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Abstract 
The Chandy-Lamport checkpointing algorithm is 
widely used in fault tolerant implementations of 
MPI. However, it assumes the FIFO property of 
message passing, which is not guaranteed by the 
MPI standard at the application level. Therefore, 
this algorithm cannot serve as a basis for an 
implementation-independent fault tolerant MPI. 
In this paper, we present a variant of the Chandy-
Lamport algorithm that does not rely on the FIFO 
property. This algorithm can be implemented on 
top of MPI and, hence, used for development of a 
supplement software component enabling the fault 
tolerance of any MPI implementation compliant 
with the MPI standard. We prove the correctness 
of the algorithm and analyze its performance. 
Experimental results demonstrating the efficiency 
of the algorithm are also presented. 
 

1. Introduction 
Fault tolerance is one of the primary issues of 

parallel programming for common heterogeneous 
networks of computers because in such 
environments the probability of resource failures is 
much higher than in dedicated parallel computer 
systems of the same scale.  Checkpoint/recovery is 
an important technique used to enable the fault 
tolerance of parallel programs. By resuming the 
execution from where a recovery line has been 
created, the program does not need to restart from 
the beginning but can rollback to the latest 
recovery line. MPI [6, 9] is probably the most 
popular parallel programming tool for 
heterogeneous networks. Therefore, no wonder 
that research and development efforts aimed at 
enabling the fault tolerance of MPI programs are 
constantly growing.  The Chandy-Lamport 

checkpointing algorithm [5] is used in most of 
fault tolerant implementations of MPI [1, 22, 24]. 
However, it relies on the FIFO property of 
message passing, which is not guaranteed by the 
MPI standard at the application level. Therefore 
each of these fault tolerant MPIs has to resort to 
the low-level layer’s help to implement the 
Chandy-Lamport algorithm. As a result, the 
software component responsible for checkpointing 
will be inherently implementation-specific, hardly 
built into the particular implementation of MPI 
and not portable to other MPI implementations. 

An alternative approach to enabling the fault 
tolerance of MPI applications is the development 
of an autonomous and portable software 
component responsible for checkpoint/recovery 
that could be used together with any (non-fault-
tolerant) MPI implementation compliant with the 
MPI standard [9]. Such a software component can 
only be based on a checkpointing algorithm that 
does not rely on any property of MPI which is not 
guaranteed by its standard. 

In this paper, we present Event Logging, a 
variant of the Chandy-Lamport algorithm that does 
not rely on the FIFO property of message passing. 
This algorithm can be implemented on top of MPI 
and, hence, used for development of a supplement 
software component enabling the fault tolerance of 
any MPI implementation compliant with the MPI 
standard. We prove the correctness of the 
algorithm and analyze its performance. 
Experimental results demonstrate that this portable 
algorithm is still quite efficient. We also briefly 
present libELC, a portable prototype library for 
enabling the fault tolerance of MPI applications 
based on the Event Logging algorithm. 

 



2. Background 

2.1. Problem Space 

   Creation of a checkpoint of an MPI program 
includes the creation of a checkpoint for each 
individual process. Uniprocess checkpointing 
captures the process’s state and outputs it to an 
external stable storage, from where this state can 
be reloaded when an error occurs. Comprised of a 
set of the individual process’s checkpoints, the 
global checkpoint can be used to restore a previous 
execution state of the MPI program. In this context, 
the checkpoint of individual process is named a 
local checkpoint, and the global checkpoint is also 
called a recovery line.  
   However, only the local checkpoints are not 
sufficient to form a recovery line for the running 
MPI program. As MPI processes use message 
passing to communicate, messages are part of the 
state of the running program. As any 
communication has latency, there may be some 
messages on fly at the time when an individual 
process’s state is saved. Therefore, the checkpoint 
algorithm must be able to capture the program’s 
communication state. 
   Generally, in the context of checkpointing there 
are three kinds of messages in MPI: intra 
messages, in-transit messages and orphan 
messages. Lamport [14] proposed a relation called 
Happens Before to indicate the partial order of 
events in a distributed system. This is an 
irreflexive, antisymmetric, transitive relation that 
can be applied to define these messages. 

1. If events a and b happen on the same process 
and a happens before b, then a b. 
2. If events a and b happen on different processes, 
and a is a sending event of message M, b is a 
receiving event of M, then a b. 
3. If neither (a b) nor (a b), then a and b are 
concurrent events. 

   Given the definition of the Happens Before 

relation, these three kinds of messages can be 
expressed as follows: 

1. Intra message: CKPTi ���� ����i+1 and 
CKPTi 	��� ����i+1. 
2. In-transit message: S(M) ����i and 
CKPTi+1 	��� 
3. Orphan message: CKPTi ���� and 
R(M) ����i. 

   Here, CKPTi denotes the process’s i-th local 
checkpoint, and S(M), R(M) denote the events of 
sending and receiving of message M respectively.  
   Among these messages, intra message is 
harmless, because the passing of an intra message 
does not cross the recovery line, which means that 
the message will not exist in the communication 
channel. However, in-transit and orphan messages 
are dangerous. Consider the in-transit message 
example depicted in Figure 1. Assume that a 
failure occurs after the system finishes the 
recovery line C1-C2, and the execution then is 
restarted. Without saving the communication state, 
process P1 thinks that it has sent the message to 
process P2, so it will never replay the sending. On 
the other side, the local checkpoint of P2 is taken 
before it receives the message. It leads to the 
problem that P2 will be blocked on waiting for the 
in-transit message after recovery but the message 
may have been lost or discarded by the network 
during the program’s failure. This problem caused 
by in-transit message is called unrecoverable. 
    In Figure 2, a message is sent after P1’s local 
checkpoint and gets received before P2’s. Upon 
recovery, P1 will re-send this orphan message, 
which actually has been received and saved in 
P2’s checkpoint. Although the execution can be 
recovered with the existence of the orphan 
message, the damage of this message is not only a 
waste of the buffer space. More seriously, it 
produces a duplicated message that may break the 
communication semantics. This problem is called 
inconsistency. 

 
��������	�
��
�����
��������	�



�

 
Figure 2. Orphan message.

   So in order to create a valid recovery line, the 
following two conditions should be satisfied: 

1. Recoverability: either there is no in-transit 
message or, if present, such a message can be 
regenerated after recovery. 

2. Consistency: either there is no orphan 
message or, if present, such a message can be 
eliminated after recovery.  

2.2. Related Work 

2.2.1. Overview 
A checkpoint algorithm can be classified as 

coordinated or uncoordinated. A coordinated 
algorithm forms the recovery line by orchestrating 
the processes to do the checkpoint, in which a 
valid recovery line is immediately setup once the 
checkpoint finishes. An uncoordinated 
checkpointing allows the processes to choose the 
time of checkpoint independently, so the system 
has to select from the independently created local 
checkpoints to form a recovery line during 
recovery. This not only makes the recovery 
procedure complicated, but also suffers from 
Domino Effect [20]. Compared, coping with 
message logging, the uncoordinated approach is 
beneficial for large scale distributed systems 

running thousands of processors, because only the 
crashed nodes need to rollback, the others can go 
through the failures [3]. On the other side, the 
coordinated protocol requires all processes to 
rollback upon failures but without the need of 
message logging, which is more economic for 
communication intensive parallel programs 
running in small and medium size environments.  

There are two approaches to coordinated 
checkpointing: blocking and non-blocking. 
Typically, the blocking one synchronizes all 
processes at the checkpoint until the recovery line 
has been set up. A non-blocking system allows a 
process to resume execution right after it finishes 
the local checkpoint. Given the high overhead 
introduced by the blocking, the non-blocking 
approach gets preferred in practice. 
   As to implementation, some non-blocking 
coordinated checkpoint algorithms can only be 
implemented at the system level, meanwhile others 
can be implemented at the application level. A 
system-level library is implemented at the level of 
OS kernel or network system to gain high 
performance. An application-level checkpoint is 
managed by an external library, portable cross 
platforms. Our algorithm is designed 

 
Type Advantage Disadvantage  
Coordinated Domino Effect Free; 

No Message Logging 
Coordination Overhead 
Global Rollback 

Uncoordinated Independent Checkpoint 
Only Failed Process Rollback 

Domino Effect 
Message Logging Overhead 

Blocking Coordinated Simple Protocol High Blocking Overhead 
Non-blocking Coordinated Low Performance Overhead In-transit and Orphan Messages 
System-level High Efficiency Low Portability 
Application-level High Portability Medium Performance 

 
Table 1. Comparison of different designs. 

 



to be suitable for application-level implementation. 
More comprehensive surveys can be found in [7, 
11].    

2.2.2. Chandy-Lamport Algorithm 

Chandy-Lamport algorithm is one of the earliest 
and most widely used coordinated, non-blocking 
algorithms for the checkpoint of distributed 
systems. It is based on the following   assumptions: 

1. The system is comprised of finite numbers of 
processes and communication channels. 

2. Communication is done by passing messages 
through the communication channels. 

3. The latency of communication is finite and 
the communication is reliable [10]. 

4. The message passing behaves in the FIFO 
manner. 

  The algorithm can be summarized as follows. Let 
INp and OUTp be the number of incoming and 
outgoing communication channels respectively, 
which process p holds. Then, each process p: 

1. Creates a local checkpoint. 
2. For i=1 to OUTp, p sends a marker message 

along the outgoing channel i. 
3. p continues its job. 
4. For i=1 to INp, p logs the messages from the 

incoming channel i until a marker message is 
received along channel i. 

5. When all processes finish the above steps, the 
recovery line is formed. 

   The reason why the Chandy-Lamport algorithm 
relies on the FIFO assumption is that the marker 
used in the algorithm acts as a fence to separate 
the message passing around the local checkpoint. 
Consider the scenario depicted in Figure 3. 
Process P1 sends three messages in the order: {M1, 
Marker, M2} to P2. With the FIFO manner, the 
messages reach P2 in the same order as sent. 

Assume that at the time when M1 reaches P2, P2 
has already finished its local checkpoint. So that, 
M1 is logged as an in-transit message and M2 is 
an intra message according to the Chandy-
Lamport algorithm. But, if the underlying 
communication layer does not behave in the FIFO 
manner, the arriving order may be different from 
the sending order. If the arrival order is {Marker, 
M1, M2}, M1 will be omitted from logging 
making the recovery line unrecoverable. More, if 
the arrival order is {M1, M2, Marker}, the logging 
of M2 results in an inconsistent recovery line.  
   Being the cornerstone of the Chandy-Lamport 
algorithm, the FIFO property of message passing 
may only be true when looking deeply into the 
details of MPI implementations: most MPI 
implementations define a low level channel, which 
seats on top of the underlying network. On low 
performance networks such as Ethernet, TCP is 
used, providing FIFO communications. The high 
performance NIC (Network Interface Card) also 
guarantees the FIFO property. Therefore, there are 
many checkpoint/recovery systems for MPI, which 
implement the pure Chandy-Lamport algorithm at 
the system level [1, 24, 26]. However, this 
property is not guaranteed by the MPI standard at 
the application level. Generally speaking, it is 
valid to receive messages in the reverse order to 
the sending one. While this situation may be rare, 
much more common are the situations when 
messages are sent and received out of sequence. 
   Although the priority rule in MPI stipulates 
some messages passing to obey the FIFO property 
(see 3.2), FIFO is not strictly required by the MPI 
standard. For instance, messages with different 
envelopes can be received in any order (different 
from the sending order). Among many variants of 
the Chandy-Lamport algorithm that 

 
Figure 3. FIFO Message Passing 

 



have been developed in recent years [4, 12, 13, 16, 
17, 23], only two provide support for application-
level non-FIFO message passing. 
   One is Time-Based Coordinated Checkpointing 
[19, 25]. It coordinates distributed processes by 
using loosely-coupled clocks. It assumes the 
existence of the maximal (Tmax) and minimal (Tmin) 
communication latencies as well as standard clock 
deviation Tdev. If the global time is TCKPT, any 
process’ clock will be in the interval TCKPT±Tdev. 
So the maximal clock deviation between two 
processes is 2×Tdev. Then the channel is cleared by 
caching all messages passed in the period 
{ TCKPT�2×Tdev ��Tmax, TCKPT + 2×Tdev ��Tmin }. In a 
small network, this algorithm works pretty well. 
But with the growth of network scale, Tmax, Tdev 
increases dramatically, making the message 
passing caching much longer, which impacts the 
performance significantly. Also, in a 
heterogeneous NoC, parameters Tmax, minT , Tmin 

actually cannot be accurately measured. 
   Another effort to tackle the non-FIFO is 
Message Tagging [4, 18]. The idea behind 
Message Tagging is that the system wraps some 
additional information onto the outgoing messages, 
which is called header. From the point of view of 
implementation, same with the checkpoint, the 
tagging can be done in two ways: the system-level 
approach tags the information by doing the 
modification at the network layer, which seriously 
damages the portability; the application-level 
tagging directly piggybacks the header onto the 
application messages. Usually, the header contains 
the sender’s checkpoint index. Since the header is 
bound with the message, whenever the message 
arrives to its destination, the system retrieves the 
header and compares the receiver’s current index 
with the sender’s to classify whether the message 
is in-transit, orphan or intra. So, the header 
replaces the marker message to help the system 
identify messages without the FIFO requirement. 
   Our experience shows that the performance of 
the application-level message tagging fluctuates 
with the message size. Generally, more overhead is 
introduced with the increase of message length 
(see Section 5). Also, message tagging is slow in 
terms of outputting recovery line, since the system 
have to wait for logging an in-transit message until 
the process posts a call to receive it. In this case, as 
long as the process defers receiving the in-transit 
message, the overall recovery line cannot be 
committed. This may result in significant latency 
during failure-free execution. Also we note that the 
application-level message tagging may cause some 
unexpected execution results when encountering 

the wildcard communication. For instance, a 
process may want to detect the length of the 
incoming message (by using MPI_Status) and then 
allocate space for receiving it. However, the 
message tagging will cause an incorrect message 
length, since the header binds more data onto the 
original message. One may argue to exclude the 
header size upon detecting. However, there is 
difficulty to do so, because of the highly 
implementation-dependent definition of the 
MPI_Status structure. Furthermore, the message 
tagging does not avoid coordination. Marker 
messages are still needed to broadcast the number 
of in-transit messages. 
   Given all these considerations, the message 
tagging is not likely to be an attractive option in 
practice. 

3. Event Logging 

3.1. Overview 
   In the following paragraphs, we present Event 
Logging for the application-level process 
coordination. First, it is necessary to differentiate 
Event Logging from Message Logging. Event 
Logging is a variant of the Chandy-Lamport 
algorithm that coordinates distributed processes to 
form a recovery line. Unlike message logging [2], 
it records only the message envelopes, without the 
message content, reducing much of the memory 
overhead introduced by message logging [21]. 
   Also, Event Logging is different from the event 
logger [3], which is widely used in message 
logging systems for tracking the process casual 
dependency. Although the work of both Event 
Logging and event logger is to record message-
passing events, the fundamental difference is that 
the former is a high level algorithm used for 
process coordination, while the later is a low level 
module that is built in the message logging system.  
   In Event Logging, every process keeps a log for 
sending and receiving events it performs. Upon 
occurrence of a new checkpoint, the send logs are 
exchanged between the sender and receiver. When 
the process gets another one’s send log, it pairs it 
up with the local receive log to match the message 
envelopes. As the message envelope is logged at 
the time of the message passing (sending and 
receiving), the event log also keeps the message’s 
Happen Before relation, which determines the type 
of the message: Intra, In-transit or Orphan. Then, 
when a pair of send and receive logs are matched, 
the system determines the category of the message. 
 



3.2. Definitions and Assumptions 
   The process’s execution is divided into a 
sequence of intervals separated by checkpoints. A 
checkpoint interval starts with any instruction 
following a local checkpoint and ends upon the 
completion of the next local checkpoint. Since our 
protocol is based on coordinated checkpoint, the 
local checkpoints of a recovery line have the same 
sequence number value.  
   With the concept of checkpoint interval, a send 
log is the collection of the outgoing message 
envelopes, denoted by SENDp,i (the send log of 
process p’s i-th checkpoint interval). Similarly, a 
receive log is RECVp,i. We use SENDp,i{Rq,j} 
(RECVp,i{Sq,j}) to denote the whole message 
passing event, in which process p sends out 
messages in its i-th checkpoint interval and the 
messages are received by process q in the j-th 
checkpoint interval.  
   Consider the example depicted in Figure 4. The 
send log of p’s i-th checkpoint interval is 
SENDp,i{Rq,j,Rq,j,Rq,j,Rq,j+1}, which is simplified as 
SENDp,i{Rq,j,Rq,j+1}, and the receive log of q’s i-th 
checkpoint interval is RECVq,j{Sp,i-

1,Sp,i,Sp,i,Sp,i,Sp,i+1}, which equals to  RECVq,j{Sp,i-

1,Sp,i,Sp,i+1} . 

 
Figure 4. The p’s send event log and q’s 
receive log. <p,i> denotes p’s TCKPT i-th 

checkpoint. 

   Obviously, between the send and receive logs, 
there exist the matching envelopes:  
 
  SENDp,i{Rq,j}=RECVq,j,{Sp,i}; // intra 
  SENDp,i{Rq,j+1}=RECVq,j+1,{Sp,i};  // in-transit 
  SENDp,i{Rq,j-1}=RECVq,j-1,{Sp,i};   // orphan 
 
   As the example shows, the goal of Event 
Logging is to match up the envelopes logged at the 
sender and receiver side in order to identify the in-
transit and orphan messages. 
   To simplify the description of our algorithm, we 
make the assumption that any message passing 
finishes in no more than two successive checkpoint 
intervals. Later, we will show how to remove this 

limitation for all kinds of communication 
environment. Under this assumption, the send and 
receive logs are cut down to SENDp,i{Rq,j-

1,Rq,j,Rq,j+1} and RECVq,i{Sp,i-1,Sp,i,Sp,i+1}.  
   Also, we emphasize that the Event Logging 
algorithm relies the Non-Overtaking property of 
MPI. Conceptually, one may think of successive 
messages sent by a process to another process as 
ordered in a sequence. Receive operations posted 
by a process are also ordered in a sequence. Each 
incoming message matches the first matching 
receive in the sequence [6]. For example, let a 
process P1 send three messages in the order {X1, 
X2, Y1} to another process P2 and X1, X2 have 
the same envelope X. With the non-overtaking 
property, if P2 posts only one receive matching X, 
X1 will always get picked.  
   However, the non-overtaking property only 
applies to messages with the same envelope. As in 
this example, Y1 could be at any place in the 
receiving order, since it has a different envelope 
from X1 and X2. Moreover, if P2 posts two 
receives both matching Y1, the first one will 
always be satisfied.  
   Note, that the notation SENDp,i{Rq,j-x,…,Rq,j-

1,Rq,j,Rq,j+1,…,Rq,j+x} does not mean that the 
messages are sent in the receiving order. Also, we 
use SENDp,i{-} to denote a send log that cannot 
find a matching receive log, and RECVq,j{-} to 
denote an unmatched receive log. 
 
3.3. Algorithm 

   The Event Logging consists of four parts: 
logging procedure, checkpoint procedure, 
identification procedure and recovery procedure. 
Let that the MPI program run N processes. Then 
each process will keep 2×(N-1) event logs. 

3.3.1. Logging Procedure  
For each process p, the logging procedure 
functions for each communication operations (send 
and receive). If p sends (receives) a message to 
(from) process q, then the logging procedure will 
go as follows: a new log node is created; the 
message envelope is filled into this node; the node 
is appended to SENDp{Rq} (RECVp{Sq})). 

3.3.2. Checkpoint Procedure  
1. Upon receipt of a send log SENDq{Rp} from 
process q, if no checkpoint is in progress, process 
p goes to Step 2; otherwise it goes to Step 3. 

2. p creates next local checkpoint (say, i-th 
checkpoint), sends SENDp,i{Rx} to each other 
process x of the program and then resumes the 



normal execution. 

3. p performs the identification procedure for q.  
Once p has completed identification of the 
messages received from q, all in-transit and orphan 
messages from q are saved as part of p’s local 
checkpoint. 

4. After the message identification is finished for 
all other N-1 processes, the local checkpoint for 
process p will be created. 

5. After all N processes have created their local 
checkpoints, the recovery line is formed. 

3.3.3. Identification Procedure  
Employed by the checkpoint procedure, the 
identification procedure detects in-transit, intra and 
orphan messages by comparing the send and 
receive logs (SENDp,i and RECVq,j). Steps in this 
procedure are determined by the data structure 
used to save the event log. In its most simple form, 
link table, the identification procedure consists of 
the following steps: 

1. For each node of RECVq,j-1  (SENDp,i-1), use 
Sequential Search to search in SENDp,i (RECVq,j). 
When found a matching pair in SENDp,i (RECVq,j ), 
remove the pair from both RECVq,j-1 (SENDp,i-1) 
and SENDp,i (RECVq,j). 

2. For each node of SENDp,i, use Sequential Search 
to search in RECVq,j. When found a matching pair 
in RECVq,j, remove the pair from both SENDp,i and 
RECVq,j. 

3. Upon completion the procedure, the unmatched 
send log SENDp,i{-} will consist of in-transit 
message envelope logs, and the unmatched receive 
log RECVq,j{-} will consist of orphan message 
envelope logs. They are both saved into p’s local 
checkpoint. 

3.3.4. Recovery Procedure  
The recovery procedure is summarized as follows: 

1. Each process p reloads the execution state from 
the latest checkpoint Cp,i, and loads the in-transit 
and orphan message envelope log SENDp,i{-}, 
RECVq,j{-}. 

2. Then it resumes the execution.  

3. Upon receipt of a message with envelope M, p 
first checks whether SENDp,i{-} is empty. If not, it 
searches in SENDp,i{-} for a log of M. If found, it 
fills the receive buffer with the logged message M 
and removes the log from SENDp,i{-}. Otherwise, it 
checks whether RECVq,j{-} is empty. If not, it 
searches in RECVq,j{-} for a log of M. If found, it 
receives the orphan message of envelope M in a 
temporary buffer and removes the log of M from 

RECVq,j. 

3.4. Formal Analysis 
   Recalling the discussion in 3.2, if we can pair up 
the send log of a message with its receive log, we 
can discover the relation between the send and 
receive events and identify all in-transit and 
orphan messages. The following paragraph serves 
as a proof for Event Logging. 

Theorem 1 The algorithm is correct in the sense 
that it identifies all in-transit and orphan messages 
of the current checkpoint interval. 
   For sake of simplicity, we consider an MPI 
program consisting of two processes. However, we 
argue that this scenario is universal for all cases, 
because the necessary and sufficient condition of 
the proposition that the recovery line of any MPI 
program is valid is that any two processes’ sub-
line of this recovery line is valid. This is because 
any message passing occurs between a pair of 
processes. 

So our goal is to prove that Event Logging is 
capable to identify the intra, in-transit and orphan 
messages for any two processes. Let the current 
checkpoint interval of process p be Cp,i and process 
q’s be Cq,j. According to the Happen Before 
relation, a message, M, which p sends to q in the 
current checkpoint interval is an intra message if 
and only if: CKPTi  S(M)  CKPTi+1 and CKPTi 

 R(M)  CKPTi+1. As to the Event Logging 
algorithm, it means that a pair of SENDp,i{Rq,j} 
=RECVq,j{Sp,i} can be matched in the current 
checkpoint interval log. Message M will be an in-
transit message if and only if S(M)  CKPTi and 
CKPTi+1  R(M). This means that a send log finds 
its matching receive log in the target’s next 
checkpoint interval log, SENDp,i{Rq,j+1} 
=RECVq,j+1{Sp,i}. Finally, message M will be an 
orphan message if and only if  CKPTi   S(M) and 
R(M)  CKPTi. This means that a receive log 
finds its matching send log in the source’s 
previous checkpoint interval log, SENDp,i{Rq,j-1} 
=RECVq,j-1{Sp,i}.  
   Although it is impossible to check future 
checkpoint interval logs, the trick is that the first 
checkpoint interval’s logs SENDp,i{Rq,0,Rq,1}  and 
RECVq,0{Sp,0,Sp,1} contain no in-transit or orphan 
messages. So we can easily match the intra 
message envelopes: SENDp,0{Rq,0} =RECVq,0{Sp,0}. 
To the unmatched send logs of p, SENDp,0{-}, and 
the unmatched receive logs of q, RECVq,0{-}, 
because the message passing must be completed in 
the next interval, we can conclude that the whole 
event of these unmatched event logs will be 
SENDp,0{Rq,1}, RECVq,0{Sp,1}. Then we can say that 



all in-transit and orphan messages have been 
successfully identified in the checkpoint interval 0. 
This is the base of our induction. 
   Next, assume that at the checkpoint i-th interval 
(Cp,i,Cq,i) we have gotten the envelopes of the in-
transit and orphan messages, SENDp,i-1{Rq,i} and 
RECVq,i-1{Sp,i}. So, the event logs of (Cp,i,Cq,i) look 
like SENDp,i{Rq,i-1,Rq,i,,Rq,i+1} and RECVq,i{Sp,i-

1,Sp,i,Sp,i+1}. Then, the algorithm removes the log of 
SENDp,i-1{Rq,i}, RECVq,i-1{Sp,i}. After the removal, 
the event logs of (Cp,i,Cq,i) look like 
SENDp,i{Rq,i,Rq,i+1} and RECVq,i{Sp,i,Sp,i+1}, 
containing no logs related to (Cp,i,Cq,i). So, the 
same identifying method as for the first checkpoint 
interval can be applied. Finally, we get the in-
transit and orphan messages of (Cp,i,Cq,i), 
SENDp,i{-} and RECVq,i{-}, after removing the intra 
messages SENDp,i{Rq,i}=RECVq,j{Sq,i}. Same as 
(Cp,0,Cq,0), we can conclude that the final version 
of SENDp,i{-}, RECVq,i{-} must be SENDp,i{Rq,i+1}, 
RECVq,j{Sq,i+1}.  
   Therefore, we conclude that for any checkpoint 
interval (Cp,i,Cq,i), where i>0, all in-transit, intra 
and orphan messages will be identified. 
   A necessary note is that the algorithm pairs up 
send and receive logs by only matching envelopes. 
However, it is often that a process sends several 
messages with the same envelope to another 
process. Some messages could be orphan message, 
some could be intra message, and some might be 
still in fly at the time when the local checkpoint is 
taken. As the algorithm does not rely on the FIFO 
assumption, this could endanger the correctness of 
Event Logging seriously. However, the non-
overtaking property removes this alert. According 
to it, the message passing with the same envelope 
obeys the following relation: If x>y then 
Sp,i(mx) Sp,i(my) and Rq,j(mx) Rq,j(my). In other 
words, if messages a and b have the same 
envelope and a is sent earlier, the receiving of a 
must be ahead of b. Also, since the log is created 
along with the event (send or receive), we 
conclude that if a’s send log happens before b’s, 
a’s receive log must be ahead of b’s as well, either 
at some position before b in the same checkpoint 
interval, or in a previous interval. So, the event log 
of messages with the same envelope will be 
naturally ordered. As the log is created and 
compared sequentially, from the first passed 
message to the last one, the non-overtaking 
property guarantees that the matching does not 
overlap. 

3.5. Extending the protocol 
   The above algorithm relies on the assumption 

that message passing finishes in two successive 
intervals at most. However, in reality, it is possible 
that a message is received in a large latency. So, it 
is necessary to remove our limitation. 
   First, we exclude the danger of orphan messages, 
because none can send a message several 
checkpoint intervals after it is received by another 
one.  
   As to the in-transit message, the only 
requirement is that process can get it upon 
recovery, regardless how early the sending was. In 
other words, to recover from the i-th checkpoint 
interval, there is no difference between an in-
transit message sent in the (i-1)-th interval and the 
one sent in the (i-4)-th. So we maintain a log for 
all the not-received in-transit messages and append 
the new in-transit-message send logs after it. All 
send event entries are kept until the message is 
picked up by the destination (then the entry will be 
removed from the log).  
   Our algorithm relies on no specific premise and 
can adapt to any communication demand. 
However, considering the balance between 
efficiency and programming flexibility, we leave 
users with the option of deciding for how many 
checkpoint intervals an in-transit message can be 
logged. By setting a parameter, the checkpoint 
protocol can be trimmed to the application’s 
requirement. 

4.  Performance Analysis and    
Optimization  

4.1. Analysis 
   In this chapter, we focus on the analysis and 
tuning of the performance of the logging and 
identification procedures. As to the checkpoint and 
recovery overheads, they are not Event Logging 
specific and general for all variants of the Chandy-
Lamport algorithm.  
   The logging overhead is introduced by recording 
an envelope upon message passing. For any send 
(receive), the recording operation is the same: 
creating a new node, saving the envelope in the 
node and appending the new node to the log. So, 
the overall logging overhead is simply the sum of 
the costs of all logging operations. If the logging 
operation costs Tlog, the number of message 
passing operations throughout the program’s 
execution is Nm, then the logging overhead will be 
Tlog×Nm.  

The identification overhead is incurred by the 
messages identification procedure. Consider the 
steps given in 3.3.3. For each item in the receive 
log, the algorithm repeats the search in the send 



log trying to locate a matching envelope. In this 
sense, the identification overhead is mainly 
determined by the length of the send and receive 
logs. If Nq,j-1, Nq,j and Np,j are the number of logs in 
RECVq,j-1, RECVq,j and SENDp,i respectively, and 
Tm is the cost of a matching operation, the 
overhead expectation of the identification process 
using Sequential Search will be Tm×(2×Np,i–2× 
(Nq,j-1+Nq,j)+3)×(Nq,j-1+Nq,j)/4. In conclusion, the 
overhead caused by the message identification 
takes the most significant part in the evaluation of 
the Event Logging’s performance. And the logging 
overhead is proportional to the number of message 
passing operations. 
    
4.2. Optimization 
   Since the part of an MPI message envelope 
logged by each process includes 3 elements, which 
are source-or-destination-rank, tag, and 
communicator, a hash function can help to reduce 
the memory cost introduced by logging envelopes. 
However, the function must be a perfect hashing 
function. In other words, for any two different 
envelopes A and B, the hashing result must be 

different, f(A)�f(B). Moreover, given that during 
the checkpointing procedure, processes need to 
exchange logs, the hashing can accelerate the 
communication, because of a much smaller size of 
the hashed log. 
   Also, the identification optimization strategy 
based on the hashing can be developed. As shown 
in 4.1, if a link table is used to save envelope logs, 
the matching process has to use Sequential Search 
to pair up send and receive envelopes. However, 
based on the non-overtaking property, the event 
log can be sorted by the hash value. Many well-
known search algorithms can help to reduce the 
average search time. For example, by applying 
Binary Search, the average search length will be 
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   In the case of multiple messages with the same 
envelope, an optimization technique may be to add 
an extra field to allow the event log to keep the 
number of occurrences of this envelope. For 
example, if message envelope M is used 100 times 
in the checkpoint interval, only one log of the 
message envelope needs to be kept by setting the 
counter field to 100. 
   Combining these two optimization techniques, 
the event log is reorganized in the form of sorted 
list with the value of each node being the hash 
value of a message envelope. Also, the node has 
another field, NUM, that holds the number of 

messages passed with this envelope. Then, the 
identification procedure of Event Logging can be 
revised as follows: 

1. For each node of RECVq,j-1 (SENDp,i-1), use 
Binary Search to search in SENDp,i (RECVq,j). 
When found an identical value in SENDp,i-1 
(RECVq,j), remove Min(RECVq,j-1.NUM, 
SENDp,i.NUM) from both RECVq,j-1 (SENDp,i-1) and 
SENDp,i (RECVq,j ). 

2. For each node of SENDp,i, use Binary Search to 
search in RECVq,j. When found an identical value 
in RECVq,j, remove  Min(RECVq,j.NUM, 
SENDp,i.NUM) from both SENDp,i and RECVq,j. 

5. Implementation 
   Our current implementation for Event Logging 
algorithm consists of three packages: MPI 
Wrapper Package (MWP), Message Identification 
Package (MIP) and Message Logging Package 
(MLP). 
 
5.1. MPI Wrapper Package 

   In our implementation, two main wrapper 
functions are ELC_MPI_Send() and 
ELC_MPI_Recv(). In addition to sending and 
receiving a message, these two wrappers probe 
whether there is a pending checkpoint request in 
the MPI buffer. Depending on whether the 
checkpoint request is the first request detected, the 
process may take two different actions: 

1. If the checkpoint request is the first one, the 
process creates a local checkpoint, broadcasts 
checkpoint requests containing this process’s send 
event log to all other processes and then invokes 
the MIP. In general, MIP is responsible for 
identification of in-transit and orphan messages by 
using the Event Logging algorithm. After the 
identification completes, the receiving process will 
have the envelopes for all in-transit and orphan 
messages. The orphan message envelopes are 
written to the disk storage as part of the local 
checkpoint, and the in-transit message envelopes 
are handed over to MLP. Then the process adds 
the rank of the intercepted checkpoint request’s 
source to a request table, which records the 
processes that have sent the checkpoint requests. 
After finishing this action, the process triggers 
MLP. 

2. If the checkpoint request is not the first detected, 
process will directly start the MIP. The identified 
orphan message envelopes will be saved in 
checkpoint files. The in-transit message envelopes 
will be passed to MLP. Then the request’s source 



will be marked in the request table. The process 
counts the number of checkpoint requests it has 
received. When the process has gathered requests 
from all other processes, the process marks its 
local checkpoint as finished. 
 
5.2. Message Identification Package 

    MIP is invoked to help the process to identify 
in-transit and orphan messages when the process 
receives a checkpoint request. According to the 
algorithm discussed in 3.3, the MIP tries to 
identify the messages by pairing up the send logs 
bound with the checkpoint request with the target’s 
receive logs. 
   Let process q get a checkpoint request from 
process p within the i-th checkpoint  interval (i>1). 
In this scenario, q holds the event logs of the 
messages received from p, RECVq,j{Sp,i-1,Sp,i,Sp,i+1}, 
and p’s send logs are packaged in the checkpoint 
request, SENDp,i{Rq,j-1,Rq,j,Rq,j+1}. Also process q 
already has the logs of the in-transit and orphan 
messages of the last checkpoint interval, SENDp,i-

1{Rq,i} and RECVq,j-1{Sp,i}. MIP is invoked when 
process p intercepts send logs from process q, and 
hence the sender/receiver’s ranks are known. 
Therefore, a pair of send/receive logs is matched if 
they have the same tag and communicator. Then, 
the identification process takes the following three 
steps: 

1. Remove the in-transit message logs, SENDp,i-

1{Rq,i}=RECVq,i{Sp,i-1}. 

2. Remove the orphan message logs, SENDp,i{Rq,i-

1}=RECVq,j-1{Sp,i}  

3. Remove all intra message logs, 
SENDp,i{Rq,i}=RECVq,i{Sp,i}. 

When the identification finishes, the remaining 
logs of SENDp,i{-} and RECVq,i{-}  are the in-
transit and orphan message envelopes in the 
current checkpoint interval. 

5.3. Message Logging Package 
   MLP logs the in-transit messages using the 
envelopes identified by MIP. MLP is implemented 
in 2 different forms. The first one relies in the 
FIFO property of a lower layer of the MPI 
implementation, which guarantees that all in-
transit messages will have been stored into the 
receive buffer, although may not have been picked 
up yet. So in this case MLP just posts a receive 
(MPI_Recv) for each in-transit message envelope. 

The second version of MLP does not rely on the 
FIFO property of the lower communication level. 
In that case, MLP check in the incoming message 

is in-transit or not. If so, the message will be 
logged. If not, nothing happens. 

6. Experiments 

6.1. Experiment Environment 

   In this section, we present the results of 
experiments with Event Logging. Four MPI 
programs are used: Gauss-Jordan method for 
solving systems of linear equations, Parallel 
NeuronSys, Monte Carlo Simulation and 1-D 
decomposition Matrix Multiplication. The 
experiments are carried out using a prototype 
application-level library libELC that enables the 
fault tolerance of MPI programs and based on the 
presented algorithms. One of the functions of the 
library is also to create portable local checkpoints 
for each individual MPI process following an 
approach similar to the Process Introspection 
proposed in [8]. Table 2 lists the machines used in 
the experiments. 
 The testing programs are run in three modes: the 
source mode, protocol mode, and checkpoint mode. 
In the source mode, original code is run. In the 
protocol mode, we apply libELC to the testing 
program, however no checkpoint is taken. In the 
checkpoint mode, both the Event Logging 
coordinating protocol is applied and checkpoints 
are created. Moreover, we add another value in the 
result tables, which is the expectation of the 
optimized program’s execution time in the 
checkpoint mode. The expectation is calculated by 
the overhead model given in 4.1 and the program 
execution time in source mode. We compare this 
value with the experimental result to see whether 
the optimization works. 
   In the tests of Gauss-Jordan Solver, Parallel 
NeuronSys and Matrix Multiplication, four 
checkpoints are triggered by the function call 
ELC_DoCKPT(). Generally, we pick four random 
positions in the program to insert the calls. The 
Monte-Carlo Simulation program uses the time 
interval mechanism, when the checkpoint is 
triggered with a given frequency. Also, we vary 
the datasize and the number of processes for each 
test. The figures shown in the following tests are 
collected from a number of runs, discarding the 
outliers. 

6.2. Testing Program 

   We have carried out the experiments of Event 
Logging with the following four MPI programs:  

 

 



Machine OS CPUs (Mhz) 
Csserver Linux 2.4.20 4 @ 498 
csultra01 SunOS 5.8 1 @ 440 
csultra02 SunOS 5.8 1 @ 440 

pg1cluster01 Linux 2.4.18 2 @ 1977 
pg1cluster02 Linux 2.4.18 2 @ 1977 
pg1cluster03 Linux 2.4.18 2 @ 1977 
pg1cluster04 Linux 2.4.18 2 @ 1977 
csa007bpc5 Linux 2.6.20 1 @ 930 

csa007b3pc2 FreeBSD 5.2.1 1 @ 930 
Table 2. Machine Configuration 

1. The first experiment is an MPI program of 
Gauss-Jordan method for solving systems of linear 
equations, which is written by J. Meyer at 
University of Nebraska at Omaha. The linear 
system is evenly distributed by rows among N-1 
processes, from where the results are collected by 
the MPI_Allreduce function call to the rank 0 
process. We run the program on LAM/MPI 7.0.4 
with three linear systems of different sizes: 4,000, 
8,000 and 16,000. 
2. Parallel NeuronSys is a neuron simulator 
program public available at 
http://www.cs.usfca.edu/neurosys/. Generally, it is 
used to solve a system of ODE’s modeling 
(Ordinary Differential Equation) a network of 
biologically realistic neurons on parallel computers. 
The current version uses fourth order Runge-Kutta 
method to solve the equation. Neurons are evenly 
distributed among processes and form a graph in 
which neurons excite and inhibit each other via 
their connections. Inter-process Communication 
contains five MPI_Allgather and one MPI_Gather 
function calls in each of a total of 10,000 iterations. 
3. The third program does a Monte Carlo 
simulation of a system of hard disks. The fraction 
of the total area that is covered by disks (area 
fraction) is set to 0.5 and the user has control over 
the size of the system that will be simulated. The 
disks start from a triangular lattice and the 
simulation works in the master-slave pattern, in 
which the size of the system is determined by 
specifying the number of disks along an edge of 
the initial lattice. 
4. In the 1-D Cyclic Decomposition Matrix 
Multiplication program, the master process (rank 0) 
behaves in a cyclic manner to distribute the matrix 
to the four slave processes, which does the 
multiplication job and returns the result to the 
master. The distribution unit is set to 4 columns so 
that the overall message number is Column/4 and 
the message size is 4 *Rows. More, we run this 
matrix multiplication program in the checkpoint 
mode using both Event Logging and Message 

Tagging to compare the performance. The message 
tagging is implemented using derived datatype. In 
particular, the sending process encapsulates the 
original message with the header information into 
a temporary buffer, and calls MPI_Type_struct to 
create a derived datatype. On the other side, the 
target process receives the tagged message into a 
same size (original message plus the header) buffer 
space, retrieves the header information and hands 
over the original content to the user. 

6.3. Results and Evaluation 

1. Gauss-Jordan method: the overhead decreases 
from 22.20%, 3.83% to 1.95% with the linear 
equations’ size changes from 4,000 to 8,000 and 
16,000 (Figure 5). Simply put, the larger dataset 
increases the program execution time, but does not 
introduce extra message passing. Since the 
message envelope number stays the same, the 
overhead of envelope logging and identification 
becomes smaller with the increase of the program 
execution 
2. Parallel NeuronSys: in this test, we observed the 
significantly reduced number of in-transit and 
orphan messages due to the accelerated execution 
by employing more processes. Much less in-transit 
and orphan messages mean that upon 
checkpointing, libELC spends much less time on 
the message identification and logging. As the 
result shows, the overhead decreases from 29.44% 
for 4 process configuration; while down to 9.94% 
for 8 processes; and 7.38% for 16 processes 
(Figure 6). It demonstrates the Event Logging 
algorithm scales well. 
3. Monte-Carlo Simulation: in the simulation, we 
trigger a checkpoint in every 150 seconds. Also we 
use three sets of parameters to vary the test 
execution time. Although increasing input data 
size prolongs the program execution and causes 
more checkpoints, the performance still improves 
from 33.15% to 23.83% to 14.32% (Figure 7). 
4. Matrix Multiplication: as mentioned above, the 
matrix multiplication program uses 1-D cyclic 
manner to decompose the matrix, which 
determines the message size Columns/4 and 
message number 4Rows is proportional to matrix 
size. In this case, we increase the matrix size from 
512×512, 1024×1024, 2048×2048. Then the 
message size goes from 512 KB to 2 MB and 8 
MB. As the result, we observe the overhead of 
Message Tagging approach increases along with 
the datasize increases: 4.85%, 7.40% and 8.05%; 
while the overhead of Event Logging remains 
about the same: 2.33%, 2.85% and 2.79% (Figure 
8). Basically this result shows that the performance 



of Message Tagging fluctuates with the message 
size. This is because Message Tagging approach 
needs to manage buffer space for tagging the 
header onto the message. However, Event Logging 
logs only the message envelopes, which will be 
affected by the message size. From the point of 
view of implementation, another advantage of 
Event Logging over Message Tagging is that 
Event Logging enables fast in-transit message 
logging. At the time the envelope identification 
finishes, Event Logging has the envelopes for the 
in-transit messages, so a process can simply post 
receive requests to log these in-transit messages 
(Recalling that FIFO manner is generally 
supported by the lower layer of MPI 
implementations). However, in Message Tagging, 
the process has to wait as long as the messages are 
received by the program. That is because the 
process has no knowledge of an in-transit message 
until it checks a message’s header. 
   In general, we observe that the performance of 
Event Logging gets better with larger datasets. 
And the algorithm scales well in the experiments. 
Also, as the result of Monte-Carlo Simulation 
shows, using Time Interval mechanism, the 
overhead does not go up with the number of 
checkpoint created. Moreover, Event Logging 
performs better than Message Tagging in the 
Matrix Multiplication experiment. And the effect 
comes more significant with the increase of the 
message size. Another advantage of Event 
Logging is that it enables the fast log of in-transit 
messages. Finally, the experiment results are all in 
reasonable deviation from the expectation, which 
demonstrates the effect of the optimization skill 
given in 4.2. 

7. Conclusion and Future Work 
   In this paper, we present a variant of Chandy-
Lamport algorithm, Event Logging, to address the 
application-level non-FIFO problem of the 
coordinated checkpoint for MPI programs, which 
no existing approach provides adequate solutions 
given the heterogeneous network. Different from 
the previous works, this protocol coordinates the 
distributed processes by logging the message 
envelopes. Upon checkpointing, processes 
exchange the envelopes to identify the in-transit 
and orphan messages. The benefits of Event 
Logging are that it makes no assumption of the 
underlying MPI version, what makes it not only 
platform-independent, but also portable across 
various MPI implementations. 
   Event Logging overtops Message Tagging in 
term of recovery line commit. In Event Logging, 

in-transit messages will be logged as soon as their 
envelopes have been identified. However, using 
Message Tagging process may face unpredictable 
latency for the program to receive all in-transit 
messages. Also, Event Logging performs better 
than the Message Tagging approach with the 
increase of message size. We have presented the 
skills to optimize the performance of Event 
Logging, which could be easily implemented and 
significantly reduce the overhead. Experiments 
demonstrated the high efficiency of Event Logging. 
   In the near future, an important improvement is 
to implement Selective Checkpoint [15] based on 
Event Logging. Furthermore, we plan to optimize 
the checkpoint by using compiler technologies to 
minimize the data that need to be saved [18, 19]. 
Integration of our protocol with mpC language [15] 
is also in our schedule. 
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Appendix. 

 
 

 
   Figure 5. Experiments results of Gauss-Jordan method,  
   in which the x-axis scale is the size of the linear system. 
 
 
 

 
    Figure 6. Experiments results of Parallel NeuronSys, in which  

          tests are carried out with different numbers of processes. 
 



 
  Figure 7. Experiments results of Monte-Carlo Simulation, in which  

                              the x-axis scale is the number of disks and sweeps in the simulation. 
 
 
 

 
         Figure 8. Comparison results of Matrix Multiplication, in which the  
                                message sizes in three different tests are 512KB, 2MB and 8MB.
 


