
Optimal Oblivious Path Selection on the Mesh

Costas Busch Malik Magdon-Ismail Jing Xi

Department of Computer Science

Rensselaer Polytechnic Institute
Troy, NY 12180, USA

{buschc,magdon,xij2}@cs.rpi.edu

Abstract

In the oblivious path selection problem, each packet in the network independently
chooses a path, which is an important property if the routing algorithm is independent.
The quality of the paths is determined by the congestion C, the maximum number
of paths crossing an edge, and the dilation D, the maximum path length. So far, the
oblivious algorithms studied in the literature have focused on minimizing the congestion
while ignoring the dilation.

An open question is whether C and D can be controled simultaneously. Here, we
answer this question for the d-dimensional mesh. We present an online algorithm for
which C and D are both within O(d2) of optimal. The algorithm uses randomization,
and we show that the number of random bits required per packet is within O(d) of the
minimum number of random bits required by any algorithm that obtains near-optimal
congestion. For fixed d, our algorithm is asymptotically optimal.

1 Introduction

Given a set of packet transfer requests in a communication network, a routing algorithm
must select the paths that will be traversed in order to fulfill all the requests. A routing
algorithm is oblivious if every path that is selected for each request is chosen independently
of every other path. Oblivious algorithms are by their nature distributed and capable of
solving online routing problems, where packets continuously arrive in the network. Hence,
oblivious routing (path selection) is preferred to non-oblivious routing, since one does not
need to make assumptions regarding the nature of the traffic.

We study oblivious algorithms in the context of a synchronous routing model in which at
most one packet traverses any edge during a time step. Initially, at time zero, a set of packets
must simulataneously select their paths. The quality of the paths selected can be measured

1

by two parameters: the (edge) congestion C, the maximum number of paths that use any
edge in the network, and the dilation D, the maximum length of any path. A trivial lower
bound for the total time to transfer all the packets along the selected paths is Ω(C + D),
hence C + D is a natural metric by which to measure the quality of the paths output by a
routing algorithm.

Traditionally, the bandwidth of the network is usually the major bottleneck, hence op-
timizing the load distribution, that is, minimizing the congestion, has been the focus of
existing research. In particular, Maggs et al. [9] gave the first oblivious path selection al-
gorithm with optimal edge congestion on the Mesh. Since then, generalizations have been
given to oblivious path selection algorithms for arbitrary networks that achieve near optimal
congestion [3, 4, 7, 11]. However, these algorithms do not control the dilation. For example,
a packet path may be stretched by an arbitrary amount – a packet that has destination at a
neighboring node may traverse the entire network before reaching its destination.

An interesting open problem is to obtain small path stretch in addition to low congestion.
Here, we study this problem for the d-dimensional mesh network, for which we show that
it is indeed possible to obtain near optimal congestion while maintaining small stretch. For
general networks, this is not possible.

Optimal Oblivious Routing. Given a routing problem (collection of sources and des-
tinations), we define C∗ to be the optimal congestion attainable by any routing algorithm
(oblivious or not). We define C∗

obl to be the optimal congestion attainable if the routing
algorithm is restricted to being oblivious. For the d-dimensional Mesh with n nodes, Maggs
et al. [9] give the lower bound C∗

obl = Ω(C∗

d
log n) in the worst case. We will compare the

congestion of our algorithm with the lower bound on C∗
obl. The stretch of a path from a

source to a destination is the ratio of the path length to the shortest path length. Clearly,
the smallest stretch factor is 1, since a packet can follow a shortest path; however, the choice
of shortest paths may increase the congestion.

Our Contributions. We show the surprising result that it is possible to obtain small
stretch for any routing instance, using an oblivious algorithm, and without sacrificing on the
congestion. Specifically, we give an oblivious routing algorithm for the d-dimensional mesh
with n nodes, that achieves congestion O(dC∗ log n), and stretch O(d2). Considering the
class of oblivious algorithms, our algorithm is within O(d2) of optimal for both congestion
and dilation, which means that the routing time bound (C + D) is within O(d2) of optimal.
For fixed d, our algorithm is optimal to within constant factors.

Our algorithm is based upon a hierarchical decomposition of the Mesh. Starting at
its source node, a packet constructs its path by randomly selecting intermediate points in
submeshes of increasing size until the current submesh contains the destination node. Then
random intermediate points are selected in submeshes of decreasing size until the destination
node is reached. The key new idea that we introduce is the notion of “bridge” submeshes that
make it possible to move from a source to a destination more quickly, without increasing
the congestion. These bridge submeshes are instrumental in controling the stretch, while

2

maintaining low congestion.
Our algorithm uses randomization, and we show that randomization is essential for ob-

taining low congestion. In a deterministic algorithm, a packet path is fixed, given its source
and destination. It can be shown that for any deterministic algorithm, there exists a routing
problem with high congestion. The only alternative is to use randomization: a packet selects
a path probabilistically from a choice of κ alternatives, where κ may depend on the source
and destination. Such an algorithm requires at least log κ random bits per packet. We give a
lower bound on the number of bits required, Ω((1− 1

d
) log D(s,t)

d
), where D(s, t) is the shortest

path distance between the source and destination. The number of random bits required by
our algorithm is within O(d) of this lower bound, and hence is near-optimal.

Related Work. Most related to our work is the original paper by Maggs et al. [9] where
they present an oblivious algorithm with congestion O(dC∗ log n). However, the stretch
factor in that algorithm is unbounded. To control stretch, we generalize the hierarchical
decomposition for the mesh denoted by an access tree [9] to a more general access graph. In
the access tree, only one path exists between a particular source and destination, however,
our decomposition offers several paths, in particular much shorter paths. Our algorithm
uses randomized dimension by dimension routing, which alone can improve the result in
[9] by a factor of d to O(C∗ log n). Following the work in [9], there have been extensions
to general networks, [3, 4, 7, 11], where progressively better oblivious algorithms with near
optimal congestion are given. Once again, the stretch is unbounded. For general networks,
the stretch and congestion cannot independently be controled.

Non-oblivious approaches to optimizing C +D have received considerable attention, and
near optimal algorithms are discussed in [1, 2, 12, 13]. As already mentioned, such offline
algorithms require knowledge of the traffic distribution a priori and generally do not scale
well with the number of packets. We show that for the mesh, distributed and oblivious
algorithms are within a logarithmic factor from the optimal offline performance, hence there
is no significant benefit from using the offline algorithm. Trade offs between stretch and
congestion have been studied in wireless networks [6].

Lower bounds on the competitive ratio of oblivious routing has been studied for various
types of networks. Maggs et al. [9] give the Ω(C∗

d
log n) lower bound on the competitive

ratio of an oblivious algorithm on the mesh. Valiant and Brebner [14] perform a worst
case theoretical analysis on oblivious routing on specific network topologies such as the
hypercube. Borodin and Hopcroft [5] and Kaklamanis et al. [8] showed that deterministic
oblivious routing algorithms can not approximate the minimal load on most non-trivial
networks, which justifies the necessity for randomization. Here, we give a lower bound on
the amount of randomization required.

Paper Outline. We begin with some preliminary definitions (Section 2), and continue
with our mesh decomposition algorithm in 2-dimensions (Section 3), which we generalize
to d-dimensions in Section 4. We discuss randomization requirements in Section 5, and we
conclude in Section 6. Several proofs are relegated to the appendix.

3

2 Preliminaries

The d-dimensional mesh M is a d-dimensional grid of nodes with side length mi in dimension
i. There is a link connecting a node with each of its 2d neighbors (except at the nodes at
the boundaries of the mesh). We denote by n the size of M , n = size(M) =

∏d
i=1 mi, and by

|E| the number of edges in the network. Each node has a coordinate with the top-left node
having coordinate (0, 0). We refer to specific submeshes by giving its end points in every
dimension, for example, [0, 3][2, 5] refers to a 4 × 4 submesh, with the x coordinate ranging
from 0 to 3 and the y coordinate from 2 to 5.

The input for the path selection problem is a set of N sources and destinations (i.e.
packets), Π = {si, ti}

N
i=1 and the mesh M . The output is a set of paths, P = {pi}, where

each path pi ∈ P is from node si to node ti. The length of path p, denoted |p|, is the
number of edges it uses. We denote the length of the shortest path from s to t by dist(s, t).
We will denote by D∗ the maximum shortest distance, maxi dist(si, ti). The stretch of a
path pi, denoted stretch(pi), is the ratio of the path length to the shortest path length
between its source and destination, stretch(pi) = |pi|/dist(si, ti). The stretch factor for
the collection of paths P , denoted stretch(P), is the maximum stretch of any path in P ,
stretch(P) = maxi stretch(pi).

For a submesh M ′ ⊆ M , let out(M ′) denote the number of edges at the boundary of M ′,
which connect nodes in M ′ with nodes outside M ′. For any routing problem Π, we define the
boundary congestion as follows. Consider some submesh of the network M ′. Let Π′ denote the
packets (pairs of sources and destinations) in Π which have either their source or destination
in M ′, but not both. All the packets in Π′ will cross the boundary of M ′. The paths of these
packets will cause congestion at least |Π′|/out(M ′). We define the boundary congestion of
M ′ to be B(M ′, Π) = |Π′|/out(M ′). For the routing problem Π, the boundary congestion B
is the maximum boundary congestion over all its submeshes, i.e. B = maxM ′⊆M B(M ′, Π).
Clearly, C∗ ≥ B.

3 The 2-Dimensional Mesh

Here we show how to select the paths in a 2-dimensional mesh with equal side lengths
m = 2k, k ≥ 0. The path selection algorithm relies on a decomposition of the mesh to
submeshes, and then constructing an access graph, as we describe next.

3.1 Decomposition to Submeshes

We decompose the mesh M into two types of submeshes, type-1 and type-2, as follows.

Type-1 Submeshes. We define the type-1 submeshes recursively. There are k + 1 levels
of type-1 submeshes, ` = 0, . . . , k. The mesh M itself is the only level 0 submesh. Every
submesh at level ` can be partitioned into 4 submeshes by dividing each side by 2. Each
resulting submesh is a type-1 submesh at level ` + 1. This construction is illustrated in

4

Level 1, type 1. Level 1, type 2. Level 2, type 1. Level 2, type 2.

Figure 1: Mesh decomposition for the 23×23 mesh. Arrows indicate the parents of a submesh.

Figure 1. In general, at level ` there are 22` submeshes each with side m` = 2k−`. Note that
the level k submeshes are the individual nodes of the mesh.

Type-2 Submeshes. There are k−1 levels of type-2 submeshes, ` = 1, . . . , k−1. The type-
2 submeshes at level ` are obtained by first extending the grid of type-1 meshes by adding
one layer of type-1 meshes along every dimension. The resulting grid is then translated
by the vector −(m`/2, m`/2). In this enlarged and translated grid, some of the resulting
translated submeshes are entirely within M . These are the internal type-2 submeshes. For
the remaining external type-2 submeshes, we keep only their intersection with M , except
that we discard all the “corner” submeshes, because they will be included in the type-1
submeshes at the next level. Notice that all the type-2 submeshes have at least 1 side of
length m` nodes. Figure 1 illustrates the construction.

A submesh of M is regular if it is either type-1 or type-2. Unless otherwise stated, we
will refer to regular submeshes. The following lemma follows from the construction of the
regular submeshes.

Lemma 3.1 The mesh decomposition satisfies the following properties.

(1) The type-1 submeshes at a given level are disjoint, as are the type-2 submeshes.

(2) Every regular submesh at level ` can be partitioned into type-1 submeshes at level `+1.

(3) Every regular submesh at level ` + 1 is completely contained by a submesh at level ` of
either type-1 or type-2, or both.

3.2 Access Graph

The access graph G(M), for the mesh M , is a leveled graph with k + 1 levels of nodes,
` = 0, . . . , k. The nodes in the access graph correspond to the distinct regular submeshes.

5

Specifically, every level-` submesh (type-1 or type-2) corresponds to a level ` node in G(M).
Edges exist only between adjacent levels of the graph. Let u`, u`+1 be level ` and ` + 1
nodes of G(M) respectively. The edge (u`, u`+1) exists if the regular submesh corresponding
to u` completely contains the regular submesh corresponding to u`+1. We borrow some
terminology from trees. We say that u` is a parent of u`+1 in G(M); the parent relationship
is illustrated in Figure 1, for the corresponding submeshes. Note that the access graph is
not necessarily a tree, since a node can have two parents (a consequence of Lemma 3.1, part
(3)). The depth of a node is the same as its level `, and its height is k − `. Nodes at height
0 have no children, and are leaves. The leaves in G(M) correspond to single nodes in the
mesh. There is a unique root at level 0, which corresponds to the whole mesh M .

Let p = (u1, u2, . . . , uk) be a path in G(M). We say that p is monotonic if every node
is of increasing level (i.e., the level of ui is higher than the level of ui+1), and the respective
submeshes of nodes u2, . . . , uk are all of type-1. If p is monotonic, then we say that u1 is
ancestor of uk. We will use a function g to map nodes in the access graph to submeshes. Let
u be a node in the access graph with corresponding submesh M ′. We define the function g
so that g(u) = M ′. Denote by g−1 the inverse of function g, that is, g−1(M ′) = u. Using
induction on the height of G(M), and part (2) of Lemma 3.1, we obtain the following lemma:

Lemma 3.2 Let v be any node of a regular submesh M ′ ⊆ M , then g−1(M ′) is an ancestor
of g−1(v).

Let u and v be two leaves of G(M), and let A be their (not necessarily unique) deepest
common ancestor; Note that A exists and in the worst case is g−1(M) (a consequence of
Lemma 3.2). Let p = (u, . . . , A, . . . , v), be the concatenation of two monotonic paths, one
from A to u and the other from A to v. We will refer to p as the bitonic path between u
and v. Submesh g(A) may be type-1 or type-2, all the other submeshes in p are of type-1.
We will refer to g(A) as a “bridge” submesh, since it provides the connecting point between
two monotonic paths. Note that type-2 submeshes can be used as bridges between type-
1 submeshes, when constructing bitonic paths between leaves. Further, only one type-2
submesh is ever needed in a bitonic path. These access graph paths will be used by the path
selection algorithm. Suppose that height(A) = hA. The length of a bitonic path from u to
v is 2hA. We now show that hA cannot be too large. This will be important in proving that
the path selection algorithm gives constant stretch.

Lemma 3.3 The deepest common ancestor of two leaves u and v has height at most
d log dist(g(u), g(v)) e+ 2.

Proof: Let s, t ∈ M such that s = g(u) and t = g(v). We show that there is a common
ancestor with height at most d log dist(s, t) e + 2. Assume, for simplicity, that we are on the
torus (the same result holds for the mesh, with minor technical details in the proof due to
edge effects). In this case, all the type-2 meshes are of the same size. We obtain the regular
submeshes in the original mesh after truncation of the submeshes at the borders of the torus.

Let µ = 2d log dist(s,t) e ≥ dist(s, t). If 4µ ≥ 2k, then the root, g−1(M), is a common
ancestor with height d log dist(s, t) e + 2, so assume that 4µ < 2k. Node s is contained in

6

some type-1 submesh of side length 4µ. Without loss of generality assume that this submesh
is M1 = [0, 4µ − 1]2. If M1 also contains t, then we are done, since by Lemma 3.2, g−1(M1)
is a common ancestor at height d log dist(s, t) e + 2. So suppose that t is contained in some
other (adjacent) type-1 submesh M2. Without loss of generality, there are two possibilities
for M2.

(i) M2 = [4µ, 8µ−1][4µ, 8µ−1]. Since dist(s, t) ≤ µ, s ∈ [3µ, 4µ−1]2 and t ∈ [4µ, 5µ−1]2,
and so the type-2 submesh [2µ, 6µ − 1]2 contains both s and t.

(ii) M2 = [0, 4µ − 1][4µ, 8µ − 1]. There are four cases:

(a) s ∈ [0, 2µ − 1][3µ, 4µ − 1] and t ∈ [0, 2µ − 1][4µ, 5µ − 1], in which case the type-2
submesh [−2µ, 2µ − 1][2µ, 6µ − 1] contains s, t;

(b) s ∈ [2µ, 4µ−1][3µ, 4µ−1] and t ∈ [2µ, 4µ−1][4µ, 5µ−1], in which case the type-2
submesh [2µ, 6µ − 1]2 contains s, t;

(c) s ∈ [µ, 2µ− 1][3µ, 4µ− 1] and t ∈ [2µ, 3µ− 1][4µ, 5µ− 1], in which case the type-2
submesh [µ, 3µ − 1][3µ, 5µ − 1] at height d log dist(s, t) e + 1 contains s, t;

(d) s ∈ [2µ, 3µ − 1][3µ, 4µ − 1] and t ∈ [µ, 2µ − 1][4µ, 5µ − 1], which is similar to (c).

In all cases, s, t are contained in a submesh of height at most d log dist(s, t) e + 2.

3.3 Path Selection

Given the access graph, the procedure to determine a path from a given source s to a
destination t is summarized in the following algorithm.

1: Input: Source s and destination t in the mesh M ;
2: Output: Path p(s, t) from s to t in M ;
3: Let (u0, . . . , ul) denote a bitonic path in G(M) from g−1(s) to g−1(t);
4: for i = 0 to l do
5: Select a node vi in g(ui) uniformly at random; {v0 = s and vl = t}
6: if 1 ≤ i ≤ l then
7: Construct subpath ri from vi−1 to vi by picking a dimension by dimension shortest

path (an at most one-bend path), according to a random ordering of the dimensions;
8: The path p(s, t) is obtained by concatenating the subpaths ri, p(s, t) = r0r1 · · · rl−1;

Note that the algorithm is oblivious and local, since each source-destination pair can obtain
a path independently of the other paths. We will now show that our algorithm with the gen-
eralized access graph, in addition to obtaining optimal congestion, also controls the stretch.
First we show the constant stretch property of the selected paths.

Theorem 3.4 For any two distinct nodes s and t of the mesh, stretch(p(s, t)) ≤ 64.

7

Proof: Let h be the height of the deepest common ancestor of s and t. Then p(s, t) is
the concatenation of paths constructed by the dimension to dimension paths in meshes of
sides 21, . . . , 2h−1, 2h, 2h−1, . . . , 21. By adding the length of the paths we have that |p(s, t)| ≤
2(21 + · · · + 2h + 2h + · · · + 21 − 2h) which implies that |p(s, t)| ≤ 2h+3 − 4h. Since s and t
are distinct, h ≥ 1. By Lemma 3.3, h ≤ log dist(s, t) + 3, and the theorem follows.

We now relate the congestion of the paths selected to the optimal congestion C∗. Let e
denote an edge in M . Let C(e) denote the load on e, i.e., the number of times that edge e
is used by the paths of all the packets. We will get an upper bound on E[C(e)], and then
using a Chernoff bound we will obtain a concentration result.

We start by bounding the probability that some particular subpath formed by the path
selection algorithm uses edge e. Consider the formation of a subpath ri from a submesh M1

to a submesh M2, such that M2 completely contains M1, and e is a member of M2. According
to the path selection algorithm, mesh M1 is of type-1, thus all of its sides are equal to m`,
where ` is the level of M1. We show the following lemma.

Lemma 3.5 Subpath ri uses edge e with probability at most 2/m`.

Proof: For subpath ri, let v1 be the starting node in M1 and v2 the ending node in M2 for
subpath ri. Suppose e = (v3, v4). Without loss of generality, suppose e is vertical. Since the
subpath is a one-bend path, edge e is used either when v1 or v2 have the same x coordinate
with e. This event occurs with probability at most 2/m`.

Let P ′ be the set of paths that go from M1 to M2 or vice-versa. Let C ′(e) denote the
congestion that the packets P ′ cause on e. We show:

Lemma 3.6 E[C ′(e)] ≤ 2|P ′|/m`.

Proof: We can write P ′ = P1 ∪P2, where P1 is the set of subpaths from M1 to M2, and P2

is the subpaths from M2 to M1. Then, from Lemma 3.5, the expected congestion at edge e
due to the subpaths in P1 is bounded by 2|P1|/m`. With a similar analysis, we have that the
expected congestion at e is bounded by 2|P2|/m`. Since P1 and P2 are disjoint, we obtain
E[C ′(e)] ≤ 2(|P1| + |P2|)/m` = 2|P ′|/m`.

From the definition of the boundary congestion, we have that B ≥ B(M1, Π) ≥
|P ′|/out(M1). Therefore, C∗ ≥ |P ′|/out(M1). Since each side of M1 has m` nodes, we
have that out(M1) ≤ 4m`. From Lemmas 3.6 we obtain:

Lemma 3.7 E[C ′(e)] ≤ 8C∗.

We “charge” this congestion to submesh M2. By Lemma 3.3, only submeshes up to
height h < log D∗ + 3 can contribute to the congestion on edge e (submeshes of type-1).
By summing the congestions due to these at most 2(log D∗ + 3) submeshes (a type-1 and a
type-2 submesh at each level), and by using Lemma 3.7, we arrive at an upper bound for
the expected congestion at edge e:

8

Lemma 3.8 E[C(e)] ≤ 16C∗(log D∗ + 3).

Note that without increasing the expected congestion, we can always remove any cycles
in a path, so without loss of generality, we will assume that the paths obtained are acyclic.
We now obtain a concentration result on the congestion C obtained by our algorithm, using
the fact that every packet selects its path independently of every other packet.

Theorem 3.9 C = O(C∗ log n) with high probability.

Proof: Let Xi = 1 if path pi uses edge e, and 0 otherwise. Then E[C(e)] = E[
∑

i Xi] ≤
16C∗(log D∗ + 3). Let |E| be the number of edges in the mesh. Asymptotically in |E|,
E[C(e)] ≤ 16C∗ log(|E|D∗). Let κ > 2e, then applying a Chernoff bound [10], and using the
fact that C∗ ≥ 1 we find that P [C(e) > 16κC∗ log(|E|D∗)] < (|E|D∗)−16κ. Taking a union
bound over all the edges, we obtain

P [max
e∈E

C(e) > 16κC∗ log(|E|D∗)] <
1

(|E|D∗)16κ−1
.

Using the fact that D∗ = O(|E|), |E| = O(n2), and choosing κ = 2e + 1, we get C =
O(C∗ log n) with high probability.

4 The d-Dimensional Mesh

The 2-dimensional decomposition can be directly generalized to a d-dimensional mesh with
equal side lengths (2k, k ≥ 0) at each dimension. However, the stretch becomes O(2d), which
is excessively high for large d. In order to alleviate the problem, we present an alternative
decomposition for which the path selection algorithm has congestion O(d2C∗ log n), and
stretch O(d2). For fixed d, these are constant factors from optimal.

4.1 Decomposition

As in 2 dimensions, we have the type-1 meshes, and the translated meshes. However, we
now introduce Θ(d) types of translated meshes at each level. To be specific, consider the
level ` type-1 mesh with side length m`. Set λ = max{1, m`/2d log(d+1) e}. We shift the type-1
submeshes by (j − 1)λ nodes in each dimension to get the type-j submeshes, for j > 1.
Notice that the number of different types of submeshes at any level is at most 2(d + 1). If
ml ≥ d + 1, then there are at least (d + 1) different types of submeshes. Thus, an edge is
contained in O(d) submeshes at every level. Figure 2 shows an example for d = 3, ml = 4,
and λ = ml

4
= 1. The access graph can be constructed using these submeshes. The path

selection is similar to the 2-dimensional case, where the bridge is some type-j submesh, while
all the other submeshes in the bitonic path are of type-1.

In particular, suppose we are given two nodes s and t in the mesh, we show that in the
access graph there is some regular submesh (of some type-j) that completely contains s and

9

Type 1. Type 2. Type 3. Type 4.

Figure 2: Mesh decomposition for the 3−dimensional mesh. Only 2 of the 3 dimensions are
depicted

t and has side length O(d · dist(s, t)). As we did for d = 2, assume, for simplicity, that we
are on the torus. Suppose that s = (s1, . . . , sd) and t = (t1, . . . , td), with |ti − si| ≤ dist(s, t).
Let R = [a1, b1] · · · [ad, bd] be a region of the mesh defined by s and t, such that [ai, bi] =
[min(si, ti), max(si, ti)]. Note that R contains s and t. We will find a regular submesh which
completely contains R. Consider now the deepest level that has submeshes of side at least
2(d + 1) · dist(s, t). Let h be the height of this level. The side length of submeshes at height
h is mh = 2h, where 4(d + 1) · dist(s, t) ≥ mh ≥ 2(d + 1) · dist(s, t), and let the shift amount
at this height be λh = mh/2d log(d+1) e ≥ dist(s, t). We have:

Lemma 4.1 For every height ≥ h, R is completely contained by some regular submesh.

Proof: First consider height h. The anchor node of a submesh is the node with the
smallest coordinate in each dimension. Consider dimension i. Let ∆i = [ai, bi], be the side
of R in dimension i. By construction of the different types of submeshes, we have that ∆i

contains the ith dimension of anchors of at most one type of submesh at height h. This is
because in each dimension the distance between anchors of different mesh types is at least
∆i. Considering now all the dimensions, since we have d dimensions and at least d + 1
different types of submeshes, by the pigeonhole principle, there exists at least one type of
submesh, say type-ζ , such that R does not contain any anchors of any type-ζ submesh in any
dimension. This implies that R is completely contained by a type-ζ submesh M ′ at height
h. The same argument also holds for heights > h.

From the proof of Lemma 4.1, it follows that there is some regular submesh M2 at level
h + 1 that contains R. On the access graph, the bitonic path is constructed so that it goes
from s to t through the bridge submesh at height h + 1. Expect possibly for the bridge,
the other submeshes on the path are of type-1. By construction, it is guaranteed that M2

is decomposed into type-1 submeshes at height h′ = b log dist(s, t) c. Let M1 be the type-1
submesh at height h′ that contains s, and M3 the submesh that contains t. The path is
formed by first using submeshes of type-1 from s up to submesh M1, then to bridge M2,
down to M3, and then down to t by using type-1 submeshes.1

1The reason of using the height h+1 for bridges instead of height h, is due to technical reasons explained
in the appendix.

10

4.2 Stretch and Congestion

We now compute the stretch of the path selection algorithm in the d dimensions.

Theorem 4.2 (Stretch for d Dimensions) For any two distinct nodes s and t of the
mesh, stretch(p(s, t)) = O(d2).

Proof: Let p denote the path from s to t. Let r1, r2, and r3, denote the respective
subpaths from s to M1, from M1 to M2 to M3, and from M3 to t. First we compute
|r1|. Subpath r1 consists of h′ subpaths where the subpath from height i − 1 to height i

has length at most d(2i − 1). Therefore, |r1| ≤ 2d
∑h′

i=0(2
i − 1) = 2d(2 · 2h′

− 1 − h′).
Since 2h′

≤ dist(s, t), we have |r1| ≤ 2d(2 · dist(s, t) − 1 − h) = O(d · dist(s, t)). The
path length of r2 is no more than 2d(2h+1 − 1). Since 2h+1 ≤ 8(d + 1) · dist(s, t), we have
that |r2| ≤ 2d(8(d + 1) · dist(s, t) + 1) = O(d2 · dist(s, t)). Further, |r3| = |r1|. Thus,
|p| = |r1| + |r2| + |r3| = O(d2 · dist(s, t)).

With an analysis similar to the 2-dimensional case, we can show that the expected con-
gestion caused on an edge e from subpaths between a mesh of a lower height and a mesh of
a higher level, is E[C ′(e)] ≤ 4C∗) (the analysis can be found in the appendix). We charge
this congestion to the higher height mesh. Since paths use heights up to O(log(dD∗)), and
each height has O(d) different types of submeshes, at most O(d log(dD∗)) different sub-
meshes can contribute to the congestion on e. Thus E[C(e)] = O(dC∗ log(dD∗)). As with
the 2-dimensional analysis, we get a concentration result by applying a Chernoff bounding
argument and the facts that dD∗ = O(|E|), |E| = O(dn), and d = O(n):

Theorem 4.3 (Congestion for d Dimensions) C = O(dC∗ log n) with high probability.

5 Random Choices

Here we show that randomization is unavoidable for oblivious algorithms, if they are to
obtain near optimal congestion: such algorithms need access to a substantial number of
random bits, and we show that our algorithm uses a near minimal number of random bits.

Consider the d-dimensional mesh, with equal side lengths (2k, k ≥ 0) in each dimen-
sion. We say that a path selection algorithm A is a κ-choice algorithm, if for every source-
destination pair (s, t), A chooses the resulting path from κ possible different paths from s
to t. The path choice is randomized according to some probability distribution which may
be specific to each source/destination pair. For the case in which κ = 1, the algorithm is
deterministic. A κ-choice algorithm requires log κ bits of randomization per packet to select
any particular path.

5.1 Path Choices and Congestion

Consider a κ-choice algorithm A. We now construct a routing problem ΠA which gives a lower
bound on κ in terms of the congestion. The routing problem construction uses algorithm A

11

itself. Suppose that l = 2s, for some s ≥ 0. Each node in the network is the source of one
packet and the destination of one packet (permutation). The distance of every packet to its
destination is l. Such a problem can be constructed by diving the network into submeshes
of side length l, and then forming pairs of submeshes which exchange their packets at the
respective nodes. However, the problem construction has not finished yet. Every packet uses
the path from its source to its destination so that it is the path with maximum probability
among the κ possible paths provided by algorithm A for the particular source and destination.
This way, we obtain paths for all the packets in the network. The average number of paths
crossing an edge is at least mdl

dmd = l
d
. Therefore, there is an edge e which is crossed by at

least l/d packets. Let ΠA denote a set consisting of l/d packets crossing e. This concludes
the construction of ΠA. Note that ΠA keeps only a subset of the packets in the original
permutation problem. We have the following result that relates path choices and congestion.

Lemma 5.1 For any κ-choice algorithm A and corresponding routing problem ΠA with D∗ =
l, the expected congestion Y is at least l

dκ
.

Proof: By construction of ΠA, there is an edge e which is used by each packet in ΠA with
probability at least 1/κ. The expected congestion Ye on edge e is bounded by Ye ≥

|ΠA|
κ

= l
dκ

.
The expected congestion Y = E[maxei

C(ei)] ≥ E[C(e)] = Ye, since maxei
C(ei) ≥ C(e).

5.2 Lower Bound on Randomization

Here, we establish a lower bound on the number of bits per packet required by any algorithm
that achieves congestion comparable to our algorithm. Let algorithm H denote our d-
dimensional algorithm presented in Section 4. Consider an arbitrary κ-choice algorithm A
and its corresponding routing problem ΠA as described in the previous section. We will give
an upper bound on the performance of H for routing problem ΠA (notice that H and ΠA

are independent unless H = A). Let CH denote the expected congestion of H for ΠA. We
will give an upper on CH in terms of l and d.

Lemma 5.2 CH = O
(

(

l
d

)
1
d · log n

)

.

Proof: From the analysis in Sections 3 and 4, CH = O(dB log n) = O(dC∗ log n), where B
is the boundary congestion. We give an upper bound on B in terms of l and d.

For any arbitrary submesh M ′, we give an upper bound on B(M ′, ΠA), which is also an
upper bound for B. Assume M ′ is a m1 × · · · × md with n′ nodes. It can be shown that
out(M ′) ≥ d · n′ d−1

d (see a proof in the appendix). Let Π′ denote the packets that have to
cross the border of M ′ (have source outside and destination inside M ′ or vice versa). Clearly,
|Π′| ≤ min{ l

d
, n′}, since |Π′| ≤ |ΠA| = l

d
, and each node is the source/destination of at most

one packet. By definition of the boundary congestion, B(M ′, ΠA) = |Π′|
out(M ′)

. There are two
cases:

(1) l
d
≤ n′ : |Π′|

out(M ′)
≤ l/d

d·n′
d−1

d

≤ l
d2

(

d
l

)
d−1

d = l
1
d

d(1+ 1
d

)
;

12

(2) l
d

> n′ : |Π′|
out(M ′)

≤ n′

d·n′
d−1

d

= n′1/d

d
<

(l
d)

1
d

d
= l

1
d

d(1+ 1
d

)
.

In both cases, B(M ′, ΠA) ≤ l
1
d

d(1+ 1
d

)
. Since M ′ was arbitrary, B ≤ l

1
d

d(1+ 1
d

)
, consequently

CH = O
(

(

l
d

)
1
d · log n

)

.

Suppose that algorithm A, is at least as good as H for arbitrary routing problems with
respect to congestion. Let CA denote the expected congestion of algorithm A on a routing
problem. Then CA ≤ CH for routing problem ΠA. From Lemmas 5.2, and 5.1, algorithm

A requires κ = Ω
(

(

l
d

)1− 1
d 1

log n

)

path choices, or equivalently Ω
(

(1 − 1
d
) log l

d
− log log n

)

random bits per packet. Since D∗ = l we have the following result.

Lemma 5.3 There is a routing problem with D∗ = Ω(log n) for which any algorithm A with
CA = O(CH) requires Ω

(

(1 − 1
d

)

log D∗

d
) random bits per packet.

i.e., there exist routing problems for which significant randomization is unavoidable for
any algorithm with congestion at least as good as algorithm H .

5.3 Upper Bound on Randomization

Here we compute an upper bound on the number of random bits per packet required by
our d-dimensional algorithm H . Consider a path formation from submesh M1 to a submesh
M2 (we will refer to this as a “step” in the algorithm). The algorithm makes the following
random selections:

i. A random ordering of the dimensions from the d! possible orderings, requiring O(d log d)
random bits each time.

ii. A random node in M2. The largest submesh in the bitonic path has size O((dD∗)d)
(Lemma 4.1), so the number of random bits required each time is O(d log(dD∗)).

Consequently, in a single step of the algorithm, the number of bits required per step is
O(d log(dD∗)). Since, the number of steps to select a path is at most 2 log D∗ + 1, the total
number of random bits needed per packet is O(d log2(dD∗)). We can decrease the number
of random bits needed by a factor of log(dD∗), as follows:

i. We select the random order of dimensions only once at the beginning of the path creation
and we use the same order at the subsequent steps of the algorithm for the same path.

ii. We compute two random nodes, namely v1 and v2, at the largest submesh in the bitonic
path. For the path formation we only use bits from v1 and v2 to compute the (random)
nodes in the submeshes of the bitonic path. We use as many bits as necessary from v1

or v2, depending on the size of the submesh considered each time. We alternate the use
of nodes v1 and v2 in the path formation, so that if the path is formed on submeshes
M1, . . . , Mk, we use bits from v1 for M1, M3, . . ., (odd indeces) and from v2 for M2, M4, . . .
(even indeces).

13

Therefore, only O(O(d logd)) random bits are needed for the random order of dimensions,
and O(d log(dD∗)) random bits for the randomization of v1 and v2. This gives us in total
O(d log(dD∗)) bits.

Lemma 5.4 For any routing problem, algorithm H requires O(d log(dD∗)) random bits.

From Lemma 5.3 we have that there exist routing problems with D∗ = Ω(log n) such
that any oblivious routing algorithm which is at least as good as H in expected congestion,
requires Ω((1 − 1

d
) log D∗

d
) random bits. The same result holds for H too. Therefore, when

D∗ = Ω(d + log n), algorithm H uses a number of bits which is only a factor O(d) from
optimal. We have the following theorem:

Theorem 5.5 (Approximation of Random Bits) The number of random bits used by
Algorithm H is within O(d) of optimal.

6 Discussion

We have shown that for the mesh, one can simultaneously control both the stretch and the
congestion. As already mentioned, this cannot be done for general networks. Interesting
open issues that remain are to develop similar algorithms for other specific networks, and to
develop oblivious algorithms that minimize C + D for general networks.

References

[1] J. Aspens, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. Online load balancing with applications
to machine scheduling and virtual circuit routing. In Proceedings of the 25th ACM Symposium
on Theory of Computing, pages 623–631, 1993.

[2] B. Awerbuch and Y. Azar. Local optimization of global objectives: competitive distributed
deadlock resolution and resource allocation. In Proceedings of 35th Annual Symposium on
Foundations of Computer Science, pages 240–249, Santa Fe, New Mexico, 1994.

[3] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing in polynomial
time. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC),
pages 383–388, San Diego, CA, June 2003. ACM Press.

[4] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algrorithm for
constructing oblivious routing schemes. In Proceedings of the 15th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, pages 24–33, Jun. 2003.

[5] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models of compu-
tation. Journal of Computer and System Science, 30:130–145, 1985.

[6] Jie Gao and Li Zhang. Tradeoff between stretch factor and load balancing ratio in wireless
network routing. In Proceedings of th Symposium on Principles of Distributed Computing
(PODC), page to appear, 2004.

14

[7] Chris Harrelson, Kristen Hildrum, and Satish Rao. A polynomial-time tree decomposition
to minize congestion. In Proceedings of the 15th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 34–43, Jun. 2003.

[8] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for oblivious
routing in the hypercube. In Proceedings of 2nd IEEE Symposium on Parallel and Distributed
Processing (2nd SPAA 90), pages 31–36, Crete, Greece, July 1990.

[9] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westerman. Exploiting locality
in data management in systems of limited bandwidth. In Proceedings of the 38th Annual
Symposium on the Foundations of Computer Science, pages 284–293, 1997.

[10] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, Cambridge, UK, 2000.

[11] Harald Räcke. Minimizing congestion in general networks. In Proceedings of the 43rd Annual
Symposium on the Foundations of Computer Science, pages 43–52, Nov. 2002.

[12] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

[13] A. Srinivasan and C-P. Teo. A constant factor approximation algorithm for packet routing,
and balancing local vs. global criteria. In Proceedings of the ACM Symposium on the Theory
of Computing (STOC), pages 636–643, 1997.

[14] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, pages 263–277, May 1981.

A Appendix

A.1 The d-Dimensional Mesh

Here, we consider the d-dimensional path selection algorithm of Section 4. We compute an
upper bound on the expected congestion on an edge.

Let M1 and M2 be two submeshes with respective side lengths a1, . . . , ad and b1, . . . , bd,
such that: (i) M1 is of type-1, (ii) M2 completely contains M1, (iii) each side of M2 is at
least twice the side of M1, bi ≥ 2ai, for all 1 ≤ i ≤ d. The d-dimensional algorithm preserves
conditions (i)-(iii), for every pair of consecutive submeshes of the bitonic path (condition
(iii) is preserved even when M2 is a bridge, since the height of the bridge is h + 1).

Consider the formation of a subpath r from a submesh M1 to M2, where r is formed
by following a shortest path from a randomly chosen node v1 in M1 to a randomly chosen
node v2 in M2. The path is formed by following a dimension by dimension path, with a
random ordering of dimensions. Since M1 is of type-1, it holds that all of its sides are equal,
a1 = a2 = · · · = ad = a. Let e be an edge of M2. We show the following result:2

2This result cannot be used for the 2-dimensional analysis of Section 3.3, since the condiction (iii) listed
above does not hold for that algorithm.

15

Lemma A.1 Subpath r uses edge e with probability at most
2

dad−1
.

Proof: Without loss of generality, suppose that e is an edge in M2 along dimension l, from
(x1, . . . , xl, . . . , xd) to (x1, . . . , xl +1, . . . , xd). Suppose v1 = (y1, . . . , yd) and v2 = (z1, . . . , zd).
Let ρ be a random permutation which determines the order of dimensions. Suppose that
dimension l occurs in position i, i.e., ρ(i) = l. Then the probability P [e] that edge e is used
by r is bounded from above by the probability that, zρ(1) = xρ(1), . . . , zρ(i−1) = xρ(i−1), and,
yρ(i+1) = xρ(i+1), . . . , yρ(d) = xρ(d). We obtain:

P [e] =
1

bρ(1) · · · bρ(i−1)

·
1

aρ(i+1) · · ·aρ(d)

≤
1

2aρ(1) · · · 2aρ(i−1)

·
1

aρ(i+1) · · ·aρ(d)

=
1

2i−1ad−1
.

Since ρ is a random permutation, the probability that ρ(i) = l for any i is 1/d, so multiplying
by 1/d, summing, and using the fact that

∑d
i=1

1
2i−1 ≤ 2, we obtain:

P [e] ≤
1

d

d
∑

i=1

1

2i−1ad−1
=

1

dad−1

d
∑

i=1

1

2i−1
≤

2

dad−1
.

Let P ′ be the set of paths that go from M1 to M2 or vice-versa. Let C ′(e) denote the
congestion that the packets P ′ cause on e. We show:

Lemma A.2 E[C ′(e)] ≤
2|P ′|

dad−1
.

Proof: We can write P ′ = P1 ∪P2, where P1 is the set of subpaths from M1 to M2, and P2

is the subpaths from M2 to M1. Then, from Lemma A.1, the expected congestion at edge
e due to the subpaths in P1 is bounded by 2|P1|/(dad−1). With a similar analysis, we have
that the expected congestion at e is bounded by 2|P2|/(dad−1). Since P1 and P2 are disjoint,
we obtain E[C ′(e)] ≤ 2(|P1| + |P2|)/(dad−1) = 2|P ′|/(dad−1).

We have that C∗ ≥ B(M1, Π) ≥ |P ′|/out(M1). Since each side of M1 has a nodes, we
have that out(M1) ≤ 2dad−1. From Lemma A.2, we obtain:

Lemma A.3 E[C ′(e)] ≤ 4C∗.

A.2 Lower Bound on Random Choices

Here we show that any submesh with a particular number of nodes must have a lower bound
on its outgoing edges.

Lemma A.4 For any submesh M ′ with n′ nodes, out(M ′) ≥ dn′ d−1
d .

16

Proof: Let mi 1 ≤ i ≤ d be the sides of M ′. Let zi denote the product
m1 · · ·mi−1mi+1 · · ·md. Each zi represents a surface of M ′. At most d different surfaces could
be at the border of M and thus may not be used at out(M ′). Therefore, out(M ′) ≥

∑

i zi.
We want to find which mi minimize

∑

i zi, given that
∏

i mi = n′. This will give us a lower
bound on out(M ′).

Consider the Lagrangian L =
∑

i zi − λ(
∏

i mi − n′). Then,
∑

i zi is minimized when
∂L
∂mi

= 0, for all 1 ≤ i ≤ d. We have,

∂L

∂m1
= ((m3 · · ·md) + (m2m4 · · ·md) + · · · + (m2 · · ·md−1)) − λ

d
∏

i=2

mi = 0, and

∂L

∂m2
= ((m3 · · ·md) + (m1m4 · · ·md) + · · · + (m1m3 · · ·md−1)) − λm1

d
∏

i=3

mi = 0,

which gives,

λ =
1

m2

+
1

m3

+ · · ·+
1

md

, and

λ =
1

m1

+
1

m3

+ · · ·+
1

md

.

Therefore, m1 = m2. By computing the rest of the partial derivatives, we can show mi−1 =
mi for 2 ≤ i ≤ d. Therefore,

∑

i zi is minimized when mi = mj , for all 1 ≤ i, j ≤ d.

Consequently,
∑

i zi ≥ dmi
(d−1) = d(n′ 1

d)
(d−1)

= dn′ d−1
d . Which implies that out(M ′) ≥

dn′
d−1

d .

17

