
Optimizing NANOS OpenMP for the IBM Cyclops Multithreaded Architecture

David Ródenas, Xavier Martorell
Eduard Ayguadé, Jesús Labarta

CEPBA-IBM Research Institute, UPC
Jordi Girona 1-3, 08034 Barcelona, Spain�
drodenas,xavim,eduard,jesus✁ @ac.upc.es

George Almási, Călin Caşcaval
José Castaños, José Moreira

IBM T.J. Watson Research Center
Yorktown Heights, NY�

gheorghe,cascaval,castanos,jmoreira✁ @us.ibm.com

Abstract

In this paper, we present two approaches to improve
the execution of OpenMP applications on the IBM Cyclops
multithreaded architecture. Both solutions are independent
and they are focused to obtain better performance through
a better management of the cache locality. The first so-
lution is based on software modifications to the OpenMP
runtime library to balance stack accesses across all data
caches. The second solution is a small hardware modifica-
tion to change the data cache mapping behavior, with the
same goal. Both solutions help parallel applications to im-
prove scalability and obtain better performance in this kind
of architectures. In fact, they could also be applied to fu-
ture multi–core processors. We have executed (using simu-
lation) some of the NAS benchmarks to prove these propos-
als. They show how, with small changes in both the software
and the hardware, we achieve very good scalability in par-
allel applications. Our results also show that standard ex-
ecution environments oriented to multiprocessor architec-
tures can be easily adapted to exploit multithreaded proces-
sors.

1. Introduction

Every day the number of transistors in a single chip in-
creases, allowing to include more resources on chip. At the
same time, it is more difficult to increase resource utiliza-
tion through out–of–order execution, multiple instruction
issue, and deeper pipelines. For that reason companies have
started production of dual-core processors with multithread-
ing capabilities (like the current IBM Power5 [5]) and pro-
cessors with more than two cores in a chip (as advocated by
Intel [10]).

The IBM BlueGene/Cyclops (BG/C) architecture [2, 3,
7] provides us with a look ahead to future multi-core ma-
chines. BG/C simplifies the architecture and hardware orga-
nization and reduces the von Neumann bottleneck. Instead

of building a more complicated memory hierarchy it seeks
to hide latency by integrating many thread units – essen-
tially, simple processor cores – into the same chip sharing
memory. This kind of architecture is usually a good plat-
form for the execution of applications with high degrees of
parallelism, mainly scientific and engineering simulations.

In these applications the programmer faces the complex-
ity of managing parallelism at application level: handling
work distribution, data movement and synchronization. Al-
though a number of parallel programming models have been
proposed in the last years, we believe that the OpenMP [16]
standard is a simple way to parallelize numerically inten-
sive applications: it assumes shared memory and uses a few
directives to express parallelism, work distribution, and syn-
chronization to achieve near optimal performance.

In order to prove the adequacy of the OpenMP ap-
proach we have ported the NthLib user–level thread library
[15] to Cyclops, and used the OpenMP NanosCompiler [8]
to generate Cyclops code for OpenMP applications. The
NanosCompiler generates source code with calls to the Nth-
Lib runtime library. Our tools rely on the Cyclops devel-
oper toolkit and simulator to evaluate performance. An ini-
tial evaluation of the porting was presented in [1].

This paper proposes two different kinds of optimizations
(software and hardware) to run applications on the Cyclops
architecture. The paper is organized as follows: Section 2
briefly discusses the IBM Cyclops multithreaded architec-
ture. Section 3 presents the OpenMP Nanos execution envi-
ronment, and Section 4 shows an initial performance evalu-
ation of this environment. Section 5 shows how to take ad-
vantage of the Cyclops architecture applying some software
optimizations into the NthLib runtime library. Section 6
presents a simple hardware optimization to improve thread
stack locality. Section 7 discusses the related work. Finally,
Section 8 concludes the paper and Section 9 presents fu-
ture work.

© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/IPDPS.2005.317

2. The BlueGene/Cyclops architecture

Cyclops is a multiprocessor system-on-a-chip that
uses processor-in-memory (PIM) design for combina-
tion of main memory and processing logic into a single
piece of silicon. The chip (Figure 1) has a large num-
ber of simple (single-issue, in-order-execution) thread
units. Floating-point units and cache memory are shared
among groups of multiple thread units.

DRAM (8x512KB)

DRAM (8x512KB)

Thread Unit

Thread Unit

Thread Unit

F
P

U
D

−
C

ac
he

Communications Off−chip Memory

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

TG

TG

TG

TGTG

TG

TG

TG TG

TG

TG

TG

TG

TG

TG

TG

TG

TG

TG

TG TG

TG

TG

TG

TG

TG

TG

TG TG

TG

TG

TG

Thread Group

Figure 1. Block diagram of the Cyclops archi-
tecture

Each Cyclops thread unit has its own decoder, instruction
sequencer, register file and fixed point unit. Thread units
can issue an instruction in every cycle in program order if
resources are available and there are no dependences with
previous instructions. Instruction completion may be out-
of-order.

Cyclops thread units come in groups of four, called
quads. The thread units in the quad share the quad’s data
cache and floating point unit. Each thread unit can dispatch
a floating point operation (addition, multiplication or fused
multiply-add) in every cycle (subject to resource availabil-
ity). The floating point unit cannot be accessed by thread
units outside its quad.

Memory is distributed on two hierarchical levels (Fig-
ure 2): main memory and caches (instruction and data).
There are multiple banks of on-chip main memory shared
between all threads and the latency to any bank is uni-
form. Memory addresses are interleaved between different
memory banks. The hardware does not support paging, so
logical memory maps directly into physical memory. Two
quads share an instruction cache and they cannot have ac-
cess to other instruction caches. In addition, each thread has

a Prefetch Instruction Buffer (PIB) to improve instruction
fetching.

Mem

bank 0

Mem

bank 1

Mem

bank 15

Cache

0

Cache

1

Cache

31

. . .

. . .

Memory switch

Cache switch

Th1 Th2 Th124

Figure 2. Cyclops memory hierarchy

Any thread unit in the chip can access data stored in any
of the data caches. Threads units have faster access to their
local data cache than to remote caches. The hardware en-
sures that each main memory address maps directly to a sin-
gle data cache where it can be accessed by any thread. The
hardware uses a static bijective scrambling function to map
memory addresses to the cache. We will discuss the partic-
ulars of this mapping function later in the paper.

The BG/C environment provides a complete set of tools
targeted to work with Linux Red Hat 7 and gcc 2.95.3. Com-
ponents provided are the simulator of the processor, a ker-
nel, an external debugger, a subset of the standard C library,
and a cross–compiler based on the GNU toolkit (gcc 2.95.3
and binutils 2.11.2). All these tools have been re–targeted
for the BG/C instruction set architecture.

The Cyclops simulator allows many configurations with
different memory sizes and thread units count. Table 1
shows the actual simulation parameters used in all the ex-
periments presented in this paper.

3. OpenMP for BG/C

OpenMP [16] is an application programming interface
that may be used to explicitly direct multithreaded, shared
memory parallelism. It is based on compiler directives, run-
time library routines and environment variables. OpenMP
uses the fork/join model of parallel execution. This means

(a) Memory latency
Memory access type Execution Latency
Local cache hit 1 6
Local cache miss 1 24
Remote cache hit 1 17
Remote cache miss 1 36

(b) components
Component # units Params/unit
Quads 32 4 threads, 1 FPU, 1 data cache
Threads 128 single issue, in-order, 500 MHz
FPUs 32 1 add, 1 multiply, 1 div/sqrt
Data-cache 32 16KB, 8 way assoc., 64-byte line
Instr.-cache 16 32KB, 8-way assoc., 32-byte line
Memory banks 32 8MB each for a total of 256 MB.

Table 1. Actual simulation parameters used in
the experiments done in this paper

that there are two kinds of threads: the main thread and
slave threads. Execution of OpenMP programs starts in the
main thread. The slave threads are spawned when a paral-
lel region directive is found. Work distribution directives are
used to distribute the work among all participating threads;
OpenMP supports loop and task parallelism. Implicit and
explicit synchronization mechanisms are provided to ensure
the correct behavior of the parallel execution.

OpenMP for BG/C is built on the NanosCompiler
and the NthLib components. The OpenMP NanosCom-
piler is a source-to-source translator for Fortran77 based
on Parafrase-2 [17] that replaces OpenMP directives by
calls to NthLib runtime. This translator is platform in-
dependent. The translation step is performed in a Linux
workstation. The NthLib Runtime is designed to pro-
vide an efficient support to the OpenMP execution model
on shared-memory multiprocessors. This library is im-
plemented efficiently to support fine grain parallel tasks.
The execution environment offers a master thread and as
many slave threads as Cyclops threads are available. Ap-
plications start executing in the master thread. OpenMP
directives cause slave threads to be activated. The mas-
ter thread controls parallelism by providing a shared
work descriptor [14] specifying the slave threads in-
volved in the computation. The mapping of slave threads to
Cyclops thread units is supplied by the user, allowing con-
trol of e.g. how FPU use is distributed and what thread
units will have to share resources. The NthLib Runtime cre-
ates a fixed and aligned stack for all threads, mapped
on top of the stack provided by Cyclops for the hard-
ware thread.

4. Initial Performance Evaluation

4.1. Benchmarks

In our previous work we had ported to Cyclops, and
evaluated, a set of micro benchmarks and a subset of NAS
benchmarks, version 2.3 [4]. For this paper we have ported
the NAS 3.0 benchmark suite [11] to the OpenMP environ-
ment for BG/C with no architecture dependent optimiza-
tions and we have evaluated its performance and speedup.
We simulated classes S and W: for every benchmark we
chose the largest class that could be simulated subject to
Cyclops architectural limitations (memory size) and simu-
lation time. In a further bid to keep simulation time reason-
able we reduced the number of iterations for some of the
class W benchmarks.

We analyzed the results taking advantage of detailed per-
formance and resource use data provided by the simulator.

Benchmark Class S Class W
Size (nIter) Size (nIter)

LU 12 (50) 33 (300)
MG 32 (4) 64 (40)
SP 12 (100) 36 (400)
BT 12 (60) 24 (200)
CG 7000 (15) 14000 (15)

Table 2. NAS benchmarks characteristics

Table 2 shows the characteristics of the NAS benchmarks
used in the evaluation of this paper. Two different classes
of the benchmarks have been used.Class Sis the smallest
benchmark dataset size, usually used for testing purposes
only.Class Wis the next class in size and we use it as a ref-
erence in our simulations. The simulation time of the larger
classes of the NAS benchmarks (classes A, B, C and D)
take too long and most of them do not fit in the Cyclops
main memory.

The parameters provided in the table are the following:

� Sizeis the number of elements in the relevant dimen-
sion of the matrices. Parallelization is based on dis-
tributing this dimension across the different threads.
As the number is usually small, sometimes the evalu-
ation shows the effect of an unbalanced distribution of
iterations among threads.

� nIter is the number of iterations in the outer (sequen-
tial) loop, usually representing a time–step.

4.2. Analyzing the current results

In [1] the authors evaluated the performance of some of
the NAS benchmarks on Cyclops. The performance metric
used to evaluate performance is speedup with respect to the
sequential execution.

The results of this previous evaluation are shown in Fig-
ures 3 and 4. They present the scalability of LU, MG, and
SP (class S) and LU, MG, SP, BT and CG (class W), respec-
tively. Notice that with class S, applications do not scale be-
yond 16 threads. For class W this point is moved up to 32
threads. Figure 4 also shows that the applications SP and BT
suffer from unbalanced work distribution when run with 16
and 32 threads. For instance, when SP (class W) distributes
36 columns of the matrices among 16 or 32 threads, there
are always 4 threads executing more work than the others.
However, when running on 36 threads unbalance is reduced
and performance increases.

0

2

4

6

8

10

12

1 2 4 8 16 32

threads

sp
ee

d
u

p lu
mg
sp

Figure 3. Initial performance of the NAS
Benchmarks (class S)

We suspected that the poor scalability could be due to
memory problems, in particular how data caches are used
during the execution. If we take a look at the data cache ac-
cess patterns, we will find a characteristic signature for each
application and data size. Changing the number of threads,
we will observe that some data caches, like the ones holding
thread stack data, will increase the number of accesses, and
others, like the ones holding code or global data, will stay
mostly constant. The distribution among data caches is de-
termined by the (previously discussed) scrambling function.
Figure 5 presents the characteristic signature given by the
MG benchmark with 4 and 64 threads. Program global data
is usually distributed across all data caches. This is shown
by all data caches being referenced around 2,500,000 times.
The most used stack area of the master thread is located in
the 7th cache. Slave threads stacks are mapped in the 28th
cache. This causes a big unbalance between the number of

0

5

10

15

20

25

30

35

40

0 16 32 48 64

threads

sp
ee

d
u

p

mg
cg

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30

threads

sp
ee

d
u

p lu
sp
bt

Figure 4. Initial performance of the NAS
Benchmarks (class W)

accesses to the data caches.
The difference between the executions with 4 and 64

threads comes from the fact that the master thread reduces
the amount of work done when going from 4 to 64 threads,
but many thread stacks are mapped into cache number 28.
As the amount of conflict misses increases, this causes a de-
clining hit rate (as presented in Figure 6 for the MG bench-
mark), degrading application performance.

5. Optimizing the NANOS OpenMP runtime

The first optimization presented is a software optimiza-
tion that is using padding to map NANOS thread stacks
to different caches in order to avoid conflicts. The reason
for this optimization is two-fold: i) OpenMP is based on
a full shared–memory approach, and thus threads can not
take advantage directly of the private stack data mapping;
and ii) the default hardware scrambling function of the Cy-
clops chip maps all the thread stacks in a single cache, as
described below.

Cyclops allows all data caches to be accessed as one
large data cache of 512 KB. To reduce collisions, the hard-
ware implements a scrambling function that uses the bits of
each data address to determine the destination cache as fol-
lows: bits 0 to 5 determine the byte inside one line, bits 6

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache

m
ili

o
n

s
o

f a
cc

es
se

s

4th

64th

Figure 5. Comparative of MG (class W) data
cache accesses using 4 and 64 threads
(baseline implementation)

85

87

89

91

93

95

97

99

1 2 4 8 16 32 64

threads

ca
ch

e
h

it
 %

Figure 6. MG (class W) data cache hits run-
ning with different number of threads (base-
line implementation)

to 10 determine the line inside the cache, and bits 11 to 15
to determine the data cache that owns the line. This func-
tion maps 2048 consecutive bytes of memory into the same
data cache.

We have shown in the previous section that the number
of accesses to a certain data cache grows rapidly when we
increase the number of threads executing the application.
When an application executes, the OpenMP slave threads
run the same code, with the same calls and stack frames.
In all executions the stacks are aligned to a 128 KB bound-
ary, thus bits 11-15 of the stack accesses to thread local data
will be the same. Because of it, these threads will compete
for a few data cache lines and they will produce a large num-
ber of conflicts: threads will not be able to load their mem-
ory working set on the data cache.

Our objective is to locate the most used portion of each
thread stack into a different data cache. To do this, we have
introduced different paddings at the bottom of each thread

stack. We have selected the size of the padding to be mul-
tiples of 2048 bytes, so that the scrambling function will
map the most used portion of each thread stack into differ-
ent data cache.

Figure 7 shows the scaling for class W of the benchmarks
using this modification. All benchmarks scale satisfactorily
up to the number of threads that they can feed up (the size
of the parallelized dimension of the matrices, shown in Ta-
ble 2). Comparing these results with the baseline presented
in Figure 4, the performance is improved between 10% and
70%, depending on the application.

0

5

10

15

20

25

30

35

40

0 16 32 48 64

threads

sp
ee

d
u

p

mg
cg

0

5

10

15

20

25

30

35

0 10 20 30

threads

sp
ee

d
u

p lu
sp
bt

Figure 7. Performance of the NAS Bench-
marks (class W) with the software optimiza-
tion

Figure 8 shows that the data accesses to the cache are
more evenly distributed, and in particular accesses to stack
data located in the slave threads stacks are no longer con-
flicting. This optimization has a significant larger impact
when running with a larger number of threads (64 compared
to 4 in the figure). As a result, in contrast with the experi-
ments presented in the previous section, the number of con-
flict misses is reduced. And thus, the hit rate is kept mostly
constant, even when the number of threads is increased, as
shown in Figure 9, obtained from the execution of MG.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache

m
ill

io
n

s
o

f a
cc

es
se

s

4th

64th

Figure 8. Comparative of MG (class W) data
cache accesses using 4 and 64 threads (soft-
ware optimization)

85

87

89

91

93

95

97

99

1 2 4 8 16 32 64

threads

ca
ch

e
h

it
 %

Figure 9. MG (class W) data cache hits run-
ning with different number of threads (soft-
ware optimization)

6. Optimizing the shared cache behavior

The second optimization that we explore is changing the
hardware scrambling function, such that software threads
can map stacks to local caches. Compared with the previ-
ous optimization, this technique has the following advan-
tages: i) reduces the wasting of memory because padding is
no longer necessary — which in the case of Cyclops’ lim-
ited on-chip memory is even more critical than for other ar-
chitectures; and ii) threads access local stack data into local
caches, thus giving better performance.

To implement this technique, we change the bits used by
the scrambling function to decide into which data cache to
map a specific data address. Now, bits 17 to 21 are used, giv-
ing a total of 128 KB of consecutive memory mapped onto
the same data cache. We also add a new register to describe
how to map the thread stacks into each data cache. The Nth-
Lib runtime was modified to take advantage of these hard-

ware modifications and to map each stack into the thread
unit’s quad data cache and provide 128KB of stack to the
slave threads.

Figure 10 presents the performance results using this
technique. As shown, the scaling is similar similar to the
software padding solution, however, the cost is much lower.

0

5

10

15

20

25

30

35

40

0 16 32 48 64

threads

sp
ee

d
u

p

mg
cg

0

5

10

15

20

25

30

0 10 20 30

threads

sp
ee

d
u

p lu
sp
bt

Figure 10. Performance of the NAS Bench-
marks with the hardware optimization

Results improve the baseline implementation for two
reasons. First, because the threads stacks are mapped lo-
cally into the thread quad and the local data cache latency
is smaller than the remote ones (6 cycles compared to 17
for a hit and 24 to 36 for a miss, as presented in Table 1).
And second, because the new scrambling function changes
the cache behavior and stacks usually aligned are placed on
different data cache lines, avoiding cache conflicts among
them. The benefits in this case depend more on the type of
the application. For instance it has no effects on CG, while
it improves the other NAS benchmarks between 40% and
100%.

In addition, as the padding sizes are reduced, this hard-
ware modification increases significantly the amount of
memory available for the application. We estimate that we
can save about 8 MB of memory by avoiding the padding.

Figure 11 shows that in MG the data accesses are also
evenly distributed across the data caches, as in the software

optimization case. This is also more noticeable when the
number of threads is increased, which shows the scalabil-
ity of the approach.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache

m
ill

io
n

s
o

f a
cc

es
se

s

4th

64th

Figure 11. Comparative of MG data cache ac-
cesses using 4 and 64 threads (hardware op-
timization)

85

87

89

91

93

95

97

99

1 2 4 8 16 32 64

threads

ca
ch

e
h

it
 %

Figure 12. MG data cache hits running with
different number of threads (hardware opti-
mization)

Figure 12 shows that the hit rate of this solution slightly
decreases compared to the hit rate obtained from the soft-
ware solution. This is because although the new data scram-
bling function is more beneficial for the local data, it causes
an increment of data cache conflict misses in global data ar-
eas. The reason for this is that any large data structure of
more than 16 KB will not fit in one quad data cache and it
will generate many conflict misses. This is reflected in Fig-
ure 11, shown as an increment on the number of accesses
to data caches 9-20 and the corresponding reduction in data
caches 21-31.

7. Related Work

Simultaneous multithreading exploits both instruction-
level and thread-level parallelism by issuing instructions
from different threads in the same cycle. It was shown
to be a more effective approach to improve resource uti-
lization than superscalar execution. Results presented in
[6, 23] support our work by showing that there is not enough
instruction-level parallelism in a single thread of execution,
therefore it is more efficient to execute multiple threads con-
currently.

The Tera MTA [19, 20] is another example of a modern
architecture that tolerates latencies through massive paral-
lelism. In the case of Tera, 128 thread contexts share the ex-
ecution hardware. This contrasts with BG/C, in which each
thread has its own execution hardware. Both architectures
can tolerate long latencies.

Several studies have been done to determine the cache
effects of multithreading. Yamamoto, et al. [25, 24] and Gu-
lati and Bagherzadeh [9] both found that the cache miss
rates in simultaneous multithreading processors increased
when more threads were used. Thekkath and Eggers [22]
found that cache interference between threads varied de-
pending on the benchmark. With our proposals, we achieve
a better distribution of data cache accesses onto the avail-
able cache memory, thus solving these problems.

As far as we know, this is the first attempt to port ef-
ficiently an OpenMP runtime system to a massive paral-
lel multithreaded system on–chip. The porting is based on
the experience gained over the years on implementing such
an environment on top of other execution environments, in-
cluding small SMPs and large cc-NUMA. Vendors also pro-
vide fine-tuned implementations for their target machines,
such as SGI IRIX MP[21] library or the IBM run-time li-
brary for AIX. For example, the SGI MP library provides a
complete execution environment for each application, sup-
porting thread creation, management, synchronization and
NUMA features, such as memory placement. The library is
aware of the machine load, trying to adjust the parallelism
which is exploiting to the available resources. A number
of projects also try to extend the use of OpenMP to clus-
ters with DSM (Distributed Shared Memory) support. The
long latencies experienced when accessing remote data and
the memory granularity at the page level impose new con-
straints in these implementations [13, 18].

The NANOS execution environment, the layer used to
implement OpenMP on BG/C, focuses on adaptability at
different levels: the effective exploitation of nested paral-
lelism and the specification of precedence relations among
computations that form pipelines. All these aspects form a
set of extensions to OpenMP whose impact is being inves-
tigated on BG/C.

A number of studies have been published in which differ-

ent compiler optimizations are evaluated for multithreaded
architectures. For example, [12] relaxes and modifies some
of the requirements on code scheduling and data access used
by current compilers.

As stated before, the BG/C architecture is focused on the
execution of a single multithreaded application within each
chip. Other architecture proposals such as� –Coral [26] pro-
vides a mostly hardware managed simultaneous multipro-
gramming and multithreading environment.

8. Conclusions

The work presented in this paper shows how to improve
the performance of multithreaded systems by taking advan-
tage of our experience on multiprocessor systems. The pa-
per focuses on one of the critical architectural differences,
cache organization, and shows how we can overcome the
differences by using simple techniques. In multiprocessor
systems each physical thread (processor) has its own cache
and thus local stack accesses are cheap, and the overhead
occurs when accessing shared data (either through the cache
coherence protocol, or explicit cache management).

By contrast, in multithreaded systems a few threads are
more closely integrated, and thus competing for the same
resources (caches included). The goal is to share as much
information as possible and also to avoid conflict misses
caused by different threads. This will offer higher perfor-
mance on many multithreaded processors, including multi-
core chips, where the L2 cache is shared among all cores.
In these architectures, it is desirable to take advantage ofthe
tight coupling, and translate it into better scalability inthe
execution of parallel applications.

The two different solutions presented to improve the
cache management achieve both goals: they increase the
amount of information shared in the cache and they avoid
conflict misses. Both solutions have similar efficiency im-
pact but different costs.

The first solution consists of introducing differ-
ent padding sizes into different thread stacks, so that
the conflict misses between threads are reduced signifi-
cantly. In this case, the performance is improved between
10% and 70%, depending on the application.

The second solution consists of changing the hardware
function used to map main memory addresses into data
caches. This technique can also be used in hyperthreaded
and multicore processors. With this solution, the data ac-
cessed by the threads is located in its own cache, and ac-
cesses are faster. And also, it reduces the number of conflict
misses. The benefits in this case depend more on the type
of the application, and it has no effects on CG, while it im-
proves the other NAS benchmarks between 40% and 100%.

The results presented in this paper show how with small
changes in either hardware or software, we can achieve very

good scalability in parallel applications. Our results also
show that standard execution environments developed for
multiprocessor architectures can be easily adapted to ex-
ploit multithreaded processors.

9. Future Work

The padding optimization shown in this paper does not
consider stack usage; usually, there will be some stack
addresses more often accessed than others, as shown in
the data cache usage figures. These addresses should be
remapped into the thread’s quad data cache by setting a
more accurate padding.

Cyclops provides a feature that makes possible to have
private variables at each quad and ensure that we will have
a fast access to that space. It should be necessary to iden-
tify non-shared data of each thread and make it private to
its data cache; the expected results should be better than the
two solutions presented here.

When it is not possible to identify non-shared data to be
placed in the threads stacks, we should use a more sophisti-
cated scrambling function than the one presented in this pa-
per. An alternative solution would be to provides an address
translation mechanism, which can be used to do the logical
to physical translation and map all stack pages into the lo-
cal data caches. The cost benefits of this solutions may be
explored in the future.

Another possibility is to change or adapt the loop
scheduling at application level in order to provide the
fastest data access into the local quad. When a thread
causes a cache miss, a new line is loaded from mem-
ory, but the same line may be needed at next itera-
tion. As we use more threads per quad, there exists less
space for each thread’s lines and may be more diffi-
cult to load the complete working-set of many threads
into the same cache. The idea is to cause a miss into a
line once, and share the line with other threads. In this
same way, we will explore multilevel OpenMP, creat-
ing groups into the same quads in order to share the same
working-set.

Finally, we expect that all measurements and investiga-
tions will help us to develop an OpenMP environment capa-
ble to get advantage of both shared memory multiprocessor
systems and distributed systems based on MPI, where mul-
tithreaded processors are used.

Acknowledgments

This research has been supported by the Ministry of Sci-
ence and Technology of Spain under contract TIN2004-
07739-C02-01 and the European Union under contract IST-
2001-33071.

References

[1] G. Almasi, E. Ayguade, C. Caşcaval, J. G. Castaños,
J. Labarta, F. Mart´ınez, X. Martorell, and J. Moreira. Evalu-
ation of openmp for the cyclops multithreaded architecture.
In OpenMP Shared Memory Parallel Programming, Interna-
tional Workshop on OpenMP, Applications and Tools, WOM-
PAT 2003, Lecture Notes on Computer Science 2716, pages
64–84, June 2003.

[2] G. Almasi, C. Caşcaval, J. G. Castaños, M. Denneau,
D. Lieber, J. E. Moreira, and J. Henry S. Warren. Dissect-
ing Cyclops: A detailed analysis of a multithreaded architec-
ture. InMEDEA Workshop on On-Chip Multiprocessor: Pro-
cessor Architecture and Memory Hierarchy related Issues,
September 2002.

[3] G. Almasi, C. Caşcaval, J. G. Castaños, M. Denneau,
D. Lieber, J. E. Moreira, and H. S. Warren, Jr. Performance
evaluation of the Cyclops architecture family. Technical Re-
port RC22243, IBM T. J. Watson Research Center, Novem-
ber 2001.

[4] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The nas parallel benchmarks 2.0.
Technical Report NAS-95-020, NASA Ames Research Cen-
ter, December 1995.

[5] J. Clabes, J. Friedrich, M. Sweet, J. D. a nd Sam Chu,
D. Plass, J. Dawson, P. Muench, L. P. an d Michael Floyd,
B. Sinharoy, M. Lee, M. Goulet, J. W. agoner, N. Schwartz,
S. Runyon, G. Gorman, P. R. a nd Ronald Kalla, J. McGill,
and S. Dodson. Design and implementation of the power5
microprocessor. InDAC 04: Proceedings of the 41st annual
conference on Design automa tion, pages 670–672. ACM
Press, 2004.

[6] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and
D. Tullsen. Simultaneous multithreading: A platform for
next-generation processors.IEEE Micro, pages 12–18,
September/October 1997.

[7] F. A. et al. Blue gene: A vision for protein science using a
petaflop supercomputer.IBM Systems Journal, 40(2):310–
328, 2001.

[8] M. Gonzalez, E. Ayguade, X. Martorell, J. Labarta,
N. Navarro, and J. Oliver. NanosCompiler: Supporting flex-
ible multilevel parallelism in OpenMP.Concurrency: Prac-
tice and Experience, 12(9), August 2000.

[9] M. Gulati and N. Bagherzadeh. Performance study of multi-
threaded superscalar microprocessors. In2nd International
Symposium on High Performance Computer Architecture,
pages 291–301, February 1996.

[10] Intel. Intel’s t’s deliver new platform enhance-
ments beyond gigahertz, Dec. 2004, Jan. 2005.
http://www.intel.com/update/departments/initech/it12041.pdf.

[11] H. Jin, M. Frumkin, and J. Yan. The OpenMP imple-
mentation of the NAS parallel benchmarks and its perfor-
mance. Technical Report Technical Report NAS-99-011,
NASA Ames Research Center, October 1999.

[12] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh, and D. M.
Tullsen. Tuning compiler optimizations for simultaneous
multithreading. InInternational Symposium on Microarchi-
tecture, pages 114–124, 1997.

[13] H. Lu, Y. C. Hu, and W. Zwaenepoel. OpenMP on network
of workstations. InProc. of Supercomputing’98, 1998.

[14] X. Martorell, E. Ayguade, J. Navarro, J. Corbalan, M. Gon-
zalez, and J. Labarta. Thread fork/join techniques for multi–
level parallelism exploitation in NUMA multiprocessors. In
Proceedings of the 13th Int. Conference on Supercomputing
ICS’99, June 1999.

[15] X. Martorell, J. Labarta, J. Navarro, and E. Ayguade. A
library implementation of the nano-threads programming
model. InProceedings of Euro-Par’96, August 1996.

[16] O. Organization. OpenMP Fortran application interface, v.
2.0. www.openmp.org, June 2000.

[17] C. D. Polychronopoulos, M. B. Girkar, M. R. Haghighat,
C. L. Lee, B. P. Leung, and D. A. Schouten. Parafrase-2:
An environment for parallelizing, partitioning, synchroniz-
ing and scheduling programs on multiprocessors. In1989
International Conference on Parallel Processing, volume II,
pages 39–48, St. Charles, Ill., 1989.

[18] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of
OpenMP compiler for an smp cluster, 1999.

[19] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S.
Gatlin, N. Mitchel, J. Feo, and B. Koblenz. Multiproces-
sor performance on the Tera MTA. InProceedings Super-
computing ’98, Orlando, Florida, Nov. 7-13 1998.

[20] A. Snavely, G. Johnson, and J. Genetti. Data intensive vol-
ume visualization on the Tera MTA and Cray T3E. InPro-
ceedings of the High Performance Computing Symposium -
HPC ’99, pages 59–64, 1999.

[21] S. G. C. Systems. Origin2000 and Onyx2 performance tun-
ing and optimization guide. Technical Report Doc. num.
007-3430-002, 1998.

[22] R. Thekkath and S. J. Eggers. The effectiveness of mul-
tiple hardware contexts. InProceedings of the 6th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 328–337,
October 1994.

[23] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultane-
ous multithreading: Maximizing on-chip parallelism. InPro-
ceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 392–403, June 1995.

[24] W. Yamamoto and M. Nemirovsky. Increasing superscalar
performance through multistreaming. InInternational Con-
ference on Parallel Architectures and Compilation Tech-
niques (PACT 95), pages 49–58, June 1995.

[25] W. Yamamoto, M. Serrano, A. Talcott, R. Wood, and M. Ne-
mirovsky. Performance estimation of multistreamed, super-
scalar processors. In27th Hawaii International Conference
on System Sciences, pages I:195–204, January 1994.

[26] M. Yankelevsky and C. D. Polychronopoulos.� –Coral:
A multigrain, multithreading processor architecture. In
Proceedings of International Conference on Supercomput-
ing’01, 2001.

