
Inherently Workload-Balanced Clustered Microarchitecture

Jaume Abella*, Antonio González*+

* Computer Architecture Department
Universitat Politècnica de Catalunya

Barcelona (Spain)
jabella@ac.upc.edu

+ Intel Barcelona Research Center
Intel Labs, Universitat Politècnica de Catalunya

Barcelona (Spain)
antonio@ac.upc.edu

Abstract

The performance of clustered microarchitectures relies on
steering schemes that try to find the best trade-off between
workload balance and inter-cluster communication penalties.
In previously proposed clustered processors, reducing
communication penalties and balancing the workload are
opposite targets, since improving one usually implies a
detriment in the other. In this paper we propose a new
clustered microarchitecture that can minimize
communication penalties without compromising workload
balance. The key idea is to arrange the clusters in a ring
topology in such a way that results of one cluster can be
forwarded to the neighbor cluster with a very short latency.
In this way, minimizing communication penalties is favored
when the producer of a value and its consumer are placed in
adjacent clusters, which also favors workload balance.

The proposed microarchitecture is shown to outperform a
state-of-the-art clustered processor. For instance, for an 8-
cluster configuration and just one fully pipelined
unidirectional bus, 15% speedup is achieved on average for
FP programs.

1. Introduction

Clock rates have undergone a continuous increase since
the first microprocessor as a result of deeper pipelines and the
use of ever smaller and faster transistors. On the other hand,
on-chip communications are more critical from generation to
generation since they become slower in terms of number of
cycles [1][10]. Wire delays are making processor designers to
devote more effort and resources to techniques to minimize
their impact. Clustered microarchitectures
[6][7][9][12][13][14] are becoming a widely-used approach
to tackle this problem.

Clustered processors deal with the wire delay problem
trying to keep locally most of the communications and, at the
same time, balancing the workload. Conventional clustered
processors are laid out in such a way that wire delays inside a
cluster are short while inter-cluster delays are long. Because
of that, minimizing the penalties of wire delays and balancing
the workload of the clusters are opposite objectives. The best
performance is achieved when the best trade-off between
these two factors is identified. Different approaches that
search for this trade-off are described in the related work
section.

Clustered microarchitectures are also effective at reducing
energy consumption [20]. They are also effective at reducing
the temperature of the chip through a better distribution of the
activity across the whole die. This may translate in significant
benefits in performance, by reducing the frequency of thermal
emergencies, and cost, by allowing cheaper cooling solutions
for a given performance level. However, conventional
clustered microarchitectures tend to concentrate the activity
in the minimum number of clusters that can provide the
maximum throughput required by each particular code, since
spreading the activity across all clusters implies an increase in
communication penalties.

In this paper we propose an alternative way to implement
dynamically-scheduled clustered micro-architectures. The
key point is to lay out the processor in such a way that the
results of a cluster can be forwarded to the neighbor cluster
with a very short latency. In particular, the typical bypass
network that in conventional designs allows values to be
bypassed from the output of a unit to the input of any other
unit of the same cluster, is replaced by a bypass network that
allows values to be fast bypassed to the next cluster, in a
unidirectional ring topology. In this microarchitecture,
minimizing communication penalties is favored when the
producer of a value and its consumer are placed in adjacent
clusters, which also favors workload balance.

Note also that for codes with very small ILP, a
conventional clustered processor may choose to execute most
of the instructions in just one cluster, whereas the rest remain
almost idle, in order to maximize performance. The proposed
microarchitecture will still distribute the work evenly across
all clusters, even if all have low utilization, since this also
minimizes communication penalties.

The proposed microarchitecture is shown to outperform a
state-of-the-art clustered processor. Average speedups of 15%
are achieved for FP programs with reasonable future
configurations.

The rest of this paper is organized as follows. Section 2
introduces some related work. Section 3 presents the
proposed scheme. Section 4 evaluates the performance of the
proposed approach and compares it with conventional
clustered microarchitectures. Section 5 summarizes the main
conclusions of this work.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

2. Related Work

Conventional clustered architectures have fast
interconnects for propagating intra-cluster signals, whereas
inter-cluster communications require long and slow wires.
These architectures rely on keeping most of the
communications local within clusters to achieve high
performance. Even if most of the communications are local,
inter-cluster communications are required in a non-negligible
number of cases (1 communication every 4 instructions may
be common in a 4-cluster configuration [13]). Those inter-
cluster communications are critical since increasing their
number and their latency degrades performance significantly
[2][4][5][13][14].

Some previous works on clustered microarchitectures
focus on 2 clusters [6][9]. Future microprocessors are likely
to have a higher degree of clustering. These architectures rely
on a mechanism to distribute instructions across clusters that
is referred to as steering logic [15]. Some approaches are
based on partitioning the code at branch boundaries. Trace
processors [7][16][18][19] partition dynamically the code into
chunks of consecutive instructions called traces. Then, each
trace is steered as a unit to a given cluster. Since the traces
have similar length, the workload is effectively balanced.
However, this scheme may incur in a large number of
communications.

Multiscalar processors [7][18] divide the code into tasks.
Each task is made up of a set of consecutive instructions and
is assigned to a different processing element, which are
interconnected through a ring network. PEs have fast internal
interconnects and slow connections to other PEs. Thus,
communication among tasks use the slow inter-cluster
connection. This is clearly different to our approach, which
has fast connections to the following cluster in the ring, no
interconnects inside each cluster, and slow connections to
other clusters. Besides, our approach distribute the code to
clusters at run time, through a per-instructions scheme,
whereas Multiscalar steers tasks that are determined at
compile time.

Other works are based on steering instructions considering
data dependences, trying to send dependent instructions to the
same cluster without compromising workload balance
[4][5][6][11][12][13][14][17]. The Multicluster architecture
[6] partitions the register name space into two subsets. The
program is partitioned at compile time by estimating the
workload balance and inter-cluster communication.

Palacharla et al. [12] propose a dependence-based
clustered architecture where each issue queue is a FIFO
queue. This scheme places in the same FIFO only instructions
that must be executed sequentially.

Some other mechanisms [4][5][13][14] have been
proposed to deal with the problem of reducing the number of
required communications and maximizing workload balance
at the same time. These policies are based on using a
dependence-based steering algorithm and an additional
mechanism to manage workload balance. A recent
mechanism [14] is deeply described in the evaluation section
since it is used for comparison purposes.

3. Ring Clustered Processor

This section describes the proposed processor
organization, which will be referred to as ring clustered
microarchitecture. Whereas conventional clustered processors
have fast interconnects between the outputs and the inputs of
the functional units inside the same cluster, our approach is
based on having these bypasses between the outputs of the
functional units of a given cluster and the inputs of the
functional units of the following cluster. The clusters are
arranged forming a ring in such a way that cluster 0 bypasses
its data to cluster 1, cluster 1 to cluster 2 and so on. Finally,
cluster n-1 bypasses its data to cluster 0, closing the ring. We
also assume such fast inter-cluster bypasses for tags in order
to perform the wakeup in the following cluster of the ring,
instead of waking up instructions in the same cluster.
Additionally, there is a set of buses communicating values
from one cluster to a cluster other than the following one.
They are unidirectional and fully pipelined buses. This kind
of buses can be easily designed, have low latency per hop in
comparison with non-pipelined buses and scale quite well.

Figure 1 shows a block diagram of the ring clustered
microarchitecture. It can be seen that data produced in one
cluster are sent to the next cluster and there are not bypasses
from the outputs of the functional units of a given cluster to
the input of these functional units. The register file is
distributed across all the clusters. Each register file can be
read only from the cluster where it is and written from the
previous cluster in the ring. This organization allows the
processor to issue dependent instructions back to back only if
they are sent to contiguous clusters. Instructions issued in a
given cluster wakeup instructions just in the following cluster
of the ring, but not in the same cluster. Section 3.2 shows that
these assumptions are realistic.

Figure 1. Ring clustered microarchitecture

Cluster 0 Cluster 1 Cluster 2

Cluster 3 Cluster 7

Cluster 6 Cluster 5 Cluster 4

Regfile
Issue

Queue

Functional Units

Comm
Queue

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

This architecture works as follows. Assume an instruction
is issued in cluster i. When it finishes its execution, the output
is written in the register file of the following cluster (cluster
(i+1) mod N, where N stands for the number of clusters). This
datum is also bypassed to the functional units of the following
cluster. Instructions in the issue queue and communication
instructions of the following cluster are woken up.
Communication instructions are generated dynamically when
an operand is needed in a cluster where it is not present and
wait in a separate issue queue. When an instruction is
dispatched, for each required communication, a new
communication instruction is created in the producer cluster
(the one where the value is stored), and one register is
allocated in the consumer cluster for storing the copy of the
corresponding value. More details can be found elsewhere
[13][14].

We assume homogeneous clusters, all with the same
configuration although the proposed scheme can be applied to
heterogeneous clusters.

The data cache is centralized, forming a cluster. It has
been assumed a delay to send the addresses and the same
delay to send the read datum back to the cluster that requested
it, in addition to the latency of the cache.

The register file has enough ports to perform all the
required accesses in a given cycle. Thus, if each cluster has
issue width IW, NumFU functional units and there are B
buses, the number of ports is:

Read Ports = IW x 2 + B
Write Ports = NumFU + B

This configuration guarantees that any issued instruction
can read up to two operands and, if the buses are idle, a
communication instruction per bus can also be issued. On the
other hand, the register file has write ports for the data
produced by the functional units of the previous cluster and
the incoming buses. A lower number of register ports may
well suffice to provide the same performance but this analysis
is out of the scope of this paper.

A ring clustered processor, like conventional clustered
processors, copies data from one cluster to another only when
needed. A copy flows through a bus until it reaches the
destination register file. Multiple copies of a given register
can be present in different clusters and all copies are released
at the same time [13][14]. Alternatively, register copies could
be released as soon as they are read, whereas the original
copy is released when the instruction that redefines the
register commits. This would reduce register pressure at the
expense of an increase in the number of copies. In this paper
we just analyze the former alternative.

3.1 Steering Algorithm

A simple dependence-based steering policy is used since,
in addition to reducing communication, it also balances the
workload. The algorithm works as follows:

If the instruction has 0 source operands:
The cluster with more free registers is
chosen.

If the instruction has 1 source operand:
Those clusters where the register is mapped
are selected, and the one with more free
registers among them is chosen.

If the instruction has 2 source operands:
If there is at least one cluster where both
operands are mapped:

Those clusters where both registers are
mapped are selected, and the one with
more free registers among them is chosen.

Else:
Those clusters where one operand is
mapped are chosen. Since one
communication is required, it is chosen
the one that incurs in the shorter
communication distance. If there is more
than one, the one with more free
registers among them is chosen.

If the chosen cluster is full, then the dispatch
stage is stalled.

The algorithm sends the instructions to the clusters
considering their dependences. In case of having more than
one candidate cluster to dispatch an instruction, the one with
more registers available is selected.

The following example illustrates the above algorithm.
Figure 2 shows the source code as well as the steering
decisions taken for each instruction. It can be observed that,
when an instruction is steered to a given cluster, the value is
only available in the following cluster of the ring.

Figure 2. Example of the steering algorithm

Whereas a conventional dependence-based clustered
architecture partitions vertically the dependence graph,
sending dependent instructions to the same cluster if the

I4 is sent to 3 (R3 is local, R1 requires only 1 cycle of bus from 2)

I1. R1 = 1
I2. R2 = R1 + 1
I3. R3 = R1 + R2
I4. R4 = R1 + R3
I5. R5 = R1 x 3

Registers for each cluster:

I1 is sent randomly to 0
R1

I2 is sent to 1 (R1 is local)
R1 R2

I3 is sent to 2 (R2 is local, R1 requires only 1 cycle of bus)
R1 R1,R2 R3

R4 R1 R1,R2 R1,R3

I5 can be sent to 1, 2 or 3. Cluster 3 has more free registers
R4,R5 R1 R1,R2 R1,R3

0 1 2 3

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

workload imbalance is not so high, the ring clustered
processor partitions the dependence graph in a horizontal-like
approach. Another interesting feature is that those instructions
with two operands are always sent to a cluster where at least
one of its operands is mapped. Thus, an instruction never
requires two communications.

3.2 Layout Considerations

As it has been outlined in previous subsections, our
approach relies on having fast interconnects between one
cluster and the following one instead of having fast intra-
cluster wires. The purpose of this subsection is to verify that
this assumption is realistic. In order to do so, it is necessary to
do a high-level layout to check that the distance of neighbor
connections are short enough to bypass data with the same or
shorter delay than they would have for the intra-cluster
connections of a conventional clustered microarchitecture.

The cluster placement for an 8-cluster configuration is
shown in Figure 3. It can be observed that two different
modules are required for an 8-cluster configuration: straight
and corner clusters. For a 4-cluster configuration only corner
clusters are required.

Figure 3. Placement alternatives for 8 clusters

Designing circuits at high level to deduce the layout is
hard to approximate, since it is strongly dependent on the
technology and the circuits characteristics. Designing the
whole backend at circuit level and doing a full layout is the
only way to get exact figures for the area and delays of the
different components. Such effort is unaffordable to us and
probably unreasonable for a microarchitectural study. Our
objective is to convince of the feasibility of the proposed
microarchitecture, and for that we use alternative schemes
based on some models.

Based on published models [8] we have estimated the area
of the different components of a given cluster. We have used
the same parameters than the authors of the model. They can
be found in Table 1. For the sake of simplicity we have
assumed that all components but the queues are square
blocks.

Other functional units not detailed in the table can be
assumed to be out of the critical path even if this fact
increases their latency since they do not execute frequent

instructions. The area of a register file cell is based on what
the model suggests as average area after looking at several
current microprocessors. This assumption may well be
pessimistic for our clusters. For instance, the model [8]
reports that a register file with 4 read and 2 write ports has a
cell area of 27200 λ2. If we consider that each cluster is able
to issue 1 INT + 1 FP instructions per cycle and there is one
global bus, 3 read and 3 write ports per register file (integer
or FP one) are enough. Thus, with the same number of ports
(3R+3W instead of 4R+2W) we have assumed larger register
file cells (40600 λ2 instead of 27200 λ2).

Table 1. Area of the main cluster's blocks
Component Area per

cell (λλλλ2)
Size Height/Width

& Total area
(λλλλ/λλλλ & λλλλ2)

Issue queue 22.300 CAM
+13.900 RAM

16 entries,
12 bits CAM/entry,
24 bits RAM/entry

9.619 / 1.000
9.619.200

Comm. queue 22.300 CAM
+13.900 RAM

16 entries,
6 bits CAM/entry,
9 bits RAM/entry

8.006 / 1.000
8.006.400

Register file 40.600 48 regs,
64 bits/reg

11.168 / 11.168
124.723.200

Integer ALU 2.410.000 64 bits 12.419 / 12.419
154.240.000

Integer Multiplier 1.840.000 64 bits 10.852 / 10.852
117.760.000

FP Unit (Add+Mult) 4.550.000 64 bits 17.065 / 17.065
291.200.000

The next step consists on placing the different components
of a cluster in such a way that they can be easily connected
(inputs of one cluster are close to outputs of the previous
cluster), and the wires from one cluster to the following one
have similar length to that of an intra-cluster communication
in a conventional clustered microarchitecture. Since the
largest block is the FP unit, and its height (or width) is around
17.100 λ, the design for both types of cluster modules
(straight and corner ones) would require intra-cluster
connections of this order of magnitude.

Figure 4. High level layout for cluster modules

Figure 4 shows the proposed design for both types of
modules. It can be observed that the maximum length
between the input and the output of two cluster modules for
integer data is 17.400 λ (17.100 – 10.900 + 11.200) from the

Int
RF

Int IQ
comm IQ

FP IQ

FP
RF

Int
ALU

Int
Mult

FPU

a) Straight cluster module

Int
RF

Int IQ
comm IQ

FP IQ

FP
RF

Int
Mult

Int
ALU FPU

b) Corner cluster module

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

output of the integer multiplier of a straight module to the
input of any integer functional unit of another straight
module. For FP data, the maximum distance exists when any
module is connected to a corner one: 23.300 λ (12.400 +
10.900). Thus, only FP data may have their bypass delay
increased. However, if the FP unit could fill the empty space
in the middle of the corner module, the delay for the worst
case could be reduced to 10.900 λ.

To conclude, it seems feasible to send data from one
cluster to the following one with similar delay to that of an
intra-cluster bypass of a conventional clustered processor.
Thus, we assume that a given instruction can be issued back
to back with its predecessor, which is in the previous cluster.

If shorter inter-cluster connections are desired, the ring-
like approach can be designed with two independent rings:
one for integer instructions and another for FP ones. Thus,
integer and FP clusters can be smaller and the blocks can be
placed in such a way that inter-cluster bypasses are shorter.
Instructions with integer inputs and FP output or vice versa
are extremely rare, so it can be assumed a bi-directional bus
from one of the integer clusters to one of the FP clusters for
those instructions. The only frequent instructions with integer
inputs and FP outputs are FP load instructions. The address
calculation of these instructions is sent to the integer ring, and
when it has been computed, it is sent to the LSQ. Once the
memory access is performed, the datum is sent back to the
corresponding cluster of the FP ring. Thus, these instructions
work in the same way even if FP and integer units are in
different rings.

If a further reduction in bypass delay is needed, fatter
connections and/or repeaters [10] can be used.

The high level layout for the clusters of the architecture
with two independent rings (one for integer instructions and
another for FP ones) is shown in Figure 5. It can be observed
that the maximum distance for integer or FP data is 11.200 λ,
which correspond to any module connected to a straight one.

Figure 5. High level layout for cluster modules
with integer and FP independent rings

3.3 Additional Comments

Some considerations must be taken into account for the
design of the ring clustered processor. It is hard to achieve
accurate floorplans of the clusters without doing the full
detailed layout of the whole processor core, but we believe
that this is a first-order approximation that validates the
potential of the idea. The objective is to show some evidence
that issue queues, register files and functional units can be
laid out in such a way that sending the tags/data from one
cluster to the following one in the ring has a similar delay to
that of the intra-cluster connections of a conventional
clustered architecture.

In this work, the distance in time to/from the data cache
and the Load/Store queue (LSQ) has been considered to be
the same for all clusters. We have assumed a 1-cycle penalty
for sending data to/from these structures to any cluster. In
some implementations the cache latency may not be uniform
across all the clusters. That would probably degrade
performance, but it is expected that the effect will be the same
for both a ring and a conventional clustered architectures.
Note also that the cache could be partitioned in a clustered
architecture so that each cluster had a local cache that could
be accessed very fast. However, this is orthogonal to the main
ideas proposed in this work.

4. Evaluation

The proposed architecture is evaluated in this section.
First, we describe the conventional clustered
microarchitecture used for comparison purposes and the
experimental framework that has been used. Results are then
reported.

4.1 Microarchitecture Used for Comparison

The proposed ring clustered microarchitecture will be
compared with a state-of-the-art clustered microarchitecture
[14] with about the same number of resources: number and
configuration of clusters and buses, number of bypasses, etc.
In the rest of the paper, the architecture used for comparison
purposes will be referred to as Conv, whereas the ring
clustered microarchitecture will be referred to as Ring.

The Conv processor has clusters with fast intra-cluster
connections and point-to-point buses to communicate data to
remote clusters. This processor tries to steer instructions to
the cluster where their source operands are mapped, but in
case of requiring communications, the steering algorithm
chooses the cluster that minimizes the communication delay.
This algorithm requires workload imbalance control. The
figure used to measure this feature is DCOUNT. The
interested reader is referred to the original paper for
details[14].

The detailed steering algorithm is as follows.

a) Integer straight
 cluster module

Int
RF

Int IQ
comm IQ

Int
ALU

Int
Mult Int

RF

Int IQ
comm IQ

Int
Mult

Int
ALU

b) Integer corner
 cluster module

c) FP straight
 cluster module

FP IQ

FP
RF

FPU

comm IQ

d) FP corner
 cluster module

FP IQ
FP
RF

FPU

comm IQ

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

If the workload imbalance is higher than the
threshold:

The least loaded cluster is chosen (that with
lower DCOUNT value).

Else:
If any source operand is not available at
dispatch time:

Cluster(s) where the pending operand(s)
are to be produced are selected

If all source operands are available at
dispatch time:

Cluster(s) that minimize the longest
communication distance are selected.

If it has no source operands:
All clusters are selected.

The least loaded cluster among the selected
clusters is chosen.

It can be observed that the algorithm tries to reduce the
number of inter-cluster communications and balance the
workload at a time. The latency to steer instructions to
clusters is 1 cycle for both Conv and Ring architectures.
Larger latencies may be considered but they will have a
minor impact on the conclusions since each additional cycle
in the frontend will basically increase the penalty for branch
misspredictions by about one cycle in both the proposed and
the baseline microarchitecture.

4.2 Experimental Framework

Performance results have been obtained through an
enhanced version of Simplescalar [3]. The main
enhancements are the separation of the reorder buffer and the
issue queue, the extension to model register files and the split
of the pipeline for integer and FP instructions. Additionally,
some structures have been distributed to model clustered
architectures: issue queues, register files and functional units.
Three different configurations have been evaluated: 4 and 8
clusters of issue width 2 INT + 2 FP each, and 8 clusters of
issue width 1 INT + 1 FP each. Table 2 describes the
assumed processor configuration.

The 4-cluster configuration does not require high number
of communications so it has been assumed one unidirectional
fully pipelined bus (i.e. a datum can be transmitted from
every cluster to the following one at the same time). The 8-
cluster configuration may require more and farther
communications, so either one or two buses have been
considered. For the two-buses configuration, Ring has both
buses with the same direction, whereas Conv has one bus for
each direction in order to reduce the distance of the
communications. Table 3 details how the different
configurations are referred to in the rest of the paper.

Table 2. Processor configuration
Fetch, decode, commit width: 8 instructions
Branch pred.: Hybrid 2K Gshare, 2K bimodal, 1K selector
BTB: 2048 entries, 4-way
L1 Icache: 64KB, 2-way, 32 byte line (1 cycle)
L1 Dcache: 32KB, 4-way, 32 byte line, 4 R/W ports (2 cycles)
L2 unified cache: 512KB, 4-way, 64 byte line (10 cycles hit, 100

cycles miss, 2 cycles interchunk)
Latency to/from L1 Dcache: 1 cycle
Fetch queue: 64 entries
Issue queue (4 clusters): 32 INT + 32 FP + 16 comm entries/cluster
Issue queue (8 clusters): 16 INT + 16 FP +16 comm entries/cluster
Reorder buffer: 256 entries
Load/store queue: 128 entries
Register file (4 clusters): 64 INT + 64 FP registers per cluster
Register file (8 clusters): 48 INT + 48 FP registers per cluster

INT functional units: ALU (1 cycle), mult/div (3 cycles mult, 20
cycles non-pipelined div)

FP functional units: ALU (2 cycles), mult/div (4 cycles mult, 12
cycles non-pipelined div)

1 INT + 1 FP issue width: 1 unit of each type per cluster
2 INT + 2 FP issue width: 2 units of each type per cluster

Table 3. Evaluated configurations
Architect. Num.

clust.
Issue width Num.

buses
Name

Conv 4 2 INT + 2 FP 1 Conv_4clus_1bus_2IW
Conv 8 1 INT + 1 FP 1 Conv_8clus_1bus_1IW
Conv 8 1 INT + 1 FP 2 Conv_8clus_2bus_1IW
Conv 8 2 INT + 2 FP 1 Conv_8clus_1bus_2IW
Conv 8 2 INT + 2 FP 2 Conv_8clus_2bus_2IW
Ring 4 2 INT + 2 FP 1 Ring_4clus_1bus_2IW
Ring 8 1 INT + 1 FP 1 Ring_8clus_1bus_1IW
Ring 8 1 INT + 1 FP 2 Ring_8clus_2bus_1IW
Ring 8 2 INT + 2 FP 1 Ring_8clus_1bus_2IW
Ring 8 2 INT + 2 FP 2 Ring_8clus_2bus_2IW

For this study we have used the whole Spec2000
benchmark suite [21] with the ref input data set. This suite
consists of 12 integer and 14 FP programs. We have
simulated 100 million of instructions for each program after
skipping the initialization part. The programs were compiled
with the HP/Alpha compiler with –O4 –non_shared flags.

4.3 Performance

Figure 6 shows the speedup of Ring over Conv for each
configuration. Ring achieves higher performance than Conv
for all configurations. It can be observed that the speedup for
integer programs is smaller than for FP programs, and even
slightly negative for one configuration. Since Ring is much
more effective than Conv at reducing the number and the
distance of the communications, Ring achieves higher
speedups for programs with larger number of
communications, as it is the case of FP programs (see details
below). This becomes even more obvious under the presence
of just one bus. In this case, the speedup increases
significantly. In order to show why Ring performs better than
Conv, we have analyzed the penalty introduced by
communications and workload imbalance.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Figure 6. Speedup of Ring over Conv

4.4 Communications

Figure 7 shows the number of communications per
instruction. Ring requires fewer communications than Conv
because it succeeds at distributing the workload without
introducing extra communications. On the other hand, Conv
reaches quite often situations where it has to send an
instruction to the least loaded cluster, even if that decision
introduces more communications. Thus, the workload is
balanced at the expense of more communications. It can also
be observed that FP programs require more communications
than integer ones.

Figure 7. Average number of communications per
instruction

Communications distance has to be also studied. The
distance of a communication is the number of hops required
to copy the data from the source cluster to the destination
cluster. Shorter communications are desirable in order to
reduce the time that consumer instructions spend waiting for
the remote data. Figure 8 shows the average distance per
communication for the different configurations. It can be
observed that Conv has similar delay to Ring for two buses,
but Ring has much shorter communications for one bus.

Figure 8. Average distance per communication

Both, the number of communications and their distance,
determine the bus occupancy and thus, further delays due to
bus contention. Figure 9 shows the average number of cycles
that a ready communication instruction has to wait until it can
access the bus. It can be seen that Conv has much higher
contention than Ring, especially if there is only one bus. For
both 8-cluster, 1-bus configurations Conv’s contention is
larger than 5 cycles for FP instructions.

Figure 9. Average delay per communication due
to bus contention

4.5 Workload Imbalance

The workload balance figure used to guide the steering
algorithm of Conv is DCOUNT since it provides better
performance than others, but in order to show the effect of
workload imbalance in IPC it has been used another more
suitable figure: NREADY[13][14]. NREADY accounts for
the number of ready instructions that are not issued at a given
instant of time due to exceeding the issue width of their
respective clusters, but could be issued in other clusters since
they have idle functional units.

Figure 10 quantifies the workload imbalance for different
configurations. It can be observed that the conventional
clustered microarchitecture balances the workload somewhat

Communications per instruction

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

AVERAGE INT FP

Conv_4clus_1bus_2IW

Ring_4clus_1bus_2IW

Conv_8clus_2bus_1IW

Ring_8clus_2bus_1IW

Conv_8clus_1bus_1IW

Ring_8clus_1bus_1IW

Conv_8clus_2bus_2IW

Ring_8clus_2bus_2IW

Conv_8clus_1bus_2IW

Ring_8clus_1bus_2IW

Distance per communication

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

AVERAGE INT FP

Conv_4clus_1bus_2IW

Ring_4clus_1bus_2IW

Conv_8clus_2bus_1IW

Ring_8clus_2bus_1IW

Conv_8clus_1bus_1IW

Ring_8clus_1bus_1IW

Conv_8clus_2bus_2IW

Ring_8clus_2bus_2IW

Conv_8clus_1bus_2IW

Ring_8clus_1bus_2IW

Bus contention per communication

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

AVERAGE INT FP

Conv_4clus_1bus_2IW

Ring_4clus_1bus_2IW

Conv_8clus_2bus_1IW

Ring_8clus_2bus_1IW

Conv_8clus_1bus_1IW

Ring_8clus_1bus_1IW

Conv_8clus_2bus_2IW

Ring_8clus_2bus_2IW

Conv_8clus_1bus_2IW

Ring_8clus_1bus_2IW

Speedup

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

AVERAGE INT FP

Ring_4clus_1bus_2IW

Ring_8clus_2bus_1IW

Ring_8clus_1bus_1IW

Ring_8clus_2bus_2IW

Ring_8clus_1bus_2IW

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

better than the ring clustered processor. However, this small
detriment in workload balance is more than offset by the
reduction in communication penalties, as shown above,
especially for FP programs, which are more communication
intensive. Conv reduces the workload imbalance at the
expense of a much larger number of communications, as
shown above, which produces significant performance
degradation.

The configurations with 8 clusters and 2 INT + 2 FP issue
width are especially interesting since they achieve a very
good workload balance for both Conv and Ring, and are still
suitable for high clock rates since the structures involved in
the issue process are quite small: 16-entry issue queues and
48-entry register files.

Figure 10. Workload imbalance using NREADY
figure

Conv uses DCOUNT figure for balancing workload, so it
is expected that the number of instructions dispatched to each
cluster is approximately the same. On the other hand, Ring
does not use any mechanism for balancing workload since it
is inherent to the dependence-based steering algorithm.
Nevertheless, it is interesting to show how many instructions
are dispatched to each cluster. Figure 11 shows the
percentage of instructions dispatched to each cluster for all
benchmarks for the Ring_8clus_1bus_2IW configuration. It
can be observed that the percentage of instructions dispatched
to each cluster is pretty much the same for all programs.
Similar results are achieved for the other configurations.

Figure 11. Distribution of the dispatched
instructions across the clusters

4.6 Scaling Wires

It is well known that wires scale very badly, so it is
expected that future clustered microprocessors may have
large latencies for inter-cluster communications. We have
assumed buses with 1-cycle latency per hop, but this may not
be feasible for future processors. Thus, it is interesting to
analyze how both, the Conv and the Ring processors, perform
with slower buses. For this purpose, we have evaluated the
configurations with 8 clusters and 2 INT + 2 FP issue width
(with 1 and 2 buses) using 2-cycle latency per hop, and fully
pipelined buses. Thus, a given bus may be processing 16
communications at a time.

Figure 12. Speedup of Ring over Conv for
different bus latencies

Workload imbalance (NREADY)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

AVERAGE INT FP

Conv_4clus_1bus_2IW

Ring_4clus_1bus_2IW

Conv_8clus_2bus_1IW

Ring_8clus_2bus_1IW

Conv_8clus_1bus_1IW

Ring_8clus_1bus_1IW

Conv_8clus_2bus_2IW

Ring_8clus_2bus_2IW

Conv_8clus_1bus_2IW

Ring_8clus_1bus_2IW

Instruction distribution

0,0%

12,5%

25,0%

37,5%

50,0%

62,5%

75,0%

87,5%

100,0%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

cluster 7

cluster 6

cluster 5

cluster 4

cluster 3

cluster 2

cluster 1

cluster 0

Speedup

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

AVERAGE INT FP

2bus_1cyclehop

2bus_2cyclehop

1bus_1cyclehop

1bus_2cyclehop

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Figure 12 shows the speedup of Ring over Conv. For the
configuration with one bus the speedup grows from 8.1%
with 1-cycle latency per hop to 11.8% (19.1% for FP
programs) with 2-cycle latency per hop. Similar trend is
observed for 2 buses. Conv loses much more performance
than Ring because the former has more and longer
communications than the latter.

4.7 A Simple Steering Algorithms

The steering algorithm that we have assumed has similar
complexity to the one by Parcerisa et al [14]. In this section
we evaluate the performance of a conventional clustered
microarchitecture and the ring one using a simpler steering
algorithm, which complexity is similar to that of the rename
logic. The algorithm (SSA) is as follows:

If the instruction has at least one input
operand:

It is send to the lower index cluster that
stores (or will store) its leftmost operand.

Else (no input operands):
It is sent to a cluster in a round-robin
fashion.

As it can be seen, this simple steering algorithm does not
include an explicit workload imbalance control.

Figure 13 shows the speedup of Ring over Conv when the
simple steering algorithm is used. It can be observed that the
speedup is huge. For instance, for a 8-clusters 1-way issue, 2-
bus configuration, the speedup of Ring over Conv is 50% in
average (1.5X). As observed for the other steering, the
speedup for FP programs (80%) is higher than for integer
programs (30%).

Figure 13. Speedup of Ring+SSA over Conv+SSA

The performance drop of Ring+SSA with respect to Ring is
between 5% and 14% depending on the configuration. The
performance drop is small because the workload balance is
similar whereas the communication distance slightly
increases. The performance drop of Conv+SSA with respect
to Conv is between 23% and 42% depending on the
configuration. It is so high mainly due to the workload
imbalance. Ring inherently balances the workload, whereas

Conv does not. Thus, Conv+SSA tends to concentrate most of
the instructions in very few clusters. This concentration
reduces the communication penalty but incurs in many
dispatch stalls because the cluster selected to steer
instructions is full. Additionally, full clusters hold many
ready instructions that cannot be issued because there are
more of them than the issue width, whereas other clusters
have less workload that they could absorb. In fact, due to this
workload imbalance (Figure 14), Ring+SSA shows higher
speedup with respect to Conv+SSA when the issue width is 1.
On the other hand, for the enhanced steering (see Figure 6)
we observed the opposite trend: lower speedup when the
issue width is 1.

Note that the workload imbalance of Ring+SSA is 10%
higher than that of Ring (see Figure 10). In the case of Conv,
the workload imbalance increases by between 100% and
300% depending on the configuration.

Figure 14. Workload imbalance using NREADY
figure with Simple Steering Algorithm

5. Conclusions

In this paper we have presented a new clustered
microarchitecture for superscalar processors. A distinguishing
feature of this microarchitecture is that those schemes that
favor hiding wire delays also favor workload balance among
the clusters, due to the particular way that clusters are
interconnect. The clusters are arranged in a ring topology,
which is not new, but unlike previous proposals, fast
interconnects are used for forwarding values among neighbor
clusters, whereas internal bypasses are not needed. As a
consequence, a dependence-based steering algorithm that
attempts to reduce the number and distance of global
communications is extremely effective at distributing the
workload across all the clusters without requiring any
explicity workload balance scheme.

The proposed ring clustered microarchitecture
significantly outperforms state-of-the-art clustered
organizations. The benefits increase as the number of clusters
increases, and the global interconnects are simple, scarce and
have long latencies. Thus, the ring clustered

Speedup

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

AVERAGE INT FP

Ring_4clus_1bus_2IW

Ring_8clus_2bus_1IW

Ring_8clus_1bus_1IW

Ring_8clus_2bus_2IW

Ring_8clus_1bus_2IW

Workload imbalance (NREADY) with Simple
Steering Algorithm (SSA)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

AVERAGE INT FP

Conv_4clus_1bus_2IW

Ring_4clus_1bus_2IW

Conv_8clus_2bus_1IW

Ring_8clus_2bus_1IW

Conv_8clus_1bus_1IW

Ring_8clus_1bus_1IW

Conv_8clus_2bus_2IW

Ring_8clus_2bus_2IW

Conv_8clus_1bus_2IW

Ring_8clus_1bus_2IW

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

microarchitecture is more scalable than conventional ones.
For instance, for an 8-cluster configuration and just one fully
pipelined unidirectional bus with a latency of 2 cycles per
hop, the proposed architecture achieves 19% speedup over a
state-of-the-art, topology-aware conventional clustered
architecture for FP programs. If a simpler steering algorithm
is used, the speedup can be as large as 50% on average for the
whole Spec2000 benchmark suite.

While conventional clustered architectures tend to steer
the instructions to one or a few number of clusters until a
certain workload imbalance is achieved, the proposed ring-
like architecture distributes the activity across all the clusters
during all the time. This fact results in a better temperature
distribution across the chip and thus, it is expected to reduce
the frequency of temperature emergencies with respect to a
conventional clustered microarchitecture.

To conclude, the proposed clustered microarchitecture
outperforms state-of-the-art microarchitectures. Besides, it is
more scalable than conventional ones, requires less
communication resources and is more effective at distributing
the activity across all the clusters.

Acknowledgements

This work has been partially supported by the Ministry of
Education and Science under grants AP2002-3677, TIN2004-
07739-C02-01 and TIN2004-03072, the CICYT project
TIC2001-0995-C02-01, Feder funds, and Intel Corporation.
We would like to thank the anonymous reviewers by their
comments.

References
[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, D. Burger.
“Clock Rate versus IPC: The End of the Road for Conventional
Microarchitectures”. In proceedings of the 27th International
Symposium on Computer Architecture (ISCA’00), June 2000.

[2] A. Baniasadi, A. Moshovos. “Instruction Distribution
Heuristics for Quad-Cluster, Dynamically-Scheduled,
Superscalar Processors”. In proceedings of the 33th International
Symposium on Microarchitecture (MICRO’00), December 2000.

[3] D. Burger, T. Austin. “The Simplescalar Tool Set, Version
3.0”. Technical Report, Computer Sciences Department,
University of Wisconsin-Madison, 1999.

[4] R. Canal, J.M. Parcerisa, A. González. “A Cost-Effective
Clustered Architecture”. In proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques (PACT’99), October 1999.

[5] R. Canal, J.M. Parcerisa, A. González. “Dynamic Cluster
Assignment Mechanisms”. In proceedings of the 6th International
Symposium on High-Performance Computer Architecture
(HPCA’00), January 2000.

[6] K.I. Farkas, P. Chow, N.P. Jouppi, Z. Vranesic. “The
Multicluster Architecture: Reducing Cycle Time through

Partitioning”. In proceedings of the 30th International
Symposium on Microarchitecture (MICRO’97), December 1997.

[7] M. Franklin. “The Multiscalar Architecture”. Ph.D. thesis,
C.S. Department, University of Wisconsin-Madison, 1993.

[8] S. Gupta, S.W. Keckler, D. Burger. “Technology
Independent Area and Delay Estimates for Microprocessor
Building Blocks”. Technical Report 2000-5, Department of
Computer Sciences, University of Texas at Austin, April 2000.

[9] L. Gwennap. “Digital 21264 Sets New Standard”.
Microprocessor Report, 10 (14), October 1996.

[10] R. Ho, K.W. Mai, M.A. Horowitz. “The Future of Wires”.
In proceedings of the IEEE, 89(4), 490-504. April, 2001.

[11] R. Nagarajan, K. Sankaralingam, D. Burger, S.W. Keckler.
“A Design Space Evaluation of Grid Processor Architectures”. In
proceedings of the 34th International Symposium on
Microarchitecture (MICRO’01), December 2001.

[12] S. Palacharla, N.P. Jouppi, J.E. Smith. “Complexity-
Effective Superscalar Processors”. In proceedings of the 24th

International Symposium on Computer Architecture (ISCA’97),
June 1997.

[13] J.M. Parcerisa, A. González. “Reducing Wire Delay Penalty
through Value Prediction”. In proceedings of the 33th

International Symposium on Microarchitecture (MICRO’00),
December 2000.

[14] J.M. Parcerisa, J. Sahuquillo, A. González, J. Duato.
“Efficient Interconnects for Clustered Microarchitectures”. In
proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT’02),
September 2002.

[15] N. Ranganathan, M. Franklin. “An Empirical Study of
Decentralized ILP Execution Models”. In proceedings of the 8th

International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’98),
October 1998.

[16] E. Rotenberg, Q. Jacobson, Y. Sazeides, J.E. Smith. “Trace
Processors”. In proceedings of the 30th International Symposium
on Microarchitecture (MICRO’97), December 1997.

[17] A. Seznec, E. Toullec, O. Rochecouste. “Register Write
Specialization Register Read Specialization: a Path to
Complexity-Effective Wide-Issue Superscalar Processors”. In
proceedings of the 35th International Symposium on
Microarchitecture (MICRO’02), November 2002.

[18] G. Sohi, S. Breach, T.N. Vijaykumar. “Multiscalar
Processors”. In proceedings of the 22nd International Symposium
on Computer Architecture (ISCA’95), June 1995

[19] S. Vajapeyam, T. Mitra. “Improving Superscalar Instruction
Dispatch and Issue by Exploiting Dynamic Code Sequences”. In
proceedings of the 24th International Symposium on Computer
Architecture (ISCA’97), June 1997.

[20] V. Zyuban. “Inherently Lower Power High Performance
Superscalar Architectures”. Ph. D. thesis, University of Notre
Dame, January 2000.

[21] SPEC2000. http://www.specbench.org/osg/cpu2000/

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

