph biconnected [11], and �nding the

smallest biconnected spanning subgraph (an NP-hard problem) [13, 5].

Woo and Sahni [22] presented an experimental study of computing biconnected compo-

nents on a hypercube for Tarjan and Vishkin's algorithm and Read's algorithm [16]. Their

2

test cases are graphs that retain 70 and 90 percent edges of the complete graphs, and they

achieved parallel eÆciencies up to 0.7 for these dense inputs. The implementation uses an

adjacency matrix as the input representation, and the size of the input graphs is limited to

less than 2,000 vertices.

In this paper we present an experimental study of adapting the Tarjan-Vishkin bicon-

nected components algorithm to run on symmetric multiprocessors (SMPs) solving sparse,

irregular graph instances. The algorithm is representative of many parallel algorithms that

take drastically di�erent approaches than the sequential algorithm to solve certain problems

and employ basic parallel primitives such as pre�x sum, pointer jumping, list ranking, sort-

ing, connected components, spanning tree, Euler-tour construction and tree computations,

as building blocks. Previous studies demonstrated reasonable parallel speedups for these

parallel primitives on SMPs [9, 2, 3, 6, 4]. It is not clear whether an implementation using

these techniques achieves good speedup compared with the best sequential implementation

because of the cost of parallel overheads. Here we focus on algorithmic overhead instead of

communication and synchronization overhead. For example, Tarjan's sequential biconnected

components algorithm [19] uses DFS with an auxiliary stack, while the Tarjan-Vishkin par-

allel algorithm (denoted as TV in this paper) employs all the parallel techniques mentioned

earlier. Another factor that makes it hard to achieve good parallel speedups is the discrepan-

cies among the input representations assumed by di�erent primitives. TV �nds a spanning

tree, roots the tree, and performs various tree computations. Algorithms for �nding spanning

trees take edge list or adjacency list data structures as input representations, while rooting

a tree and tree computations assume an Eulerian circuit for the tree that is derived from a

3

circular adjacency list representation. Converting representations is not trivial and incurs a

real cost in implementations. In our studies, direct implementation of TV on SMPs does

not outperform the sequential implementation even at 12 processors. In our optimized adap-

tation of TV onto SMPs, we follow the major steps of TV , yet we use di�erent approaches

for several of the steps. For example, we use a di�erent spanning tree algorithm and new

approaches to root the tree, construct the Euler-tour and perform the tree computations.

With our new algorithm design and engineering techniques, our optimized adaptation of TV

achieves speedups up to 2.5 when employing 12 processors.

We also present a new parallel algorithm that eliminates edges that are not essential

in computing the biconnected components. For any input graph, edges are �rst eliminated

before the computation of biconnected components is done so that at most min(m; 2n) edges

are considered. Although applying this �ltering algorithm does not improve the asymptotic

complexity, in practice, the performance of the biconnected components algorithm can be

signi�cantly improved. In fact we achieve speedups up to 4 with 12 processors using the

�ltering technique. This is remarkable, given that the sequential algorithm runs in linear

time with a very small hidden constant in the asymptotic complexity.

The organization of this paper is as follows. Section 2 introduces TV ; section 3 discusses

its implementation and optimization for SMPs; section 4 presents our new edge-�ltering

algorithm; section 5 gives analysis and performance results; and in section 6 we conclude.

4

2 The Tarjan-Vishkin Algorithm

First we give a brief review of the Tarjan-Vishkin biconnected components algorithm. For

an undirected, connected graph G = (V;E) and a spanning tree T of G, each nontree edge

introduces a simple cycle that itself is biconnected. If two cycles C1 and C2 share an edge,

then C1 [C2 are biconnected. Let Rc be the relation that two cycles share an edge, then

the transitive closure of Rc (denoted as R�

c
) partitions the graph into equivalence classes

of biconnected components. If we are able to compute Rc, we can �nd all the biconnected

components of graph G.

The size of Rc is too large (O(n
2) even for sparse graphs where m = O(n)) to be usable in

fast parallel algorithms. Tarjan and Vishkin de�ned a smaller relation R0

c
with jR0

c
j = O(m)

and proved that the transitive closure of R0

c
is the same as that of Rc [20, 12]. For any pair

(e; g) of edges, (e; g) 2 R0 (or simply denoted as eR0

c
g) if and only if one of the following

three conditions holds (denote the parent of a vertex u as p(u), and the root of T as r):

1. e = (u; p(u)) and g = (u; v) in G� T , and v < u in preorder numbering

2. e = (u; p(u)) and g = (v; p(v)), and (u; v) in G� T such that u and v are not related

(having no ancestral relationships)

3. e = (u; p(u)), v 6= r, and g = (v; p(v)), and some nontree edge of G joins a descendant

of u to a nondescendant of v

Once R0

c
is computed, TV builds an auxiliary graph G0 = (V 0; E 0) where V 0 is the set E

of edges of G, and (e; g) 2 E 0 if eR0

c
g. The connected components of G0 correspond to the

equivalence classes of R0

c

� and identify the biconnected components of G.

5

TV has six steps:

1. Spanning-tree computes a spanning tree T for the input graph G. A spanning tree

algorithm derived from the Shiloach-Vishkin's connected components algorithm [18] is

used.

2. Euler-tour constructs an Eulerian circuit for T .

3. Root-tree roots T at an arbitrary vertex by applying the Euler-tour technique on the

circuit obtained in the previous step.

4. Low-high computes two values low(v) and high(v) for each vertex v. The value low(v)

denotes the smallest vertex (in preorder numbering) that is either a descendant of v

or adjacent to a descendent of v by a nontree edge. Similarly, high(v) denotes the

largest vertex (in preorder numbering) that is either a descendant of v or adjacent to

a descendent of v by a nontree edge.

5. Label-edge tests the appropriate conditions of R0

c
and builds the auxiliary graph G0

using the low, high values.

6. Connected-components �nds the connected components ofG0 with the Shiloach-Vishkin

connected components algorithm.

TV takes an edge list as input. The parallel implementations of the six steps within

the complexity bound of O(logn) time and O(m) processors on CRCW PRAM are straight-

forward except for the Label-edge step. Tarjan and Vishkin claim that the Label-edge step

takes constant time with O(m) processors because the conditions for R0

c
can be tested within

6

these bounds. Note that if two edges e and g satisfy one of the conditions for R0

c
, mapping

(e; g) 2 R0

c
into an edge in G0 = (V 0; E 0) is not straightforward because no information is

available about which vertices e and g are mapped to in V 0. Take condition 1 for example.

For each nontree edge g1 = (u; v) 2 E, if u < v and let g2 = (u; p(u)), (g1; g2) maps to an

edge in E 0. If we map each edge e 2 E into a vertex v0 2 V 0 whose number is the location

of e in the edge list, we need to search for the location of g2 in the edge list.

Input: L: an edge list representation for graph G = (V;E) where jV j = n and

jEj = m

Preorder: preorder numbering for the vertices

Output: G0: an edge list representation of the auxiliary graph

begin

for 0 � i � m� 1 parallel do

if L[i].is tree edge=true then N [i] 1;
else N [i] 0;

pre�x-sum(N ,m);
for 0 � i � m� 1 parallel do

u=L[i]:v1; v=L[i]:v2;

if L[i].is tree edge=true then

if Preorder[v]<Preorder[u] then L0[i] (u,N [i] + n);
if u and v not related then L0[m + i] (u,v);

else

if u 6= root and v6= root then L0[2m + i] (u,v);

compact L0 into G0 using pre�x-sum;
end

Algorithm 1: building the auxiliary graph.

Here we present an algorithm for this missing step in TV that builds the auxiliary graph

in O(logm) time with O(m) processors, which does not violate the claimed overall complexity

bounds of TV . The basic idea of the algorithm is as follows. Assume, w.l.o.g., V = [1; n] (In

this paper we use [a; b] denote the integer interval between a and b). V 0 = [1; m]. We map

each tree edge (u; p(u)) 2 E to vertex u 2 V 0. For each nontree edge e, we assign a distinct

integer ne between [0; m�n], and map e to vertex ne+n 2 V 0. Assigning numbers to nontree

7

edges can be done by a pre�x sum. The formal description of the algorithm is shown in Alg. 1.

We prove Alg. 1 builds an auxiliary graph within the complexity bound of TV .

Theorem 1 Alg. 1 builds an auxiliary graph G0 = (V 0; E 0) in O(logm) time with O(m)

processors and O(m) space on EREW PRAM.

Proof : According to the mapping scheme, V 0 = [1; m + n]. Each tree edge L[i] =

(u; p(u)) is uniquely mapped to u 2 V 0. For each nontree edge L[j], a unique number

N [j] 2 [1; m] is assigned. Nontree edge L[j] is mapped to N [j] + n 2 V 0 so that it is not

mapped to a vertex number assigned to a tree edge and no two nontree edges share the same

vertex number. It is easy to verify that this is a one-to-one mapping from E to V 0 and can be

done in O(logm) time with O(m) processors. As for E 0, testing the conditions, i.e., �nding

all the edges in E 0, can be done in constant time with O(m) processors.

A complication arises in the determination of where to store the edge information each

time we add a new edge e0 (image of (e; g) where e; g 2 E) to E 0. A straightforward approach

uses an (n+m)�(n+m) matrix so that each edge of E 0 maps to a unique location. A better,

space-eÆcient approach is as follows. If we inspect the conditions for R0

c
closely, we see that

for each condition we add at most m edges to the edge list. L0 is a temporary structure

that has 3m locations. Locations [0; m� 1], [m; 2m� 1], and [2m; 3m� 1], are allocated for

condition 1, 2 and 3, respectively. After all the edges are discovered, L0 is compacted into

G0 using pre�x sums. Pre�x sums dominate the running time of Alg. 1, and no concurrent

reads or writes are required. So Alg. 1 builds G0 (the auxiliary graph) in O(logm) time with

O(m) processors and O(m) space on EREW PRAM. 2

8

3 Implementation and optimization

In this section we show our adaptation of TV on SMPs (TV-SMP) and an optimized version

of the Tarjan-Vishkin algorithm (TV-opt). TV-SMP emulates TV on SMPs, and serves as

a baseline implementation for comparison with the optimized version and our new algo-

rithm. TV-opt optimizes TV to run on SMPs by reorganizing some of the steps of TV and

substituting several steps with more eÆcient algorithms.

3.1 TV-SMP

TV-SMP emulates TV in a coarse-grained fashion by scaling down the parallelism of TV

to the number of processors available from an SMP. The emulation of each step is straight-

forward except for the Euler-tour step. In the literature the Euler-tour technique usually

assumes a circular adjacency list as input where there are cross pointers between the two anti-

parallel arcs (u; v) and (v; u) of an edge e = (u; v) in the edge list. For the tree edges found

in the Spanning-tree step, such a circular adjacency list has to be constructed on the y. The

major task is to �nd for an arc (u; v) the location of its anti-parallel mate, (v; u). After select-

ing the spanning tree edges, we sort all the arcs (u; v) with min(u; v) as the primary key, and

max(u; v) as the secondary key. The arcs (u; v) and (v; u) are then next to each other in the

resulting list so that the cross pointers can be easily set. We use the eÆcient parallel sample

sorting routine designed by Helman and J�aJ�a [8]. Our experimental study shows that the par-

allel overheads of TV-SMP are too high for the implementation to achieve parallel speedup

with a moderate number of processors. Detailed performance results are given in section 5.

9

3.2 TV-opt

With TV-opt we optimize TV to run on SMPs by using algorithm engineering techniques to

reduce the parallel overhead. Two major optimizations are considered. First we reduce the

number of parallel primitives and subroutines used in our implementation by rearranging

and merging some of the steps. Second we substitute the algorithms for certain steps with

more eÆcient and cache-friendly versions.

We merge the Spanning-tree and Root-tree steps because a rooted spanning tree algo-

rithm can usually be derived from the spanning tree algorithm with very little overhead. In

our previous studies [6], we propose parallel algorithms that compute a rooted spanning tree

for an input graph directly without invoking the standard Euler-tour technique. With any

spanning tree algorithm that adapts the \graft and shortcut" approach (e.g., the Shiloach-

Vishkin algorithm (SV) [18, 1], and Hirschberg et al.'s algorithm (HCS) [10]), we observe

that grafting de�nes the parent relationship naturally on the vertices (extra care needs to

be taken to resolve the conicts when a vertex's parent is set multiple times by grafting).

Better still is our work-stealing graph-traversal spanning tree algorithm that computes a

spanning tree (also a rooted spanning tree) by setting the parent for each vertex. Our al-

gorithm achieves superior speedup over the best sequential algorithms (BFS or DFS, which

also compute a rooted spanning tree) compared with other spanning tree algorithms (e.g.,

SV and HCS). We refer interested readers to [6, 2] for details.

With a rooted spanning tree, we construct a cache-friendly Euler-tour for the tree (Euler-

tour is needed for the preorder numbering of vertices). Generally list ranking is needed to

perform tree computations with the Euler-tour. For an edge (u; v), the next edge (v; w) could

10

be far away from (u; v) in the tour with no spatial locality, which hinders cache performance.

It is desirable that for an Euler-tour the consecutive edges are placed nearby each other in

the list. As an Euler-tour for a tree is essentially a DFS traversal of the tree, we construct the

tour based on DFS traversal. A formal description of the algorithm and complexity bound

proof are given in [6]. With high probability, the algorithm runs in O
�
n

p

�
time. The algo-

rithm produces an Euler-tour where pre�x sum can be used for tree computations instead

of the more expensive list ranking.

The remaining steps of TV-opt are the same as those of TV-SMP . We compare the perfor-

mances of TV-opt and TV-SMP , and demonstrate the e�ect of the optimizations in section 5.

4 A New Algorithm and Further Improvement (TV-

�lter)

The motivation to further improve TV comes from the following observation for many

graphs: not all nontree edges are necessary for maintaining the biconnectivity of the bi-

connected components. We say an edge e is non-essential for biconnectivity if removing

e does not change the biconnectivity of the component to which it belongs. Filtering out

non-essential edges when computing biconnected components (of course we will place these

edges back in later) may produce performance advantages. Recall that the goal of TV is

to �nd R0�

c
. Of the three conditions for R0

c
, it is trivial to check for condition 1 which is for

a tree edge and a non-tree edge. Conditions 2 and 3, however, are for two tree edges and

checking involves the computation of high and low values. To compute high and low, we

11

need to inspect every nontree edge of the graph, which is very time consuming when the

graph is not extremely sparse. The fewer edges the graph has, the faster the Low-high step.

Also when we build the auxiliary graph, the fewer edges in the original graph means the

smaller the auxiliary graph and the faster the Label-edge and Connected-components steps.

Take Fig. 1 for example. On the left in Fig. 1 is a biconnected graph G1. After we

remove nontree edges e1 and e2, we get a graph G2 shown on the right in Fig. 1, which is

still biconnected. G1 has a R0

c
relation of size 11 (4, 4, and 3 for conditions 1, 2, and 3,

respectively), while graph G2 has a R0

c
relation of size 7 (2, 2, and 3 for conditions 1, 2,

and 3, respectively). So the auxiliary graph of G1 has 10 vertices and 11 edges, while the

auxiliary graph for G2 has only 8 vertices and 7 edges. When there are many non-essential

edges, �ltering can greatly speedup the computation.

, ooCond 1:o, ,o o

,

Cond 1: , o

,o o

,o o

Cond 2: , ooCond 2:, oo

o Cond 3:,Cond 3: o o o, ,t1t1

t1

t1 t1

t2t2

t2

t2

t2 t2

t3

t3 t3
t3

t3 t3

t4t4

t4 t4

t4t4

t4 t4

t5t5

t5 t5

t5

t5 t5

t6

t6 t6 t6 t6
t6

t6t6

t6 t6

e1

e1

e2

e2

e3e3

e3 e3
e4e4

e4 e4

G1 G2

Figure 1: Two graphs G1 and G2. The solid edges are tree edges and the dashed edges are

nontree edges. G2 is derived from G1 by removing non-essential nontree edges e1 and e2.
Below the graphs are the corresponding R0

c
relations de�ned by the three conditions.

Now the questions are how many edges can be �ltered out and how to identify the non-

essential edges for a graph G = (V;E) with a spanning tree T . We postpone the discussion

of the �rst question until later in this section because it is dependent on how �ltering is

done. First we present an algorithm for identifying non-essential edges. The basic idea is to

12

compute a spanning forest F for G � T . We note that if T is a breadth-�rst search (BFS)

tree, then the nontree edges of G that are not in F can be �ltered out.

Assuming T is a BFS tree, next we prove several lemmas.

Lemma 1 For any edge e = (u; v) in F , there is no ancestral relationship between u and v

in T .

Proof : Clearly u and v cannot be the parent of each other as e is not in T . Suppose

w.l.o.g. that u is an ancestor of v, and w is the parent of v (w 6= u), considering the fact

that T is a BFS tree, v is at most one level away from u and w is at least one level away

from u. So w cannot be v's parent, and we get a contradiction. 2

Lemma 2 Each connected component of F is in some biconnected component of graph G.

Proof : Let C be a connected component of F . Note that C itself is also a tree. Each

edge in C is a nontree edge to T , and is in a simple cycle, hence some biconnected compo-

nent, of G. We show by induction that the simple cycles determined by the edges of C form

one biconnected component.

Starting with an empty set of edges, we consider the process of growing C by adding

one edge at each step and keeping C connected. Suppose there are k edges in C, and the

sequence in which they are added is e1; e2; � � � ; ek.

As e1 is a non-tree edge to T , e1 and the paths from its two endpoints to the lowest

common ancestor (lca) of the two endpoints form a simple cycle. And e1 is in a biconnected

component of G.

13

Suppose the �rst l edges in the sequence are in one biconnected component Bc. We now

consider adding the (l + 1)th edge. As C is connected, el+1 = (u; w) is adjacent to some

edge, say, es = (v; w) (where 1 � s � l) in the tree we have grown so far at vertex w. By

Lemma 1 there are no ancestral relationships between u and w, and v and w in tree T . If

there is also no ancestral relationship between u and w as illustrated in part (a) of Fig. 2,

then the paths in T from u to lca(u; v) and from v to lca(u; v) plus the edges (u; w) and

(v; w) in C form a simple cycle S. As (v; w) is in Bc and (u; w) is in S, and Bc shares

with S the edge (v; w), so (u; w) and (v; w) are both in the biconnected component that

contains Bc[S. If there is some ancestral relationship between u and v, then there are two

cases: either u is the ancestor of v or v is the ancestor of u. These two cases are illustrated

respectively by parts (b) and (c) in Fig. 2. Let's �rst consider the case that u is the ancestor

of v. The paths in T from u to lca(u; w), from w to lca(u; w), and from v to u, and edge

(v; w) form a simple cycle S. S shares with Bc edge (v; w), again (u; w) and (v; w) are both

in the biconnected component that includes Bc[S. Similarly we can prove (u; w) and (v; w)

are in one biconnected component for the case that v is the ancestor of u. By induction, it

follows that all edges of C are in one biconnected component. 2

Part (d) of Fig. 2 shows an example that (u; w) and (v; w) are not in one biconnected

component if T is not a BFS tree and there are ancestral relationships between u, v, and w.

Theorem 2 The edges of each connected component of G� T are in one biconnected com-

ponent.

Proof : Let C be a connected component of G� T . If C is a tree, by Lemma 2, all edges

14

uv

w

w

lca(u,w)
lca(u,w) lca(w,v)

lca(u,v)

u

 (c) (d)

v

w

u

lca(v,w)

 w
u

v

 (a) (b)

v

Figure 2: Illustration of the proof of theorem 2. el+1 = (u; w), and es = (v; w). The dotted
lines are the paths in T while the solid lines are edges in C

of C are in a biconnected component. If C is not a tree, then there exits a spanning tree TC

of C. All edges of TC are in a biconnected component by Lemma 2. Each nontree edge e

(relative to TC) in C forms a simple cycle with paths in TC , and the cycle shares the paths

with the biconnected component that TC is in, so e is also in the biconnected component. 2

The immediate corollary to Theorem 2 is that we can compute the number of biconnected

components in a graph using breadth-�rst traversal. The �rst run of BFS computes a rooted

spanning tree T . The second run of BFS computes a spanning forest F for G� T , and the

number of components in F is the number of biconnected components in G.

Next we apply the idea of �ltering out non-essential edges to the parallel biconnected

components problem. First T and F for G are computed. Then biconnected components for

T [F are computed using a suitable biconnected components algorithm, e.g., the Tarjan-

15

Vishkin algorithm. We are yet to �nd the biconnected components to which they belong

for all the edges that are �ltered out, i.e., edges in G � (T [F). According to condition 1

(which holds for arbitrary rooted spanning tree), edge e = (u; v) 2 G�(T [F) is in the same

biconnected component of (u; p(u)) if v < u. A new algorithm using the �ltering technique

is shown in Alg. 2.

Input: A connected graph G = (V;E)

Output: Biconnected components of G

begin

1. compute a breadth-�rst search tree T for G;
2. for G� T , compute a spanning forest F ;

3. invoke TV on F [T ;
4. for each edge e = (u; v) 2 G� (F [T) do

label e to be in the biconnected component that contains (u; p(u));
end

Algorithm 2: An improved algorithm for biconnected components.

In Alg. 2, step 1 takes O(d) time with O(n) processors on arbitrary CRCW PRAM where

d is the diameter of the graph; step 2 can be done in O(logn) time with O(n) processors on

arbitrary CRCW PRAM [20]; step 3 is the Tarjan-Vishkin algorithm which can be done in

O(logn) time with O(n) processors; �nally, step 4 can be implemented in O(1) time with

O(n) processors. So Alg. 2 runs in O(d+ logn) time with O(n) processors on CRCW PRAM.

Asymptotically, the new algorithm does not improve the complexity bound of TV . In

practice, however, step 2 �lters out at least max(m � 2(n � 1); 0) edges. The denser the

graph becomes, the more edges are �ltered out. This can greatly speedup the execution of

step 3. Recall that TV inspects each nontree edge to compute the low and high values for

the vertices, and builds an auxiliary graph with the number of vertices equal to the number

of edges in G. In Section 5 we demonstrate the eÆciency of this edge �ltering technique.

16

For very sparse graphs, d can be greater than O(logn) and becomes the dominating

factor in the running time of the algorithm. One pathological case is that G is a chain

(d = O(n)), and computing the BFS tree takes O(n) time. However, pathological cases are

rare. Palmer [15] proved that almost all random graphs have diameter two. And even if

d > logn, in many cases, as long as the number of vertices in the BFS frontier is greater

than the number of processors employed, the algorithm will perform well on a machine with

p processors (p � n) with expected running time of O
�
n+m

p

�
. Finally, if m � 4n, we can

always fall back to TV-opt .

5 Performance Results and Analysis

This section summarizes the experimental results of our implementation. We tested our

shared-memory implementation on the Sun E4500, a uniform-memory-access (UMA) shared

memory parallel machine with 14 UltraSPARC II 400MHz processors and 14 GB of memory.

Each processor has 16 Kbytes of direct-mapped data (L1) cache and 4 Mbytes of external

(L2) cache. We implement the algorithms using POSIX threads and software-based barriers.

We test our implementation on arbitrary, sparse inputs which are the most challenging

instances for previous experimental studies. We create a random graph of n vertices and m

edges by randomly adding m unique edges to the vertex set. The sequential implementation

implements Tarjan's algorithm.

Fig. 3 shows the performance of TV-SMP , TV-opt and TV-�lter on random graphs of

1M vertices with various edge densities. For all the instances, TV-SMP does not beat the

best sequential implementation even at 12 processors. TV-opt takes roughly half the execu-

17

Figure 3: Comparison of the performance of TV-SMP , TV-opt and TV-�lter for graphs with
n = 1M vertices and various edge densities. \Sequential" is the time taken for the imple-

mentation of Tarjan's biconnected components algorithm for the same problem instance.

tion time of TV-SMP . As predicted by our analysis earlier, the denser the graph, the better

the performance of TV-�lter compared with TV-opt . For the instance with 1M vertices,

20M edges (m = n logn), TV-�lter is twice as fast as TV-opt and achieves speedups up to

4 compared with the best sequential implementation.

Fig. 4 shows the breakdown of execution time for di�erent parts of the algorithm for TV-

SMP , TV-opt , and TV-�lter . Comparing TV-SMP and TV-opt , we see that TV-SMP takes

much more time than TV-opt to compute a spanning tree and constructing the Euler-tour.

18

Figure 4: Breakdown of execution time at 12 processors for the Spanning-tree, Euler-tour ,

root , Low-high, Label-edge, Connected-components, and Filtering steps. All graphs have 1M
vertices with di�erent number of edges shown on the x-axis. The three columns for each

input graph, from left to right, are the execution times for TV-SMP , TV-opt , and TV-�lter ,
respectively.

Also for tree computations, TV-opt is much faster than TV-SMP because in TV-opt pre�x

sum is used while in TV-SMP list ranking is used. For the rest of the computations, TV-

SMP and TV-opt take roughly the same amount of time. Compared with TV-opt , TV-�lter

has an extra step, i.e., �ltering out non-essential edges. The extra cost of �ltering out edges

is worthwhile if the graph is not extremely sparse. As our analysis predicted in Section 4,

we expect reduced execution time for TV-�lter in computing low-high values, labeling, and

computing connected components. Fig. 4 con�rms our analysis.

19

6 Conclusions

We present an experimental study of biconnected components algorithms based on the

Tarjan-Vishkin approach on SMPs. Our implementation achieves speedups up to 4 with

12 processors on the Sun E4500. As quite a few fundamental parallel primitives and routines

such as pre�x sum, list ranking, Euler-tour construction, tree computation, connectivity and

spanning tree are employed as building blocks, our study shows optimistic results for par-

allel algorithms that take drastically di�erent approach than the straightforward sequential

approach.

20

References

[1] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for shu�e-

exchange network and PRAM. IEEE Transactions on Computers, C-36(10):1258{1263,

1987.

[2] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric mul-

tiprocessors (SMPs). In Proc. Int'l Parallel and Distributed Processing Symp. (IPDPS

2004), Santa Fe, NM, April 2004.

[3] D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the minimum

spanning forest of sparse graphs. In Proc. Int'l Parallel and Distributed Processing

Symp. (IPDPS 2004), Santa Fe, NM, April 2004.

[4] D.A. Bader, S. Sreshta, and N. Weisse-Bernstein. Evaluating arithmetic expressions

using tree contraction: A fast and scalable parallel implementation for symmetric mul-
tiprocessors (SMPs). In S. Sahni, V.K. Prasanna, and U. Shukla, editors, Proc. 9th Int'l
Conf. on High Performance Computing (HiPC 2002), volume 2552 of Lecture Notes in

Computer Science, pages 63{75, Bangalore, India, December 2002. Springer-Verlag.

[5] K.W. Chong and T.W. Lam. Approximating biconnectivity in parallel. Algorithmica,

21:395{410, 1998.

[6] G. Cong and D. A. Bader. The Euler tour technique and parallel rooted spanning tree.
In Proc. Int'l Conf. on Parallel Processing (ICPP), pages 448{457, Montreal, Canada,
August 2004.

[7] D.M. Eckstein. BFS and biconnectivity. Technical Report 79{11, Dept. of Computer
Science, Iowa State Univ. of Science and Technology, Ames, Iowa, 1979.

[8] D. R. Helman and J. J�aJ�a. Designing practical eÆcient algorithms for symmetric mul-

tiprocessors. In Algorithm Engineering and Experimentation (ALENEX'99), volume
1619 of Lecture Notes in Computer Science, pages 37{56, Baltimore, MD, January
1999. Springer-Verlag.

[9] D. R. Helman and J. J�aJ�a. Pre�x computations on symmetric multiprocessors. Journal

of Parallel and Distributed Computing, 61(2):265{278, 2001.

[10] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing connected components

on parallel computers. Communications of the ACM, 22(8):461{464, 1979.

[11] T. Hsu and V. Ramachandran. On �nding a smallest augmentation to biconnect a

graph. SIAM J. Computing, 22(5):889{912, 1993.

[12] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company,

New York, 1992.

[13] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. Journal

of the ACM, 41(2):214{235, 1994.

21

[14] Y. Liang, S.K. Dhall, and S. Lakshmivarahan. EÆcient parallel algorithms for �nding

biconnected components of some intersection graphs. In Proc. of the 19th Ann. Conf.

on Computer Science, pages 48{52, San Antonio, TX, 1991.

[15] E. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs.

John Wiley & Sons, New York, 1985.

[16] R. Read. Teaching graph theory to a computer. In W. Tutte, editor, Proc. 3rd Waterloo

Conf. on Combinatorics, pages 161{173, Waterloo, Canada, May 1969.

[17] C. Savage and J. J�aJ�a. Fast, eÆcient parallel algorithms for some graph problems.

SIAM J. Computing, 10(4):682{691, 1981.

[18] Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm. J. Algs.,

3(1):57{67, 1982.

[19] R.E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J. Comput.,
1(2):146{160, 1972.

[20] R.E. Tarjan and U. Vishkin. An eÆcient parallel biconnectivity algorithm. SIAM J.

Computing, 14(4):862{874, 1985.

[21] Y.H. Tsin and F.Y. Chin. EÆcient parallel algorithms for a class of graph theoretic
problems. SIAM J. on Comput., 13(3):580{599, 1984.

[22] J. Woo and S. Sahni. Load balancing on a hypercube. In Proc. 5th Int'l Parallel

Processing Symp., pages 525{530, Anaheim, CA, April 1991. IEEE Computer Society
Press.

22

