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Abstract 
 

Air Traffic Control is an important application with 
demanding real-time database processing requirements. 
Systems that have been implemented using current 
approaches have typically been expensive, late, over-
budget and have not performed up to specification. In 
part this is because, in attempting to meet the real-time 
requirements, developers have been driven to use 
complex algorithms and software for what are 
inherently relatively simple requirements. Our analysis 
indicates that the use of modern SIMD COTS systems 
will enable guaranteed real-time performance to be 
achieved with simpler algorithms on modest amounts of 
hardware. This paper covers the system,  the approach 
to the application and some of the solution details. 

 
1. Introduction 

 
     This paper provides an overview analysis of Air 
Traffic Control (ATC) using an SIMD COTS system, 
and covers the system, the approach to the application 
and some of the solution detail.   
     ATC is an important application with demanding 
real-time processing requirements. Systems that have 
been implemented using current approaches have 
typically been expensive, late, over-budget and not 
performed up to specification. In part this is because in 
attempting to meet the real-time requirements 

developers have been driven to use complicated 
algorithms and software for what are inherently 
relatively simple requirements. Our analysis indicates 
that the use of modern SIMD COTS systems will enable 
guaranteed real-time performance to be achieved with 
simpler algorithms on modest amounts of hardware. The 
overall requirements of ATC are illustrated in Figure 1.  

 
1.1 A previous analysis 

 
     The following Tables 1 and 2 are tables 2. and 3. 
from [1]. That paper assumed currently available 
technology. The analysis of this paper is based on 
characteristics of a real modern SIMD chip and board.  

 
 

     There are thus up to 14000 flights, 4000 of which are 
under the control of this system. There are up to 12000 
radar reports/sec; 6000 are dealt with in each 0.5 sec 
interval. 

Table 1. ATC – Worst-Case 
Environment 

 
  Reports per second  12,000 
  IFR flights   4,000 
  VFR/backup flights  10,000 
  Controllers   600 
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Table 2. Statically Scheduled Solution Time 

 
Task      p  j  c  d  Proc time 
1. Report Correlation & Tracking  .5  15  .09  .10  1.44 
2. Cockpit Display 750 /sec)   1.0  120  .09  .20  . 
3. Controller Display Update (7500/sec)  1.0  12  .09  .30  .72 
4. Aperiodic Requests (200 /sec)  1.0  250  .05  .36  .4 
5. Automatic Voice Advisory (600 /sec)  4.0  75  .18  .78  .36 
6. Terrain Avoidance    8.0  40  .32  2.93  .32 
7. Conflict Detection & Resolution  8.0  60  .36  3.97  .36 
8. Final Approach (100 runways)  8.0  33  .2  6.81  .2 
 Summation of Tasks in a period P     4.52 
The system period P (in which all tasks must be completed) is 8 seconds 
p the task period time, is used to determine the next task release time ri + 1 = ri + p, 
j is the execution time, in microseconds, for each jobset in a task, 
c is the cost for each task for the worst-case set of jobsets, 
d the deadline time for each task ri + c + .01 (includes 10 ms interrupt processing per task) 

 
 

      Table 2 shows the computing work under 8 
headings. The work of each heading is dealt with once 
every p secs. j, c and d characterize the timing for the 
suggested hardware. j is the time (usecs) for a unit of 
computing, c (secs) is the total time for all the units, d is 
the time from the start of an 8 sec period by which that 
computing is finished. For example, the Report 
Correlation & Tracking, has 6000 reports to correlate 
against all tracks. Each report process is estimated to 

take 15 usecs, so j is 15 and c is 0.09 (derived from 15 * 
6000/10**6). With 10 msecs allowed for interrupt 
actions, and starting at the beginning of the period, d = 0 
+ 0.09 + 0.01 = 0.10. The “Proc time” column is the 
total processing time for an 8 sec period. As there are 16 
half secs in 8 secs, the correlation time is 0.09 * 16 = 
1.44 secs. This is ~32% of the 4.52 processing time, 
which is a total processing load of ~57% of available 
time.  
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1.2 Modern SIMD chips 
 
     The chips considered are the 200 MHz CS301 and a 
250 MHz successor due in Q2 2005.  
     These SIMD chips have powerful PEs (Processing 
Elements) with both floating and fixed point hardware in 
every PE. For 16 to 32-bit work it is usually faster to use 
floating point, and this is assumed in this study. Other 
features have commensurate speed, such as I/O and 
moving data between the “poly” RAM (RAM in each 
PE) and the register files. The I/O is also flexible, with 
each PE able to specify its own address for external 
“mono” RAM. The poly RAM is 4kB/PE, rising to 6 
kB/PE in the successor chip. There are 64 PEs in the 
current chip, and 96 in its successor. The generic core of 
the chip is shown in Figure 2. More detail can be found 
in [2]. 
     In multi-chip systems, each chip runs its own 
program. Global SIMD operation is achieved by each 
chip running the same code and, when needed, 
synchronizing by software. (See below.)  
     Cycle estimates are for highly optimized assembly 
coding. Less optimized coding can still achieve the real-
time requirements, as there are big margins over real 
time.  

 

 
Figure 2. Generic core of SIMD chip 

 
1.3 SIMD boards 
 

     The current CS301 boards contain 2 CS301 chips and 
1 GB of “mono” DRAM. A proprietary ClearConnect 
bus runs from one CS301, across the other CS301 and, 
via an FPGA, to the DRAM. There is a PCI interface, 
which can be connected to a host computer such as a PC. 
Research at Kent State University will use this COTS 
board. 
     The successor board has two successor SIMD chips, 
each with an on-chip interface to their own DRAM. The 
ClearConnect bus again connects the two chips and, via 
an FPGA, the board’s 64-bit PCI-X interface.  
 
2. Analysis for a real modern SIMD system 
 
     A qualitative difference of this analysis to that in [1] 
is that here it is assumed that many tracks are mapped in 
one PE, whereas [1] assumes there is one PE for every 
track. This is possible because the modern chip is fast 
enough to do the work of many tracks per PE. The 
algorithm is still SIMD. Each PE can support about 100 
tracks, so 14000 tracks require about 140 PEs. Either 
three of the 64-PE chips or two of the successor 96-PE 
chips are needed. 
 
2.1 Reduction and broadcast operations 
 
Using SIMD for ATC requires efficient implementation 
of global Reduction operations. It is these operations that  
require global synchronization. Arguably this is the 
“difficult part”. ATC uses global tests and PickOne. The 
others are included for completeness.  
 
2.1.1 Global test. The simplest operation is to test if a 
Boolean condition is true anywhere. An application may 
have a large array of Booleans, with many elements in 
each PE. A key for high performance is to first reduce 
these values in each PE to a single Boolean. Most SIMD 
chips will have hardware that produces a mono (scalar) 
Boolean by applying a Boolean operator across every PE 
in the chip. For current chips this instruction takes about 
15 cycles to produce a result.  
     If a global test is to be applied across several chips, an 
across-PE mechanism is needed that first checks that all 
chips have finished and then combines the test results. 
There is no hardware help for this. It can be done by 
each chip recording both that it has finished, and its 
result, in the board mono DRAM. Each chip can then 
read the DRAM and, when it is found that all chips are 
recorded as finished (“synchronized”), read the chip 
results and compute the global result. With only a few 
chips on a board, this across-chip work is estimated at 
about 100 cycles. This assumes that all chips finished 
their previous computing at nearly the same time, which 
is likely to be the case if they have all been doing the 
same work.  
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     Thus within-PE global tests take about 15 cycles, and 
across-chip tests about 115 cycles. A system with several 
boards (bigger than needed for ATC) would take longer.  
 
2.1.2 PickOne. PickOne is an operation on a Boolean 
array that picks a unique F(alse) element. (Alternatively, 
a unique True element.) Usually the first F element is 
picked. There is no hardware to support this, and it is 
non-trivial. Each PE finds if there is any F in that PE. 
Using across-PE work, the first F PE (if any) is found. 
Then, within-PE Boolean work in the selected PE finds 
the first F in the PE. One way of doing the across-PE 
work is by a “binary chop”. A chip test finds if there is 
an F in the first half of the PEs. If not, the second half is 
chosen. The chosen half is then tested to find the quarter. 
In a logarithmic number (6 for 64 PEs) of such tests the 
first PE with an F is found. Carefully coded, this across-
PE but within-chip work takes about 120 cycles.  
     With multiple chips, each chip writes to external 
mono RAM whether it has an F, and, after 
synchronization, each chip reads all results and computes 
if it is the selected chip. Each chip knows its position, 
treating the chips as a linear sequence. This takes about 
100 cycles for chips on the same board. In some PickOne 
contexts the bulk of this across-chip work will already 
have been done as part of a global test. Thus an isolated 
PickOne takes about 220 cycles, and a PickOne after a 
global test takes about 100 cycles. These figures exclude 
the within-PE work when there are multiple Booleans in 
a PE.  
 
2.1.3 Max and Min. There are two alternative 
algorithms for maximum that are almost equally good. 
One is described here. With big arrays, within-PE work 
should be done first, followed by a single across-PE 
stage.  
     The first algorithm treats the bits of the numbers in 
sequence, starting with the most significant. Numbers 
that cannot be the biggest in the chip are eliminated 
progressively, but always ensuring that at least one 
number is retained in the “competition”. A global test is 
applied to numbers that are still in the competition to 
find if the next bit is T(rue) anywhere. This result is 
broadcast, and if any were T, numbers with an F are 
eliminated. A record of the results of the global tests 
gives the scalar max. This within-chip work is constant 
time and takes about 20 cycles per bit. (e.g., about 320 
cycles for a 16-bit array.) For multiple chips, the chip 
results are posted in mono RAM, so each chip can read 
them and work out the global maximum. This adds about 
100 cycles. 
     The second algorithm will be in [3]. 
  
2.1.4 Sum. For large arrays, within-PE work is done 
first. The across-PE work in SUM is done by shifting, 

using the above "log(n)" approach. With 64 PEs, within-
chip Sum requires about 200 cycles for up to 32 bits. For 
96 PEs, the last 2 stages can be replaced by copying 3 
partial results to mono RAM, and about 250 cycles are 
required. Across-chip adds about 100 cycles.  
 
2.1.5 Broadcast. This is not strictly a reduction 
operation, but is important. Broadcasting data from 
mono RAM to all PEs is part of the instruction set of a 
chip. With more than one chip on a board, each chip can 
access all the mono RAM. When the mono data is stable, 
such as when correlating a sequence of radar reports, no 
validity check is needed, but in other cases validity needs 
to be semaphored to achieve synchronization.  
 
2.2 Report Correlation & Tracking 
 
An ATC system has radar reports from many radars, 
which give positions of objects in air space. There is a 
real-time database of the tracks of flights in 3D air space 
which are updated by correlating the position of each 
radar report with the position of a track extrapolated to 
current time. When a track correlates with a report the 
track information is updated to absorb this new 
information about the track. Over a 0.5 sec interval all 
radar reports are assembled, and then one at a time these 
reports are trial correlated against all tracks in the 
database. (About 6000 reports every one-half second.) 
     The track database is held in the mono DRAM, and at 
the start of the Correlation task each track loads 3 
position coordinates, plus the estimated uncertainties in 
those coordinates into the on-chip poly RAM. With 
14000 tracks and 192 PEs there are 73 tracks per PE.  
     It is assumed in each report that the location 
coordinates are x, y, and, often, h (height). There is also 
an uncertainty in x, y, and h. Reports are dealt with one 
at a time by broadcasting the 6 values and comparing the 
positions of every track with the report. Boxes of 
uncertainty are formed around both track and report 
positions, so each track can decide if there is an 
intersection between its box and a report box. If a unique 
track intersects, then the report data is stored with that 
track for later track update, and the track is marked not 
to correlate with later records. If two or more tracks 
correlate with the same radar report, then the correlating 
tracks are marked as part of a multiple hit. If a report 
does not correlate, it is marked to participate in a later 
round of correlations with wider tolerances.  
     With many tracks per PE, the broadcast of report data 
is stored only once per PE. Likewise, the report box is 
computed only once, after broadcast.  
     Computing the track boxes is done only once per 
“correlation period” (0.5 secs). Thus the only work per 
track per report is 6 comparisons and 5 Booleans.  
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     For each report, each track’s Boolean correlation 
result contributes to a count of the number of successful 
correlations in each PE, and to find the within-PE track 
number of the first correlated track. The count can be 
done with 2-bit numbers, representing 0, 1 and many. 
     The across-PE work is based on whether or not the 
PE total is 0. A global OR test is done for each radar 
report to find if there are any hits. If there are no hits, the 
report is marked for the next correlation round. If there 
are hit(s), a PickOne function is used to find the first PE 
with a nonzero total. The Picked PE changes its count to 
0 if it was previously 1. Then a global test is done to see 
if any more tracks correlated. The result of this test is 
broadcast, and if, globally, at least 2 tracks correlated, all 
tracks are scanned to mark the correlated tracks as 
multiple correlations. If there was just one correlation, 
the Picked PE marks as successfully correlated the track 
for which it saved the within-PE address, and copies the 
report position data to the record for that track.  
     When all reports for the period have been dealt with, 
the process is repeated for all unmatched reports up to 
twice more, with wider track tolerances. After 3 rounds, 
any unmatched reports are used to start new tracks.  
     The following was done before any correlations: 

• empty tracks are identified 
• the empty tracks are counted within-PE 
• a within-PE list is formed of positions of empty 

tracks. (1 byte of poly storage per track) 
• a global “scan sum” gives each PE the 2-byte 

global “empty number” of its first empty track 
As this work is done only once, it takes negligible time.  
     For each unmatched report: 

• increment a mono count of new tracks 
• compare this count with each PE’s empty track 

numbers. (E.g. if this is the 57th new track, only 
one PE will contain this empty track number. It 
might e.g. be the 3rd empty track in that PE.) 

• the within-PE address is used to initiate a track 
in this unique empty track with the report data 

 
2.2.1 Higher quality Correlation. The error in a radar 
report has a component along the radar “radius” (from 
measuring the time of the radar response) and a 
component across the radius (from error in the azimuth 
angle). Other than for short-range reports, typical 
radars have much bigger errors in azimuth than range. 
The ideal “report box” is an eccentric ellipse, but an 
elongated rectangular box is quite a good 
approximation. However, in system coordinates the 
rectangle will not usually be aligned with the axes, and 
for computing efficiency a box aligned with the axes is 
needed. If such a box is to include all possible good 
correlations, it must be much bigger than the original 
box, but this will include dubious correlations. Better is 
to do the correlation in “radar coordinates” with axes 

along and perpendicular to the radar radius. This aligns 
the original radar box to the axes. Detail of this 
approach will be in [3]. 
 
2.2.2  Estimating cycles. With 6000 reports, the 
estimated worst case is that 1000 fail to correlate on the 
first round, 300 fail on the second round and 100 fail 
on the last round (and hence start new tracks). Thus 
there are 7300 correlations. We assume there are 200 
multiple hits.  
     There are 73 tracks/PE. The per track work of: 

• 6 compares 
• 5 Boolean ops 
• one step of  count hits and find the first 

address 
is estimated at ~40 cycles with low level coding, or 
~400 cycles in Cn, the extension of ANSI C used to 
program the chips. (The low level code assumes the 
data is floating point, and that the pipelined effect of 
the floating point subtracts is minimized by doing 4 
tracks/PE as a batch.) 
     With low level coding there are 73 x 7300 x 40 = 
21.3 M cycles per correlation period.  
     Each report (except those having multiple hits) can 
generate one PickOne, up to 4 global tests and one 
within-PE copying of report data. The average number 
of global tests is 2.2. (5000 reports require 2 tests, 700 
3 tests, 200 4 tests and 100 3 tests.) The reduction work 
total is ~5800 x (100 + 2.2 x 115 + 20) = 2.2 M cycles.  
     Starting 100 new tracks cost about 100*50 = 5k 
cycles. Marking all hit tracks for the assumed 200 
multiple-hit reports, is estimated as ~200 x 73 x 10 = 
~146k cycles. 
     The estimated total is thus ~23.7 M cycles, a 19.7% 
load at 250 MHz in a 0.5 sec period. 
 
2.2.3 Storage. Track storage is viewed as being 
primarily in mono RAM, with data brought into poly 
RAM as needed. The space per track needed is six 32-
bit numbers, plus 1 status byte and 1 byte for the empty 
track list. If the report data for correlated tracks is to be 
saved in poly RAM, this adds ~20 bytes. Slightly 
slower is to save the report data in mono RAM. Thus 
either 26 or 46 bytes/track is needed.  
     There is 6 kB/PE of poly RAM in the successor 
chip, although some working space is needed. Thus 
each PE can hold a maximum of either ~210 or ~120 
tracks.  
     The time to load the 26 bytes/track at the start of a 
period is negligible (~1 msec). Similarly negligible is 
outputting data that needs saving at the end.  
 
2.2.4  Faster Reductions in bulk. It is possible to 
perform the reduction work in Correlation faster by 
dealing with several (e.g. 16) reports before doing 
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across-PE reductions. The technique can greatly reduce 
the time for reduction operations, and detail will be 
given in [3] 
 
2.3 Conflict Detection & Resolution 
 
2.3.1 Conflict detection. Each IFR track is projected 20 
minutes to see if there is a conflict with any other 
projected track. This is done for each dimension in turn:  

• Computing a min and a max closing velocity, 
which might be negative  

• Tolerances are applied to compute the min and 
max current distance apart of the two tracks 

• Division gives min and max times for that 
dimension to be identical within tolerance. 
Negative time means tracks are separating. 

This produces 3 min times and 3 max times. If the 
biggest min time is smaller than the smallest max time, 
there is potentially a conflict. (This algorithm was 
devised by Ken Batcher.) Conflict is declared after 
potential conflicts with the same track in two successive 
periods.  
 
2.3.2 Conflict resolution. If there is a conflict, the 
heading or altitude of the track is adjusted, and the 
algorithm run again. A schedule of adjustments is gone 
through until there is no conflict for that track. More 
detail will be in [3]. 
 
2.3.3 Implementation. With 192 PEs and 14000 tracks, 
there are 73 tracks/PE. If IFR tracks are held separately 
from VFR, then they occupy only 21 of the 73. When 
one IFR track in every PE (192 IFR tracks) has been 
dealt with, tests need only be done against 72 tracks/PE. 
Etc.  
     Each track has 6 coordinates and 6 velocity 
components, including both min and max. With a status 
byte, this is 49 bytes/track. 73 tracks take up 3577 bytes 
out of the 4k or 6k bytes of poly RAM/PE. 
     The active IFR track is broadcast to every PE, and 
then conflict detection is performed against up to 73 
tracks/PE. Conflict detection can be done with: 

• 6 subtracts to get min and max closing 
velocities 

• 6 subtracts to get min and max distances 
• 6 divides by closing velocities for the min and 

max distances 
• Find max min and min max values. 4 compares 
• Subtract max min from min max. Sign is result  
• one step of within-PE OR (1 Boolean) 

(Min and max mean nearest minus infinity and nearest 
plus infinity respectively.) 
     When all tracks/PE have been dealt with, a global 
across-PE OR test finds if there is a conflict. If so, 

another reduction finds the conflicting track, its’ track 
number is stored and a decision made whether to declare 
a conflict.  
 
2.3.4 Performance. Floating point divides take 47 
cycles. With 4 tracks/PE done together, the estimate is 
about 332 cycles per track per PE. An average of 63 
tracks/PE and 100 cycles for the global test, make 21k 
cycles per IFR track. With 4004 tests, the total is ~86 M 
cycles.  
     The conflict period is 8 secs (1600 or 2000 M cycles), 
so the processing load is about 5%. In Table 3 above, 
this processing is 0.36/8 = 4.5% of the available time. 
 
2.4 Cockpit Display 
 
     The next set of up to 750 IFR flights for which 
displays are required are identified. The x, y and h 
positions of all tracks are transferred to poly RAM. 
 
Display flights are dealt with sequentially. The x, y, h 
and velocity data is broadcast to all PEs. The position of 
the display flight is projected forward 10 secs. All track 
coordinates are transformed so they are centered on the 
broadcast track, and track coordinates and velocities are 
rotated to coordinates in which the broadcast track is 
heading “North”.  
 
Every track is tested to see if it is in a 10 mile x 10 mile 
box around the display flight, elongated to include a 30 
sec projection of the display flight.  It is assumed that the 
worst case average number of hit tracks is 12. In the 
worst case, all 12 could be in the same PE. 
 
2.4.1 Algorithm and performance. More detail will be 
in [3].  The task is estimated at 5.9 M cycles. 
 
2.5 Controller Display Update 
 
     ~7500 out of 14000 tracks are selected as being 
within the controlled area. Information on these tracks is 
sent, on a pipe, to everyone, with each control station 
selecting the tracks relevant to its local area.  
     The information required is track position (x, y, h), 
heading and speed. Speed is in knots using BCD (3 or 4 
decimals). Each track is made into a fixed size 
“message” of 16B, which includes a flight ID. All data is 
16-bit.  
     There is no “all against all” component in the 
algorithm, so this task is fast, estimated at 360k cycles. 
Detail in [3]. 
 
2.6 Terrain Avoidance 
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     All flights within the local control boundaries 
(assumed to be 7500, or 40 flights/PE) need to be warned 
if they risk running into ground terrain. At 8 sec intervals 
every flight is projected 1 minute and tested against 
every feature in the terrain map.  
     The terrain can be mapped (tiled) with thousands of 
triangles of various sizes, whose vertices are stored. This 
irregular mesh forms a surface in 3D, and covers both 
the natural topography and buildings/masts etc. What 
sticks up is more important than small valleys that stick 
down. The tiling should be as high or higher than every 
feature. Triangles are used because each triangle defines 
a planar surface; a shape with more points, such as a 
quadrilateral, might or might not lie on a single plane.  
     Either (a) the triangles are loaded into poly RAM and 
the flights are broadcast one at a time, or (b) flights are 
loaded and triangles broadcast. The latter is assumed 
here.  
     Overhangs are not included, so only the base of the 
flight projection box need be checked for intersection 
with any triangle (or restricted flight zone).  
 
2.6.1 Algorithm. The projected bottom surface must be 
planar, ie the left and right bottom line projections must 
lie in a plane. The line forming the intersection of this 
plane and the plane containing a triangle is computed. 
The parts of this line (if any) that lie inside (a) the 
triangle and (b) the bottom of the projected box, are 
computed. If any part of the line lies in both the triangle 
and the bottom of the box, there is a collision, and the 
shortest time to collision is computed and reported. 30 
arithmetic, comparison and Boolean operations are 
estimated.  
 
2.6.2 Performance. The performance is nearly 
proportional to the number of triangles.  
     The x, y position of all ~14000 flights are transferred 
from mono to poly. Selection of participating flights is 
done based on x, y. The surviving track numbers are then 
packed to make them dense in the poly RAM, and used 
to construct mono addresses for loading the track data 
into this dense space.  There are ~40 bytes/flight, and 
~40 flights/PE, so there is plenty of poly space. The two 
bottom lines of the flight projections are computed. Due 
to velocity uncertainties, these lines may not be parallel. 
This setup work is estimated at ~900 usec (~450k cycles) 
to transfer ~420 kB, ~60k cycles to pack the track 
numbers and ~4k cycles to compute bottom surfaces.  
     For each triangle: 
• Broadcast ~40 bytes (pre-computed from the three 

vertices), ~50 cycles 
• Compute intersections, ~40x~70= ~2.8k cycles 
• Within-PE OR of hits, ~40x~2=~80 cycles 
• Single-chip global test for any hits, ~15 cycles 
With 20k triangles, this totals ~60 M cycles.  

     For each flight with at least 1 intersection, the 
projected time to intersection and the triangle ID are 
extracted to mono lists (separate for each chip). ~1000 
cycles, or 5k with a worst case of 5 intersections per 
chip.  
     The short mono lists of intersections are output to 
either the controller affected or to the automatic voice 
advisory system for general aviation activities.  
     Total time, ~61 M cycles. Over 8 secs, this is a load 
of 3.8%. [1] allocated ~7% of all computing to this task, 
so 20k triangles is manageable. 
 
2.7 Sporadic (Aperiodic) requests 
 
     This task is primarily the input of various pieces of 
information into the various database tables held in 
mono RAM, and responding to queries to the database. 
The messages are buffered in the host computer over a 1 
sec period. This happens simultaneously with the 
processing of other tasks in the SIMD chips, and so does 
not contribute to the cycle count. Once per second the 
host writes the message data to the correct places in the 
database. (Alternatively, the buffer can be transferred as 
a block to the DRAM on the board, and the database 
insertion done by one of the SIMD chips.) With no 
simultaneous tasks, there are no synchronization or 
scheduling issues. Queries extract data from the tables 
and transmit responses to requesters. 
     Most messages are small, but some, such as an update 
to the wind table, can be larger. There are estimated to be 
a maximum of 200 messages per second. 
     The task is estimated to take about 1 M cycles. 
 
2.8 Automatic Voice Advisory 
 
     Automatic Voice Advisory (AVA) automatically 
advises, by voice, an uncontrolled (VFR) flight of near 
term conditions of other aircraft and terrain. It gives 
them a near equivalent of the cockpit display. The 
computing is similar to that for Cockpit Display, but 
rather simpler. It is estimated to be ~60% of the load of 
cockpit display. More detail in [3]. 
 
2.9 Final Approach (Runways) 
 
Each flight has a flight plan which specifies (among 
many other things): 

• departure terminal and planned departure time. 
• destination terminal and planned arrival time. 

     A task is run once every 8 secs in which the 
information for each of the assumed 100 runways is 
gathered and, if needed, a queue is organized and any 
consequential modifications are inserted in each flight 
plan. Where a change is recommended for a flight, the 
relevant controller is informed. If possible, stacking is 
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avoided by delaying tracks in flight, but in emergencies 
tracks may be allocated to stacking, and the flight is told 
the stack detail by the controller.  
     This work applies primarily to the 4000 IFR flights, 
but some others may be included. Thus all 14000 flights 
participate, but some statistical estimates allow for most 
tracks not being actively involved. 
     Detail will be in [3]. The estimated cycle count is 
~870k cycles. In 8 secs (1600 or 2000 M cycles) this is a 
load of < 0.1%. 
 
2.10 Other parts of the computing 
 
     Flight Plan/Track Conformance has been studied in a 
comparable way to Table 1 of [1]. Table 3 below shows 
what can be achieved by programming in assembler, 
using 32-bit floating point and dealing with 4 tracks/PE 
at a time to minimize the effects of the pipeline.  
  

Table 3 
Operation Memory 

(bytes) 
Time 
(cycles/track) 

Select all flight plans 1 1 
Get Xf, Yf, Hf, xd, yd, hd 24  
Xf1 = Xf+xd, Yf1= 
Yf+yd, Hf1=Hf+hd 

 5.3 

Get Xt, Yt, Ht, sin(hdg), 
cos(hdg) 

20  

X’=(Xt-Xf)*cos + (Yt-
Yf)*sin 

 7 

Y’=(Yt-Yf)*cos - (Xt-
Xf)*sin 

 3 

If |X’| > K1, (set alert 
flag) 

 5 

If |Ht – Hf| > K3, (set 
alert flag) 

 7 

If |Y’|>K2, over-write 
Yf1 with Yt 

 6 

Store Xf1,Yf1,Hf1 12  
Total 57 34.3 
 
There is no per track work required to get K1, K2, K3, as 
they are fetched from mono and broadcast once. The 
ABS operations have been added. The 57 bytes of 
memory take ~15 cycles, but most of this (and the 
looping) can be overlapped with processing. The 
estimate for optimized code is ~38 cycles (0.19 
usec)/track/PE. With 21 IFR tracks/PE this is 4 usec, 
compared with the 7.34 usec of [1].  
 
3. Speedup with Sorting 
 
     Each of Terrain Avoidance, Correlation, Conflict 
Detection, Automatic Voice Advisory and Cockpit 

Display involve some kind of “all against all” matching, 
involving proximity. Sorting can greatly speed these up. 
     This is still SIMD computing. The sorting is partly 
based on Batcher’s Bitonic Sort, is SIMD parallel, and 
has data-independent deterministic speed. The rest of the 
computing is somewhat data-dependent, but even in 
worst cases there is a big speedup.  
     The speed gains from sorting are dramatic. The pay-
off can be taken as:  

• less optimized coding 
• more complex or bigger requirements 
• less hardware 

The disadvantage is more complex algorithms.  
 
3.1 Correlation 
 
The x coordinate of all tracks is input to poly RAM, 
sorted and mapped with PE LS and the poly address MS. 
Thus each PE has tracks from across the x range. Track 
numbers are retained through the sort and used to 
construct a mono address with which to fetch the rest of 
the track data from mono.  
     The x range is divided into ~200 bins, and a mono 
array is formed giving the minimum and maximum poly 
addresses that have tracks for that bin.  
     Each radar report is dealt with in turn. The min and 
max x values are found, and, allowing for the worst track 
x uncertainty, are used to look up in the mono arrays the 
min and max poly addresses of tracks that might 
correlate. Only addresses in this range are used.  
     As the correlation boxes are not very big, only ~2 
bins of tracks need be correlated, and the estimated worst 
case average number of tracks per PE that need to be 
processed is 3-4. (With 192 PEs, this is about 600-800 
tracks.) This compares to 73 tracks/PE without the use of 
sorting, or about 20 times less. With an average 3.5 
tracks, the core correlation processing is estimated at 
~1.2 M cycles.  
     Four other contributions to the cycle total need 
considering. Sorting is estimated to take ~200k cycles. 
Reduction operations are still needed, and were 
estimated at ~2.2 M cycles, or ~220k cycles with 
advanced methods. The work to find the range of poly 
addresses will take ~200k. The final output of the update 
data from poly to mono will take ~400 usecs, or ~100k 
cycles. 
     Thus the total cycles (every 0.5 secs) is estimated to 
reduce from ~24M to ~3.9 M (or ~1.92 M with advanced 
Reduction processing), a speedup of over 6x (or 12x).  
 
3.2 Terrain Avoidance 
 
     If terrain is represented by a surface in 3D of about 
20k triangles, then the triangles can be permanently 
sorted on the minimum value of x in the triangle. The 
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sorted triangles are mapped onto the poly RAM, with 
PEs as the LS dimension and RAM address as the MS 
dimension. Details will be in [3]. The worst case speedup 
due to sorting is estimated at about 9x. Increasing the 
number of triangles increases the speedup. 

3. Move key code to a mix of in-line assembler and 
assembler routines. Do some speed and space 
optimization. It is expected that real-time speed for 
~5000 tracks can be achieved. 
4. Extend the reduction codes to 2 SIMD chips, thus 
enabling ~10000 tracks in the application.   

3.3 Conflict Detection 5. Project performance to a board with two successor 
chips. This should enable ~20k tracks at real-time speed.   
6. Move the application to the successor board.       Sorting by x velocity as well as x position enables an 

estimated speedup of about 3x. Detail in [3]. 7. Demonstrations, reports and presentations. 
8. Using sorting, develop faster code versions that will 
enable bigger applications with less hardware.  

 
3.4 Cockpit Display and Automatic Voice 
Advisory      Kent State University are well placed to do an ATC 

project as they have a board with 2 CS301 chips and a 
substantial amount of off-chip DRAM. It is estimated 
that 1. to 6. above could be achieved in ~12 months. 
Extensions to the project could do 7. and 8. above, as 
well as further work to both study and implement the 
needs of a live system, including fault tolerance.  

 
Sorting on x is estimated to produce a speedup of 9x for 
both these tasks.  
 
4. Summary Table 
  Table 4 summarizes the overall performance estimates. 
Two next generation chips should do all the processing 
with a good margin.  
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Table 4. Performance Summary 
 

Task Reference (sec) 3 x CS301 2 x next chip Next chip with sorting 
1. Report Correlation & Tracking 1.44 1.98(1.8) 1.58(1.44) 0.25(0.123) 
2. Cockpit Display (750 /sec) 0.72 0.24 0.19 0.021 
3. Controller Display Update 
(7500/sec) 

0.72 0.015 0.006 0.006 

4. Sporadic Requests (200 /sec) 0.4 0.04 0.033 0.033 
5. Automatic Voice Advisory (600 
/sec) 

0.36 0.15 0.12 0.013 

6. Terrain Avoidance 0.32 0.31 0.25 0.03 
7. Conflict Detection & Resolution 0.36 0.44 0.35 0.12 
8. Final Approach (100 runways) 0.2 0.005 0.004 0.004 
Total 4.52 3.4(3.22) 2.54(2.4) 0.48(0.35) 

1. All times are secs, and are the compute time over the total time available of 8 secs. 
2. Times in ( ) are with the faster bulk reduction operations 
3. The next chip figures allow for 250 MHz (rather than 200 MHz for CS301). 
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