
Event Logging: Portable and Efficient Checkpointing in Heterogeneous
Environments with Non-FIFO Communication Platforms

Zhao Peng
Department of Computer Science

University College Dublin, Belfield
Dublin 4, Ireland

Peng.Zhao@ucd.ie

Alexey Lastovetsky
Department of Computer Science

University College Dublin, Belfield
Dublin 4, Ireland

Alexey.Lastovetsky@ucd.ie

Abstract
The Chandy-Lamport checkpointing algorithm is
widely used in fault tolerant implementations of
MPI. However, it assumes the FIFO property of
message passing, which is not guaranteed by the
MPI standard at the application level. Therefore,
this algorithm cannot serve as a basis for an
implementation-independent fault tolerant MPI.
In this paper, we present a variant of the Chandy-
Lamport algorithm that does not rely on the FIFO
property. This algorithm can be implemented on
top of MPI and, hence, used for development of a
supplement software component enabling the fault
tolerance of any MPI implementation compliant
with the MPI standard. We prove the correctness
of the algorithm and analyze its performance.
Experimental results demonstrating the efficiency
of the algorithm are also presented.

1. Introduction
Fault tolerance is one of the primary issues of

parallel programming for common heterogeneous
networks of computers because in such
environments the probability of resource failures is
much higher than in dedicated parallel computer
systems of the same scale. Checkpoint/recovery is
an important technique used to enable the fault
tolerance of parallel programs. By resuming the
execution from where a recovery line has been
created, the program does not need to restart from
the beginning but can rollback to the latest
recovery line. MPI [6, 9] is probably the most
popular parallel programming tool for
heterogeneous networks. Therefore, no wonder
that research and development efforts aimed at
enabling the fault tolerance of MPI programs are
constantly growing. The Chandy-Lamport

checkpointing algorithm [5] is used in most of
fault tolerant implementations of MPI [1, 22, 24].
However, it relies on the FIFO property of
message passing, which is not guaranteed by the
MPI standard at the application level. Therefore
each of these fault tolerant MPIs has to resort to
the low-level layer’s help to implement the
Chandy-Lamport algorithm. As a result, the
software component responsible for checkpointing
will be inherently implementation-specific, hardly
built into the particular implementation of MPI
and not portable to other MPI implementations.

An alternative approach to enabling the fault
tolerance of MPI applications is the development
of an autonomous and portable software
component responsible for checkpoint/recovery
that could be used together with any (non-fault-
tolerant) MPI implementation compliant with the
MPI standard [9]. Such a software component can
only be based on a checkpointing algorithm that
does not rely on any property of MPI which is not
guaranteed by its standard.

In this paper, we present Event Logging, a
variant of the Chandy-Lamport algorithm that does
not rely on the FIFO property of message passing.
This algorithm can be implemented on top of MPI
and, hence, used for development of a supplement
software component enabling the fault tolerance of
any MPI implementation compliant with the MPI
standard. We prove the correctness of the
algorithm and analyze its performance.
Experimental results demonstrate that this portable
algorithm is still quite efficient. We also briefly
present libELC, a portable prototype library for
enabling the fault tolerance of MPI applications
based on the Event Logging algorithm.

2. Background

2.1. Problem Space

 Creation of a checkpoint of an MPI program
includes the creation of a checkpoint for each
individual process. Uniprocess checkpointing
captures the process’s state and outputs it to an
external stable storage, from where this state can
be reloaded when an error occurs. Comprised of a
set of the individual process’s checkpoints, the
global checkpoint can be used to restore a previous
execution state of the MPI program. In this context,
the checkpoint of individual process is named a
local checkpoint, and the global checkpoint is also
called a recovery line.
 However, only the local checkpoints are not
sufficient to form a recovery line for the running
MPI program. As MPI processes use message
passing to communicate, messages are part of the
state of the running program. As any
communication has latency, there may be some
messages on fly at the time when an individual
process’s state is saved. Therefore, the checkpoint
algorithm must be able to capture the program’s
communication state.
 Generally, in the context of checkpointing there
are three kinds of messages in MPI: intra
messages, in-transit messages and orphan
messages. Lamport [14] proposed a relation called
Happens Before to indicate the partial order of
events in a distributed system. This is an
irreflexive, antisymmetric, transitive relation that
can be applied to define these messages.

1. If events a and b happen on the same process
and a happens before b, then a b.
2. If events a and b happen on different processes,
and a is a sending event of message M, b is a
receiving event of M, then a b.
3. If neither (a b) nor (a b), then a and b are
concurrent events.

 Given the definition of the Happens Before

relation, these three kinds of messages can be
expressed as follows:

1. Intra message: CKPTi ���� ����i+1 and
CKPTi 	��� ����i+1.
2. In-transit message: S(M) ����i and
CKPTi+1 	���
3. Orphan message: CKPTi ���� and
R(M) ����i.

 Here, CKPTi denotes the process’s i-th local
checkpoint, and S(M), R(M) denote the events of
sending and receiving of message M respectively.
 Among these messages, intra message is
harmless, because the passing of an intra message
does not cross the recovery line, which means that
the message will not exist in the communication
channel. However, in-transit and orphan messages
are dangerous. Consider the in-transit message
example depicted in Figure 1. Assume that a
failure occurs after the system finishes the
recovery line C1-C2, and the execution then is
restarted. Without saving the communication state,
process P1 thinks that it has sent the message to
process P2, so it will never replay the sending. On
the other side, the local checkpoint of P2 is taken
before it receives the message. It leads to the
problem that P2 will be blocked on waiting for the
in-transit message after recovery but the message
may have been lost or discarded by the network
during the program’s failure. This problem caused
by in-transit message is called unrecoverable.
 In Figure 2, a message is sent after P1’s local
checkpoint and gets received before P2’s. Upon
recovery, P1 will re-send this orphan message,
which actually has been received and saved in
P2’s checkpoint. Although the execution can be
recovered with the existence of the orphan
message, the damage of this message is not only a
waste of the buffer space. More seriously, it
produces a duplicated message that may break the
communication semantics. This problem is called
inconsistency.

��������	�
��
�����
��������	�

�

Figure 2. Orphan message.

 So in order to create a valid recovery line, the
following two conditions should be satisfied:

1. Recoverability: either there is no in-transit
message or, if present, such a message can be
regenerated after recovery.

2. Consistency: either there is no orphan
message or, if present, such a message can be
eliminated after recovery.

2.2. Related Work

2.2.1. Overview
A checkpoint algorithm can be classified as

coordinated or uncoordinated. A coordinated
algorithm forms the recovery line by orchestrating
the processes to do the checkpoint, in which a
valid recovery line is immediately setup once the
checkpoint finishes. An uncoordinated
checkpointing allows the processes to choose the
time of checkpoint independently, so the system
has to select from the independently created local
checkpoints to form a recovery line during
recovery. This not only makes the recovery
procedure complicated, but also suffers from
Domino Effect [20]. Compared, coping with
message logging, the uncoordinated approach is
beneficial for large scale distributed systems

running thousands of processors, because only the
crashed nodes need to rollback, the others can go
through the failures [3]. On the other side, the
coordinated protocol requires all processes to
rollback upon failures but without the need of
message logging, which is more economic for
communication intensive parallel programs
running in small and medium size environments.

There are two approaches to coordinated
checkpointing: blocking and non-blocking.
Typically, the blocking one synchronizes all
processes at the checkpoint until the recovery line
has been set up. A non-blocking system allows a
process to resume execution right after it finishes
the local checkpoint. Given the high overhead
introduced by the blocking, the non-blocking
approach gets preferred in practice.
 As to implementation, some non-blocking
coordinated checkpoint algorithms can only be
implemented at the system level, meanwhile others
can be implemented at the application level. A
system-level library is implemented at the level of
OS kernel or network system to gain high
performance. An application-level checkpoint is
managed by an external library, portable cross
platforms. Our algorithm is designed

Type Advantage Disadvantage
Coordinated Domino Effect Free;

No Message Logging
Coordination Overhead
Global Rollback

Uncoordinated Independent Checkpoint
Only Failed Process Rollback

Domino Effect
Message Logging Overhead

Blocking Coordinated Simple Protocol High Blocking Overhead
Non-blocking Coordinated Low Performance Overhead In-transit and Orphan Messages
System-level High Efficiency Low Portability
Application-level High Portability Medium Performance

Table 1. Comparison of different designs.

to be suitable for application-level implementation.
More comprehensive surveys can be found in [7,
11].

2.2.2. Chandy-Lamport Algorithm

Chandy-Lamport algorithm is one of the earliest
and most widely used coordinated, non-blocking
algorithms for the checkpoint of distributed
systems. It is based on the following assumptions:

1. The system is comprised of finite numbers of
processes and communication channels.

2. Communication is done by passing messages
through the communication channels.

3. The latency of communication is finite and
the communication is reliable [10].

4. The message passing behaves in the FIFO
manner.

 The algorithm can be summarized as follows. Let
INp and OUTp be the number of incoming and
outgoing communication channels respectively,
which process p holds. Then, each process p:

1. Creates a local checkpoint.
2. For i=1 to OUTp, p sends a marker message

along the outgoing channel i.
3. p continues its job.
4. For i=1 to INp, p logs the messages from the

incoming channel i until a marker message is
received along channel i.

5. When all processes finish the above steps, the
recovery line is formed.

 The reason why the Chandy-Lamport algorithm
relies on the FIFO assumption is that the marker
used in the algorithm acts as a fence to separate
the message passing around the local checkpoint.
Consider the scenario depicted in Figure 3.
Process P1 sends three messages in the order: {M1,
Marker, M2} to P2. With the FIFO manner, the
messages reach P2 in the same order as sent.

Assume that at the time when M1 reaches P2, P2
has already finished its local checkpoint. So that,
M1 is logged as an in-transit message and M2 is
an intra message according to the Chandy-
Lamport algorithm. But, if the underlying
communication layer does not behave in the FIFO
manner, the arriving order may be different from
the sending order. If the arrival order is {Marker,
M1, M2}, M1 will be omitted from logging
making the recovery line unrecoverable. More, if
the arrival order is {M1, M2, Marker}, the logging
of M2 results in an inconsistent recovery line.
 Being the cornerstone of the Chandy-Lamport
algorithm, the FIFO property of message passing
may only be true when looking deeply into the
details of MPI implementations: most MPI
implementations define a low level channel, which
seats on top of the underlying network. On low
performance networks such as Ethernet, TCP is
used, providing FIFO communications. The high
performance NIC (Network Interface Card) also
guarantees the FIFO property. Therefore, there are
many checkpoint/recovery systems for MPI, which
implement the pure Chandy-Lamport algorithm at
the system level [1, 24, 26]. However, this
property is not guaranteed by the MPI standard at
the application level. Generally speaking, it is
valid to receive messages in the reverse order to
the sending one. While this situation may be rare,
much more common are the situations when
messages are sent and received out of sequence.
 Although the priority rule in MPI stipulates
some messages passing to obey the FIFO property
(see 3.2), FIFO is not strictly required by the MPI
standard. For instance, messages with different
envelopes can be received in any order (different
from the sending order). Among many variants of
the Chandy-Lamport algorithm that

Figure 3. FIFO Message Passing

have been developed in recent years [4, 12, 13, 16,
17, 23], only two provide support for application-
level non-FIFO message passing.
 One is Time-Based Coordinated Checkpointing
[19, 25]. It coordinates distributed processes by
using loosely-coupled clocks. It assumes the
existence of the maximal (Tmax) and minimal (Tmin)
communication latencies as well as standard clock
deviation Tdev. If the global time is TCKPT, any
process’ clock will be in the interval TCKPT±Tdev.
So the maximal clock deviation between two
processes is 2×Tdev. Then the channel is cleared by
caching all messages passed in the period
{ TCKPT�2×Tdev ��Tmax, TCKPT + 2×Tdev ��Tmin }. In a
small network, this algorithm works pretty well.
But with the growth of network scale, Tmax, Tdev
increases dramatically, making the message
passing caching much longer, which impacts the
performance significantly. Also, in a
heterogeneous NoC, parameters Tmax, minT , Tmin

actually cannot be accurately measured.
 Another effort to tackle the non-FIFO is
Message Tagging [4, 18]. The idea behind
Message Tagging is that the system wraps some
additional information onto the outgoing messages,
which is called header. From the point of view of
implementation, same with the checkpoint, the
tagging can be done in two ways: the system-level
approach tags the information by doing the
modification at the network layer, which seriously
damages the portability; the application-level
tagging directly piggybacks the header onto the
application messages. Usually, the header contains
the sender’s checkpoint index. Since the header is
bound with the message, whenever the message
arrives to its destination, the system retrieves the
header and compares the receiver’s current index
with the sender’s to classify whether the message
is in-transit, orphan or intra. So, the header
replaces the marker message to help the system
identify messages without the FIFO requirement.
 Our experience shows that the performance of
the application-level message tagging fluctuates
with the message size. Generally, more overhead is
introduced with the increase of message length
(see Section 5). Also, message tagging is slow in
terms of outputting recovery line, since the system
have to wait for logging an in-transit message until
the process posts a call to receive it. In this case, as
long as the process defers receiving the in-transit
message, the overall recovery line cannot be
committed. This may result in significant latency
during failure-free execution. Also we note that the
application-level message tagging may cause some
unexpected execution results when encountering

the wildcard communication. For instance, a
process may want to detect the length of the
incoming message (by using MPI_Status) and then
allocate space for receiving it. However, the
message tagging will cause an incorrect message
length, since the header binds more data onto the
original message. One may argue to exclude the
header size upon detecting. However, there is
difficulty to do so, because of the highly
implementation-dependent definition of the
MPI_Status structure. Furthermore, the message
tagging does not avoid coordination. Marker
messages are still needed to broadcast the number
of in-transit messages.
 Given all these considerations, the message
tagging is not likely to be an attractive option in
practice.

3. Event Logging

3.1. Overview
 In the following paragraphs, we present Event
Logging for the application-level process
coordination. First, it is necessary to differentiate
Event Logging from Message Logging. Event
Logging is a variant of the Chandy-Lamport
algorithm that coordinates distributed processes to
form a recovery line. Unlike message logging [2],
it records only the message envelopes, without the
message content, reducing much of the memory
overhead introduced by message logging [21].
 Also, Event Logging is different from the event
logger [3], which is widely used in message
logging systems for tracking the process casual
dependency. Although the work of both Event
Logging and event logger is to record message-
passing events, the fundamental difference is that
the former is a high level algorithm used for
process coordination, while the later is a low level
module that is built in the message logging system.
 In Event Logging, every process keeps a log for
sending and receiving events it performs. Upon
occurrence of a new checkpoint, the send logs are
exchanged between the sender and receiver. When
the process gets another one’s send log, it pairs it
up with the local receive log to match the message
envelopes. As the message envelope is logged at
the time of the message passing (sending and
receiving), the event log also keeps the message’s
Happen Before relation, which determines the type
of the message: Intra, In-transit or Orphan. Then,
when a pair of send and receive logs are matched,
the system determines the category of the message.

3.2. Definitions and Assumptions
 The process’s execution is divided into a
sequence of intervals separated by checkpoints. A
checkpoint interval starts with any instruction
following a local checkpoint and ends upon the
completion of the next local checkpoint. Since our
protocol is based on coordinated checkpoint, the
local checkpoints of a recovery line have the same
sequence number value.
 With the concept of checkpoint interval, a send
log is the collection of the outgoing message
envelopes, denoted by SENDp,i (the send log of
process p’s i-th checkpoint interval). Similarly, a
receive log is RECVp,i. We use SENDp,i{Rq,j}
(RECVp,i{Sq,j}) to denote the whole message
passing event, in which process p sends out
messages in its i-th checkpoint interval and the
messages are received by process q in the j-th
checkpoint interval.
 Consider the example depicted in Figure 4. The
send log of p’s i-th checkpoint interval is
SENDp,i{Rq,j,Rq,j,Rq,j,Rq,j+1}, which is simplified as
SENDp,i{Rq,j,Rq,j+1}, and the receive log of q’s i-th
checkpoint interval is RECVq,j{Sp,i-

1,Sp,i,Sp,i,Sp,i,Sp,i+1}, which equals to RECVq,j{Sp,i-

1,Sp,i,Sp,i+1} .

Figure 4. The p’s send event log and q’s
receive log. <p,i> denotes p’s TCKPT i-th

checkpoint.

 Obviously, between the send and receive logs,
there exist the matching envelopes:

 SENDp,i{Rq,j}=RECVq,j,{Sp,i}; // intra
 SENDp,i{Rq,j+1}=RECVq,j+1,{Sp,i}; // in-transit
 SENDp,i{Rq,j-1}=RECVq,j-1,{Sp,i}; // orphan

 As the example shows, the goal of Event
Logging is to match up the envelopes logged at the
sender and receiver side in order to identify the in-
transit and orphan messages.
 To simplify the description of our algorithm, we
make the assumption that any message passing
finishes in no more than two successive checkpoint
intervals. Later, we will show how to remove this

limitation for all kinds of communication
environment. Under this assumption, the send and
receive logs are cut down to SENDp,i{Rq,j-

1,Rq,j,Rq,j+1} and RECVq,i{Sp,i-1,Sp,i,Sp,i+1}.
 Also, we emphasize that the Event Logging
algorithm relies the Non-Overtaking property of
MPI. Conceptually, one may think of successive
messages sent by a process to another process as
ordered in a sequence. Receive operations posted
by a process are also ordered in a sequence. Each
incoming message matches the first matching
receive in the sequence [6]. For example, let a
process P1 send three messages in the order {X1,
X2, Y1} to another process P2 and X1, X2 have
the same envelope X. With the non-overtaking
property, if P2 posts only one receive matching X,
X1 will always get picked.
 However, the non-overtaking property only
applies to messages with the same envelope. As in
this example, Y1 could be at any place in the
receiving order, since it has a different envelope
from X1 and X2. Moreover, if P2 posts two
receives both matching Y1, the first one will
always be satisfied.
 Note, that the notation SENDp,i{Rq,j-x,…,Rq,j-

1,Rq,j,Rq,j+1,…,Rq,j+x} does not mean that the
messages are sent in the receiving order. Also, we
use SENDp,i{-} to denote a send log that cannot
find a matching receive log, and RECVq,j{-} to
denote an unmatched receive log.

3.3. Algorithm

 The Event Logging consists of four parts:
logging procedure, checkpoint procedure,
identification procedure and recovery procedure.
Let that the MPI program run N processes. Then
each process will keep 2×(N-1) event logs.

3.3.1. Logging Procedure
For each process p, the logging procedure
functions for each communication operations (send
and receive). If p sends (receives) a message to
(from) process q, then the logging procedure will
go as follows: a new log node is created; the
message envelope is filled into this node; the node
is appended to SENDp{Rq} (RECVp{Sq})).

3.3.2. Checkpoint Procedure
1. Upon receipt of a send log SENDq{Rp} from
process q, if no checkpoint is in progress, process
p goes to Step 2; otherwise it goes to Step 3.

2. p creates next local checkpoint (say, i-th
checkpoint), sends SENDp,i{Rx} to each other
process x of the program and then resumes the

normal execution.

3. p performs the identification procedure for q.
Once p has completed identification of the
messages received from q, all in-transit and orphan
messages from q are saved as part of p’s local
checkpoint.

4. After the message identification is finished for
all other N-1 processes, the local checkpoint for
process p will be created.

5. After all N processes have created their local
checkpoints, the recovery line is formed.

3.3.3. Identification Procedure
Employed by the checkpoint procedure, the
identification procedure detects in-transit, intra and
orphan messages by comparing the send and
receive logs (SENDp,i and RECVq,j). Steps in this
procedure are determined by the data structure
used to save the event log. In its most simple form,
link table, the identification procedure consists of
the following steps:

1. For each node of RECVq,j-1 (SENDp,i-1), use
Sequential Search to search in SENDp,i (RECVq,j).
When found a matching pair in SENDp,i (RECVq,j),
remove the pair from both RECVq,j-1 (SENDp,i-1)
and SENDp,i (RECVq,j).

2. For each node of SENDp,i, use Sequential Search
to search in RECVq,j. When found a matching pair
in RECVq,j, remove the pair from both SENDp,i and
RECVq,j.

3. Upon completion the procedure, the unmatched
send log SENDp,i{-} will consist of in-transit
message envelope logs, and the unmatched receive
log RECVq,j{-} will consist of orphan message
envelope logs. They are both saved into p’s local
checkpoint.

3.3.4. Recovery Procedure
The recovery procedure is summarized as follows:

1. Each process p reloads the execution state from
the latest checkpoint Cp,i, and loads the in-transit
and orphan message envelope log SENDp,i{-},
RECVq,j{-}.

2. Then it resumes the execution.

3. Upon receipt of a message with envelope M, p
first checks whether SENDp,i{-} is empty. If not, it
searches in SENDp,i{-} for a log of M. If found, it
fills the receive buffer with the logged message M
and removes the log from SENDp,i{-}. Otherwise, it
checks whether RECVq,j{-} is empty. If not, it
searches in RECVq,j{-} for a log of M. If found, it
receives the orphan message of envelope M in a
temporary buffer and removes the log of M from

RECVq,j.

3.4. Formal Analysis
 Recalling the discussion in 3.2, if we can pair up
the send log of a message with its receive log, we
can discover the relation between the send and
receive events and identify all in-transit and
orphan messages. The following paragraph serves
as a proof for Event Logging.

Theorem 1 The algorithm is correct in the sense
that it identifies all in-transit and orphan messages
of the current checkpoint interval.
 For sake of simplicity, we consider an MPI
program consisting of two processes. However, we
argue that this scenario is universal for all cases,
because the necessary and sufficient condition of
the proposition that the recovery line of any MPI
program is valid is that any two processes’ sub-
line of this recovery line is valid. This is because
any message passing occurs between a pair of
processes.

So our goal is to prove that Event Logging is
capable to identify the intra, in-transit and orphan
messages for any two processes. Let the current
checkpoint interval of process p be Cp,i and process
q’s be Cq,j. According to the Happen Before
relation, a message, M, which p sends to q in the
current checkpoint interval is an intra message if
and only if: CKPTi S(M) CKPTi+1 and CKPTi

 R(M) CKPTi+1. As to the Event Logging
algorithm, it means that a pair of SENDp,i{Rq,j}
=RECVq,j{Sp,i} can be matched in the current
checkpoint interval log. Message M will be an in-
transit message if and only if S(M) CKPTi and
CKPTi+1 R(M). This means that a send log finds
its matching receive log in the target’s next
checkpoint interval log, SENDp,i{Rq,j+1}
=RECVq,j+1{Sp,i}. Finally, message M will be an
orphan message if and only if CKPTi S(M) and
R(M) CKPTi. This means that a receive log
finds its matching send log in the source’s
previous checkpoint interval log, SENDp,i{Rq,j-1}
=RECVq,j-1{Sp,i}.
 Although it is impossible to check future
checkpoint interval logs, the trick is that the first
checkpoint interval’s logs SENDp,i{Rq,0,Rq,1} and
RECVq,0{Sp,0,Sp,1} contain no in-transit or orphan
messages. So we can easily match the intra
message envelopes: SENDp,0{Rq,0} =RECVq,0{Sp,0}.
To the unmatched send logs of p, SENDp,0{-}, and
the unmatched receive logs of q, RECVq,0{-},
because the message passing must be completed in
the next interval, we can conclude that the whole
event of these unmatched event logs will be
SENDp,0{Rq,1}, RECVq,0{Sp,1}. Then we can say that

all in-transit and orphan messages have been
successfully identified in the checkpoint interval 0.
This is the base of our induction.
 Next, assume that at the checkpoint i-th interval
(Cp,i,Cq,i) we have gotten the envelopes of the in-
transit and orphan messages, SENDp,i-1{Rq,i} and
RECVq,i-1{Sp,i}. So, the event logs of (Cp,i,Cq,i) look
like SENDp,i{Rq,i-1,Rq,i,,Rq,i+1} and RECVq,i{Sp,i-

1,Sp,i,Sp,i+1}. Then, the algorithm removes the log of
SENDp,i-1{Rq,i}, RECVq,i-1{Sp,i}. After the removal,
the event logs of (Cp,i,Cq,i) look like
SENDp,i{Rq,i,Rq,i+1} and RECVq,i{Sp,i,Sp,i+1},
containing no logs related to (Cp,i,Cq,i). So, the
same identifying method as for the first checkpoint
interval can be applied. Finally, we get the in-
transit and orphan messages of (Cp,i,Cq,i),
SENDp,i{-} and RECVq,i{-}, after removing the intra
messages SENDp,i{Rq,i}=RECVq,j{Sq,i}. Same as
(Cp,0,Cq,0), we can conclude that the final version
of SENDp,i{-}, RECVq,i{-} must be SENDp,i{Rq,i+1},
RECVq,j{Sq,i+1}.
 Therefore, we conclude that for any checkpoint
interval (Cp,i,Cq,i), where i>0, all in-transit, intra
and orphan messages will be identified.
 A necessary note is that the algorithm pairs up
send and receive logs by only matching envelopes.
However, it is often that a process sends several
messages with the same envelope to another
process. Some messages could be orphan message,
some could be intra message, and some might be
still in fly at the time when the local checkpoint is
taken. As the algorithm does not rely on the FIFO
assumption, this could endanger the correctness of
Event Logging seriously. However, the non-
overtaking property removes this alert. According
to it, the message passing with the same envelope
obeys the following relation: If x>y then
Sp,i(mx) Sp,i(my) and Rq,j(mx) Rq,j(my). In other
words, if messages a and b have the same
envelope and a is sent earlier, the receiving of a
must be ahead of b. Also, since the log is created
along with the event (send or receive), we
conclude that if a’s send log happens before b’s,
a’s receive log must be ahead of b’s as well, either
at some position before b in the same checkpoint
interval, or in a previous interval. So, the event log
of messages with the same envelope will be
naturally ordered. As the log is created and
compared sequentially, from the first passed
message to the last one, the non-overtaking
property guarantees that the matching does not
overlap.

3.5. Extending the protocol
 The above algorithm relies on the assumption

that message passing finishes in two successive
intervals at most. However, in reality, it is possible
that a message is received in a large latency. So, it
is necessary to remove our limitation.
 First, we exclude the danger of orphan messages,
because none can send a message several
checkpoint intervals after it is received by another
one.
 As to the in-transit message, the only
requirement is that process can get it upon
recovery, regardless how early the sending was. In
other words, to recover from the i-th checkpoint
interval, there is no difference between an in-
transit message sent in the (i-1)-th interval and the
one sent in the (i-4)-th. So we maintain a log for
all the not-received in-transit messages and append
the new in-transit-message send logs after it. All
send event entries are kept until the message is
picked up by the destination (then the entry will be
removed from the log).
 Our algorithm relies on no specific premise and
can adapt to any communication demand.
However, considering the balance between
efficiency and programming flexibility, we leave
users with the option of deciding for how many
checkpoint intervals an in-transit message can be
logged. By setting a parameter, the checkpoint
protocol can be trimmed to the application’s
requirement.

4. Performance Analysis and
Optimization

4.1. Analysis
 In this chapter, we focus on the analysis and
tuning of the performance of the logging and
identification procedures. As to the checkpoint and
recovery overheads, they are not Event Logging
specific and general for all variants of the Chandy-
Lamport algorithm.
 The logging overhead is introduced by recording
an envelope upon message passing. For any send
(receive), the recording operation is the same:
creating a new node, saving the envelope in the
node and appending the new node to the log. So,
the overall logging overhead is simply the sum of
the costs of all logging operations. If the logging
operation costs Tlog, the number of message
passing operations throughout the program’s
execution is Nm, then the logging overhead will be
Tlog×Nm.

The identification overhead is incurred by the
messages identification procedure. Consider the
steps given in 3.3.3. For each item in the receive
log, the algorithm repeats the search in the send

log trying to locate a matching envelope. In this
sense, the identification overhead is mainly
determined by the length of the send and receive
logs. If Nq,j-1, Nq,j and Np,j are the number of logs in
RECVq,j-1, RECVq,j and SENDp,i respectively, and
Tm is the cost of a matching operation, the
overhead expectation of the identification process
using Sequential Search will be Tm×(2×Np,i–2×
(Nq,j-1+Nq,j)+3)×(Nq,j-1+Nq,j)/4. In conclusion, the
overhead caused by the message identification
takes the most significant part in the evaluation of
the Event Logging’s performance. And the logging
overhead is proportional to the number of message
passing operations.

4.2. Optimization
 Since the part of an MPI message envelope
logged by each process includes 3 elements, which
are source-or-destination-rank, tag, and
communicator, a hash function can help to reduce
the memory cost introduced by logging envelopes.
However, the function must be a perfect hashing
function. In other words, for any two different
envelopes A and B, the hashing result must be

different, f(A)�f(B). Moreover, given that during
the checkpointing procedure, processes need to
exchange logs, the hashing can accelerate the
communication, because of a much smaller size of
the hashed log.
 Also, the identification optimization strategy
based on the hashing can be developed. As shown
in 4.1, if a link table is used to save envelope logs,
the matching process has to use Sequential Search
to pair up send and receive envelopes. However,
based on the non-overtaking property, the event
log can be sorted by the hash value. Many well-
known search algorithms can help to reduce the
average search time. For example, by applying
Binary Search, the average search length will be

, 1 ,

, 12 , 1 ,log q j q j

p i

N N

N q j q jP N N−

+

+
−− + .

 In the case of multiple messages with the same
envelope, an optimization technique may be to add
an extra field to allow the event log to keep the
number of occurrences of this envelope. For
example, if message envelope M is used 100 times
in the checkpoint interval, only one log of the
message envelope needs to be kept by setting the
counter field to 100.
 Combining these two optimization techniques,
the event log is reorganized in the form of sorted
list with the value of each node being the hash
value of a message envelope. Also, the node has
another field, NUM, that holds the number of

messages passed with this envelope. Then, the
identification procedure of Event Logging can be
revised as follows:

1. For each node of RECVq,j-1 (SENDp,i-1), use
Binary Search to search in SENDp,i (RECVq,j).
When found an identical value in SENDp,i-1
(RECVq,j), remove Min(RECVq,j-1.NUM,
SENDp,i.NUM) from both RECVq,j-1 (SENDp,i-1) and
SENDp,i (RECVq,j).

2. For each node of SENDp,i, use Binary Search to
search in RECVq,j. When found an identical value
in RECVq,j, remove Min(RECVq,j.NUM,
SENDp,i.NUM) from both SENDp,i and RECVq,j.

5. Implementation
 Our current implementation for Event Logging
algorithm consists of three packages: MPI
Wrapper Package (MWP), Message Identification
Package (MIP) and Message Logging Package
(MLP).

5.1. MPI Wrapper Package

 In our implementation, two main wrapper
functions are ELC_MPI_Send() and
ELC_MPI_Recv(). In addition to sending and
receiving a message, these two wrappers probe
whether there is a pending checkpoint request in
the MPI buffer. Depending on whether the
checkpoint request is the first request detected, the
process may take two different actions:

1. If the checkpoint request is the first one, the
process creates a local checkpoint, broadcasts
checkpoint requests containing this process’s send
event log to all other processes and then invokes
the MIP. In general, MIP is responsible for
identification of in-transit and orphan messages by
using the Event Logging algorithm. After the
identification completes, the receiving process will
have the envelopes for all in-transit and orphan
messages. The orphan message envelopes are
written to the disk storage as part of the local
checkpoint, and the in-transit message envelopes
are handed over to MLP. Then the process adds
the rank of the intercepted checkpoint request’s
source to a request table, which records the
processes that have sent the checkpoint requests.
After finishing this action, the process triggers
MLP.

2. If the checkpoint request is not the first detected,
process will directly start the MIP. The identified
orphan message envelopes will be saved in
checkpoint files. The in-transit message envelopes
will be passed to MLP. Then the request’s source

will be marked in the request table. The process
counts the number of checkpoint requests it has
received. When the process has gathered requests
from all other processes, the process marks its
local checkpoint as finished.

5.2. Message Identification Package

 MIP is invoked to help the process to identify
in-transit and orphan messages when the process
receives a checkpoint request. According to the
algorithm discussed in 3.3, the MIP tries to
identify the messages by pairing up the send logs
bound with the checkpoint request with the target’s
receive logs.
 Let process q get a checkpoint request from
process p within the i-th checkpoint interval (i>1).
In this scenario, q holds the event logs of the
messages received from p, RECVq,j{Sp,i-1,Sp,i,Sp,i+1},
and p’s send logs are packaged in the checkpoint
request, SENDp,i{Rq,j-1,Rq,j,Rq,j+1}. Also process q
already has the logs of the in-transit and orphan
messages of the last checkpoint interval, SENDp,i-

1{Rq,i} and RECVq,j-1{Sp,i}. MIP is invoked when
process p intercepts send logs from process q, and
hence the sender/receiver’s ranks are known.
Therefore, a pair of send/receive logs is matched if
they have the same tag and communicator. Then,
the identification process takes the following three
steps:

1. Remove the in-transit message logs, SENDp,i-

1{Rq,i}=RECVq,i{Sp,i-1}.

2. Remove the orphan message logs, SENDp,i{Rq,i-

1}=RECVq,j-1{Sp,i}

3. Remove all intra message logs,
SENDp,i{Rq,i}=RECVq,i{Sp,i}.

When the identification finishes, the remaining
logs of SENDp,i{-} and RECVq,i{-} are the in-
transit and orphan message envelopes in the
current checkpoint interval.

5.3. Message Logging Package
 MLP logs the in-transit messages using the
envelopes identified by MIP. MLP is implemented
in 2 different forms. The first one relies in the
FIFO property of a lower layer of the MPI
implementation, which guarantees that all in-
transit messages will have been stored into the
receive buffer, although may not have been picked
up yet. So in this case MLP just posts a receive
(MPI_Recv) for each in-transit message envelope.

The second version of MLP does not rely on the
FIFO property of the lower communication level.
In that case, MLP check in the incoming message

is in-transit or not. If so, the message will be
logged. If not, nothing happens.

6. Experiments

6.1. Experiment Environment

 In this section, we present the results of
experiments with Event Logging. Four MPI
programs are used: Gauss-Jordan method for
solving systems of linear equations, Parallel
NeuronSys, Monte Carlo Simulation and 1-D
decomposition Matrix Multiplication. The
experiments are carried out using a prototype
application-level library libELC that enables the
fault tolerance of MPI programs and based on the
presented algorithms. One of the functions of the
library is also to create portable local checkpoints
for each individual MPI process following an
approach similar to the Process Introspection
proposed in [8]. Table 2 lists the machines used in
the experiments.
 The testing programs are run in three modes: the
source mode, protocol mode, and checkpoint mode.
In the source mode, original code is run. In the
protocol mode, we apply libELC to the testing
program, however no checkpoint is taken. In the
checkpoint mode, both the Event Logging
coordinating protocol is applied and checkpoints
are created. Moreover, we add another value in the
result tables, which is the expectation of the
optimized program’s execution time in the
checkpoint mode. The expectation is calculated by
the overhead model given in 4.1 and the program
execution time in source mode. We compare this
value with the experimental result to see whether
the optimization works.
 In the tests of Gauss-Jordan Solver, Parallel
NeuronSys and Matrix Multiplication, four
checkpoints are triggered by the function call
ELC_DoCKPT(). Generally, we pick four random
positions in the program to insert the calls. The
Monte-Carlo Simulation program uses the time
interval mechanism, when the checkpoint is
triggered with a given frequency. Also, we vary
the datasize and the number of processes for each
test. The figures shown in the following tests are
collected from a number of runs, discarding the
outliers.

6.2. Testing Program

 We have carried out the experiments of Event
Logging with the following four MPI programs:

Machine OS CPUs (Mhz)
Csserver Linux 2.4.20 4 @ 498
csultra01 SunOS 5.8 1 @ 440
csultra02 SunOS 5.8 1 @ 440

pg1cluster01 Linux 2.4.18 2 @ 1977
pg1cluster02 Linux 2.4.18 2 @ 1977
pg1cluster03 Linux 2.4.18 2 @ 1977
pg1cluster04 Linux 2.4.18 2 @ 1977
csa007bpc5 Linux 2.6.20 1 @ 930

csa007b3pc2 FreeBSD 5.2.1 1 @ 930
Table 2. Machine Configuration

1. The first experiment is an MPI program of
Gauss-Jordan method for solving systems of linear
equations, which is written by J. Meyer at
University of Nebraska at Omaha. The linear
system is evenly distributed by rows among N-1
processes, from where the results are collected by
the MPI_Allreduce function call to the rank 0
process. We run the program on LAM/MPI 7.0.4
with three linear systems of different sizes: 4,000,
8,000 and 16,000.
2. Parallel NeuronSys is a neuron simulator
program public available at
http://www.cs.usfca.edu/neurosys/. Generally, it is
used to solve a system of ODE’s modeling
(Ordinary Differential Equation) a network of
biologically realistic neurons on parallel computers.
The current version uses fourth order Runge-Kutta
method to solve the equation. Neurons are evenly
distributed among processes and form a graph in
which neurons excite and inhibit each other via
their connections. Inter-process Communication
contains five MPI_Allgather and one MPI_Gather
function calls in each of a total of 10,000 iterations.
3. The third program does a Monte Carlo
simulation of a system of hard disks. The fraction
of the total area that is covered by disks (area
fraction) is set to 0.5 and the user has control over
the size of the system that will be simulated. The
disks start from a triangular lattice and the
simulation works in the master-slave pattern, in
which the size of the system is determined by
specifying the number of disks along an edge of
the initial lattice.
4. In the 1-D Cyclic Decomposition Matrix
Multiplication program, the master process (rank 0)
behaves in a cyclic manner to distribute the matrix
to the four slave processes, which does the
multiplication job and returns the result to the
master. The distribution unit is set to 4 columns so
that the overall message number is Column/4 and
the message size is 4 *Rows. More, we run this
matrix multiplication program in the checkpoint
mode using both Event Logging and Message

Tagging to compare the performance. The message
tagging is implemented using derived datatype. In
particular, the sending process encapsulates the
original message with the header information into
a temporary buffer, and calls MPI_Type_struct to
create a derived datatype. On the other side, the
target process receives the tagged message into a
same size (original message plus the header) buffer
space, retrieves the header information and hands
over the original content to the user.

6.3. Results and Evaluation

1. Gauss-Jordan method: the overhead decreases
from 22.20%, 3.83% to 1.95% with the linear
equations’ size changes from 4,000 to 8,000 and
16,000 (Figure 5). Simply put, the larger dataset
increases the program execution time, but does not
introduce extra message passing. Since the
message envelope number stays the same, the
overhead of envelope logging and identification
becomes smaller with the increase of the program
execution
2. Parallel NeuronSys: in this test, we observed the
significantly reduced number of in-transit and
orphan messages due to the accelerated execution
by employing more processes. Much less in-transit
and orphan messages mean that upon
checkpointing, libELC spends much less time on
the message identification and logging. As the
result shows, the overhead decreases from 29.44%
for 4 process configuration; while down to 9.94%
for 8 processes; and 7.38% for 16 processes
(Figure 6). It demonstrates the Event Logging
algorithm scales well.
3. Monte-Carlo Simulation: in the simulation, we
trigger a checkpoint in every 150 seconds. Also we
use three sets of parameters to vary the test
execution time. Although increasing input data
size prolongs the program execution and causes
more checkpoints, the performance still improves
from 33.15% to 23.83% to 14.32% (Figure 7).
4. Matrix Multiplication: as mentioned above, the
matrix multiplication program uses 1-D cyclic
manner to decompose the matrix, which
determines the message size Columns/4 and
message number 4Rows is proportional to matrix
size. In this case, we increase the matrix size from
512×512, 1024×1024, 2048×2048. Then the
message size goes from 512 KB to 2 MB and 8
MB. As the result, we observe the overhead of
Message Tagging approach increases along with
the datasize increases: 4.85%, 7.40% and 8.05%;
while the overhead of Event Logging remains
about the same: 2.33%, 2.85% and 2.79% (Figure
8). Basically this result shows that the performance

of Message Tagging fluctuates with the message
size. This is because Message Tagging approach
needs to manage buffer space for tagging the
header onto the message. However, Event Logging
logs only the message envelopes, which will be
affected by the message size. From the point of
view of implementation, another advantage of
Event Logging over Message Tagging is that
Event Logging enables fast in-transit message
logging. At the time the envelope identification
finishes, Event Logging has the envelopes for the
in-transit messages, so a process can simply post
receive requests to log these in-transit messages
(Recalling that FIFO manner is generally
supported by the lower layer of MPI
implementations). However, in Message Tagging,
the process has to wait as long as the messages are
received by the program. That is because the
process has no knowledge of an in-transit message
until it checks a message’s header.
 In general, we observe that the performance of
Event Logging gets better with larger datasets.
And the algorithm scales well in the experiments.
Also, as the result of Monte-Carlo Simulation
shows, using Time Interval mechanism, the
overhead does not go up with the number of
checkpoint created. Moreover, Event Logging
performs better than Message Tagging in the
Matrix Multiplication experiment. And the effect
comes more significant with the increase of the
message size. Another advantage of Event
Logging is that it enables the fast log of in-transit
messages. Finally, the experiment results are all in
reasonable deviation from the expectation, which
demonstrates the effect of the optimization skill
given in 4.2.

7. Conclusion and Future Work
 In this paper, we present a variant of Chandy-
Lamport algorithm, Event Logging, to address the
application-level non-FIFO problem of the
coordinated checkpoint for MPI programs, which
no existing approach provides adequate solutions
given the heterogeneous network. Different from
the previous works, this protocol coordinates the
distributed processes by logging the message
envelopes. Upon checkpointing, processes
exchange the envelopes to identify the in-transit
and orphan messages. The benefits of Event
Logging are that it makes no assumption of the
underlying MPI version, what makes it not only
platform-independent, but also portable across
various MPI implementations.
 Event Logging overtops Message Tagging in
term of recovery line commit. In Event Logging,

in-transit messages will be logged as soon as their
envelopes have been identified. However, using
Message Tagging process may face unpredictable
latency for the program to receive all in-transit
messages. Also, Event Logging performs better
than the Message Tagging approach with the
increase of message size. We have presented the
skills to optimize the performance of Event
Logging, which could be easily implemented and
significantly reduce the overhead. Experiments
demonstrated the high efficiency of Event Logging.
 In the near future, an important improvement is
to implement Selective Checkpoint [15] based on
Event Logging. Furthermore, we plan to optimize
the checkpoint by using compiler technologies to
minimize the data that need to be saved [18, 19].
Integration of our protocol with mpC language [15]
is also in our schedule.

Reference
[1] A. Agbaria and R. Friedman. “Starfish: Fault-
tolerant dynamic MPI programs on clusters of
workstations”. In HPDC ’99: Proceedings of the The
Eighth IEEE International Symposium on High
Performance Distributed Computing, page 31. IEEE
Computer Society, 1999.

[2] L. Alvisi and K. Marzullo. “Message Logging:
Pessimistic, optimistic, causal and optimal”. IEEE
Transactions on Software Engineering, 24(2):149–159,
FEB 1998.

[3] A. Bouteiller, F. Cappello, T. H´erault, G. Krawezik,
P. Lemarinier, and F. Magniette. “MPICH-V2: a fault
tolerant MPI for volatile nodes based on pessimistic
sender based message logging”. In Super Computing
2003, 2003.

[4] G. Bronevetsky, D. Marques, K. Pingali, and P.
Stodghill. “Automated application-level checkpointing
of MPI programs”. In Proceedings of the ninth ACM
SIGPLAN symposium on Principles and practice of
parallel programming, pages 84–94. ACM Press, 2003.

[5] K. M. Chandy and L. Lamport. “Distributed
snapshots: determining global states of distributed
systems”. ACM Trans.Comput. Syst., 3(1):63–75, 1985.

[6] J. Dongarra, S. Huss-Lederman, S. Otto, M. Snir,
and D. Walker. “MPI: The Complete Reference”. The
MIT Press, 1996.

[7] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. “A survey of rollback-recovery protocols in
message-passing systems”. ACM Computing Surveys,
34(3):375–408, 2002.

[8] A. J. Ferrari, S. J. Chapin, and A. S. Grimshaw.
Process introspection: “A heterogeneous

checkpoint/restart mechanism based on automatic code
modification”. Technical Report CS-97-05, Department
of Computer Science, University of Virginia, May. 1997.

[9] M. P. I. Forum. “MPI: A message-passing interface
standard”. Technical report, 1994.

[10] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai,
R. G. Minnich, C. E. Rasmussen, L. D. Risinger, and
M.W. Sukalski. “A network-failure-tolerant message-
passing system for terascale clusters”. Int. J. Parallel
Program., 31(4):285–303, 2003.

[11] S. Kalaiselviand and V. Rajaraman. “A survey of
rollback and recovery strategies for computer programs”.
IEEE Trans Comput., 25:489–510, OCT 2000.

[12] J. L. Kim and T. Park. “An efficient protocol for
checkpointing recovery in distributed systems”. IEEE
Transactions on Parallel and Distributed Systems,
4(8):231–240, AUG 1993.

[13] R. Koo and S. Toueg. “Checkpointing and rollback-
recovery for distributed systems”. IEEE Transaction on
Software Engineering, SE-13(1):23–31, 1987.

[14] L. Lamport. “Time, clocks and the ordering of
events in a distributed system”. Communications of the
ACM, 21(7):558–565, 1978.

[15] A. Lastovetsky. “Parallel Computing on
Heterogeneous Networks”. John Wiley & Sons, 2003.

[16] P.-J. Leu and B. Bhargava. “Concurrent robust
checkpointing and recovery in distributed systems”. In
Proc. Int. Conf. On Data Engineering, pages 154–163,
1988.

[17] N. Neves and W. K. Fuchs. “Coordinated
checkpointing without direct coordination”. In
Proceedings of IEEE International Computer
Performance and Dependability Symposium, pages 23–
31, SEP 1998.

[18] J. S. Plank, M. Beck, and G. Kingsley. “Compiler-
assisted memory exclusion for fast checkpointing”.
IEEE Technical Committee on Operating Systems and

Application Environments, 7(4):10–14, Winter 1995.

[19] J. S. Plank, Y. Chen, K. Li, M. Beck, and G.
Kingsley. “Memory exclusion: optimizing the
performance of checkpointing systems”. Software
Practice and Experience, 29(2):125–142, 1999.

[20] B. Randell. “System structure for software fault
tolerance”. SIGPLAN Not., 10(6):437–449, 1975.

[21] S. Rao, L. Alvisi, and H. M. Vin. “Egida: An
extensible toolkit for low-overhead fault-tolerance”. In
Symposium on Fault-Tolerant Computing, pages 48–55,
1999.

[22] S. Sankaran, J. M. Squyres, B. Barrett, A.
Lumsdaine, J. Duell, P. Hargrove, and E. Roman. “The
LAM/MPI Checkpoint/Restart framework: System-
initiated checkpointing”. In Proceedings, LACSI
Symposium, Sante Fe, New Mexico, USA, October 2003.

[23] L. Silva and J. Silva. “Global checkpointing for
distributed programs”. In Proc. IEEE 11th Symp. on
Reliable Distributed Syst, pages 155–162, 1992.

[24] G. Stellner. “Cocheck: Checkpointing and process
migration for MPI”. In IPPS, pages 526–531, 1996.

BIOGRAPHIES

Zhao Peng is currently an MSc student in the
Computer Science Department at University
College Dublin, National University of Ireland.
His main research interests are design of
algorithms and tools for fault tolerance in
heterogeneous networks.

Alexey Lastovetsky received the PhD degree
from the Moscow Aviation Institute in 1986, and
the Doctor of Science degree from the Russian
Academy of Sciences in 1997. He is currently a
lecturer in the Computer Science Department at
University College Dublin, National University of
Ireland. His main research interests are parallel
and distributed programming languages and
systems for heterogeneous environments. He is a
member of IEEE Computer Society.

Appendix.

 Figure 5. Experiments results of Gauss-Jordan method,
 in which the x-axis scale is the size of the linear system.

 Figure 6. Experiments results of Parallel NeuronSys, in which

 tests are carried out with different numbers of processes.

 Figure 7. Experiments results of Monte-Carlo Simulation, in which

 the x-axis scale is the number of disks and sweeps in the simulation.

 Figure 8. Comparison results of Matrix Multiplication, in which the
 message sizes in three different tests are 512KB, 2MB and 8MB.

