

Overview of Air Traffic Control using an SIMD COTS system

Stewart Reddaway
WorldScape Inc

Marlton, NJ
sfr@wscapeinc.com

Will Meilander (retired)
Johnnie Baker
Justin Kidman

Kent State University
Dept Computer Science
Kent, OH 44242-0001

jbaker@cs.kent.edu

Abstract

Air Traffic Control is an important application with
demanding real-time database processing requirements.
Systems that have been implemented using current
approaches have typically been expensive, late, over-
budget and have not performed up to specification. In
part this is because, in attempting to meet the real-time
requirements, developers have been driven to use
complex algorithms and software for what are
inherently relatively simple requirements. Our analysis
indicates that the use of modern SIMD COTS systems
will enable guaranteed real-time performance to be
achieved with simpler algorithms on modest amounts of
hardware. This paper covers the system, the approach
to the application and some of the solution details.

1. Introduction

 This paper provides an overview analysis of Air
Traffic Control (ATC) using an SIMD COTS system,
and covers the system, the approach to the application
and some of the solution detail.
 ATC is an important application with demanding
real-time processing requirements. Systems that have
been implemented using current approaches have
typically been expensive, late, over-budget and not
performed up to specification. In part this is because in
attempting to meet the real-time requirements

developers have been driven to use complicated
algorithms and software for what are inherently
relatively simple requirements. Our analysis indicates
that the use of modern SIMD COTS systems will enable
guaranteed real-time performance to be achieved with
simpler algorithms on modest amounts of hardware. The
overall requirements of ATC are illustrated in Figure 1.

1.1 A previous analysis

 The following Tables 1 and 2 are tables 2. and 3.
from [1]. That paper assumed currently available
technology. The analysis of this paper is based on
characteristics of a real modern SIMD chip and board.

 There are thus up to 14000 flights, 4000 of which are
under the control of this system. There are up to 12000
radar reports/sec; 6000 are dealt with in each 0.5 sec
interval.

Table 1. ATC – Worst-Case
Environment

 Reports per second 12,000
 IFR flights 4,000
 VFR/backup flights 10,000
 Controllers 600

1

mailto:sfr@wscapeinc.com
mailto:jbaker@cs.kent.edu

7

ATC Real-Time Database

Real time
database

Flight plans
update

Collision
avoidance

Conflict
resolution

Restriction
avoidance

Terrain
avoidance

Weather
status

Aircraft data

Terminal
conditions

Pilot

Autovoice
advisory

Controller
displays

Track data

P Radar

GPSS Radar

Figure 1

Table 2. Statically Scheduled Solution Time

Task p j c d Proc time
1. Report Correlation & Tracking .5 15 .09 .10 1.44
2. Cockpit Display 750 /sec) 1.0 120 .09 .20 .
3. Controller Display Update (7500/sec) 1.0 12 .09 .30 .72
4. Aperiodic Requests (200 /sec) 1.0 250 .05 .36 .4
5. Automatic Voice Advisory (600 /sec) 4.0 75 .18 .78 .36
6. Terrain Avoidance 8.0 40 .32 2.93 .32
7. Conflict Detection & Resolution 8.0 60 .36 3.97 .36
8. Final Approach (100 runways) 8.0 33 .2 6.81 .2
 Summation of Tasks in a period P 4.52
The system period P (in which all tasks must be completed) is 8 seconds
p the task period time, is used to determine the next task release time ri + 1 = ri + p,
j is the execution time, in microseconds, for each jobset in a task,
c is the cost for each task for the worst-case set of jobsets,
d the deadline time for each task ri + c + .01 (includes 10 ms interrupt processing per task)

 Table 2 shows the computing work under 8
headings. The work of each heading is dealt with once
every p secs. j, c and d characterize the timing for the
suggested hardware. j is the time (usecs) for a unit of
computing, c (secs) is the total time for all the units, d is
the time from the start of an 8 sec period by which that
computing is finished. For example, the Report
Correlation & Tracking, has 6000 reports to correlate
against all tracks. Each report process is estimated to

take 15 usecs, so j is 15 and c is 0.09 (derived from 15 *
6000/10**6). With 10 msecs allowed for interrupt
actions, and starting at the beginning of the period, d = 0
+ 0.09 + 0.01 = 0.10. The “Proc time” column is the
total processing time for an 8 sec period. As there are 16
half secs in 8 secs, the correlation time is 0.09 * 16 =
1.44 secs. This is ~32% of the 4.52 processing time,
which is a total processing load of ~57% of available
time.

2

1.2 Modern SIMD chips

 The chips considered are the 200 MHz CS301 and a
250 MHz successor due in Q2 2005.
 These SIMD chips have powerful PEs (Processing
Elements) with both floating and fixed point hardware in
every PE. For 16 to 32-bit work it is usually faster to use
floating point, and this is assumed in this study. Other
features have commensurate speed, such as I/O and
moving data between the “poly” RAM (RAM in each
PE) and the register files. The I/O is also flexible, with
each PE able to specify its own address for external
“mono” RAM. The poly RAM is 4kB/PE, rising to 6
kB/PE in the successor chip. There are 64 PEs in the
current chip, and 96 in its successor. The generic core of
the chip is shown in Figure 2. More detail can be found
in [2].
 In multi-chip systems, each chip runs its own
program. Global SIMD operation is achieved by each
chip running the same code and, when needed,
synchronizing by software. (See below.)
 Cycle estimates are for highly optimized assembly
coding. Less optimized coding can still achieve the real-
time requirements, as there are big margins over real
time.

Figure 2. Generic core of SIMD chip

1.3 SIMD boards

 The current CS301 boards contain 2 CS301 chips and
1 GB of “mono” DRAM. A proprietary ClearConnect
bus runs from one CS301, across the other CS301 and,
via an FPGA, to the DRAM. There is a PCI interface,
which can be connected to a host computer such as a PC.
Research at Kent State University will use this COTS
board.
 The successor board has two successor SIMD chips,
each with an on-chip interface to their own DRAM. The
ClearConnect bus again connects the two chips and, via
an FPGA, the board’s 64-bit PCI-X interface.

2. Analysis for a real modern SIMD system

 A qualitative difference of this analysis to that in [1]
is that here it is assumed that many tracks are mapped in
one PE, whereas [1] assumes there is one PE for every
track. This is possible because the modern chip is fast
enough to do the work of many tracks per PE. The
algorithm is still SIMD. Each PE can support about 100
tracks, so 14000 tracks require about 140 PEs. Either
three of the 64-PE chips or two of the successor 96-PE
chips are needed.

2.1 Reduction and broadcast operations

Using SIMD for ATC requires efficient implementation
of global Reduction operations. It is these operations that
require global synchronization. Arguably this is the
“difficult part”. ATC uses global tests and PickOne. The
others are included for completeness.

2.1.1 Global test. The simplest operation is to test if a
Boolean condition is true anywhere. An application may
have a large array of Booleans, with many elements in
each PE. A key for high performance is to first reduce
these values in each PE to a single Boolean. Most SIMD
chips will have hardware that produces a mono (scalar)
Boolean by applying a Boolean operator across every PE
in the chip. For current chips this instruction takes about
15 cycles to produce a result.
 If a global test is to be applied across several chips, an
across-PE mechanism is needed that first checks that all
chips have finished and then combines the test results.
There is no hardware help for this. It can be done by
each chip recording both that it has finished, and its
result, in the board mono DRAM. Each chip can then
read the DRAM and, when it is found that all chips are
recorded as finished (“synchronized”), read the chip
results and compute the global result. With only a few
chips on a board, this across-chip work is estimated at
about 100 cycles. This assumes that all chips finished
their previous computing at nearly the same time, which
is likely to be the case if they have all been doing the
same work.

3

 Thus within-PE global tests take about 15 cycles, and
across-chip tests about 115 cycles. A system with several
boards (bigger than needed for ATC) would take longer.

2.1.2 PickOne. PickOne is an operation on a Boolean
array that picks a unique F(alse) element. (Alternatively,
a unique True element.) Usually the first F element is
picked. There is no hardware to support this, and it is
non-trivial. Each PE finds if there is any F in that PE.
Using across-PE work, the first F PE (if any) is found.
Then, within-PE Boolean work in the selected PE finds
the first F in the PE. One way of doing the across-PE
work is by a “binary chop”. A chip test finds if there is
an F in the first half of the PEs. If not, the second half is
chosen. The chosen half is then tested to find the quarter.
In a logarithmic number (6 for 64 PEs) of such tests the
first PE with an F is found. Carefully coded, this across-
PE but within-chip work takes about 120 cycles.
 With multiple chips, each chip writes to external
mono RAM whether it has an F, and, after
synchronization, each chip reads all results and computes
if it is the selected chip. Each chip knows its position,
treating the chips as a linear sequence. This takes about
100 cycles for chips on the same board. In some PickOne
contexts the bulk of this across-chip work will already
have been done as part of a global test. Thus an isolated
PickOne takes about 220 cycles, and a PickOne after a
global test takes about 100 cycles. These figures exclude
the within-PE work when there are multiple Booleans in
a PE.

2.1.3 Max and Min. There are two alternative
algorithms for maximum that are almost equally good.
One is described here. With big arrays, within-PE work
should be done first, followed by a single across-PE
stage.
 The first algorithm treats the bits of the numbers in
sequence, starting with the most significant. Numbers
that cannot be the biggest in the chip are eliminated
progressively, but always ensuring that at least one
number is retained in the “competition”. A global test is
applied to numbers that are still in the competition to
find if the next bit is T(rue) anywhere. This result is
broadcast, and if any were T, numbers with an F are
eliminated. A record of the results of the global tests
gives the scalar max. This within-chip work is constant
time and takes about 20 cycles per bit. (e.g., about 320
cycles for a 16-bit array.) For multiple chips, the chip
results are posted in mono RAM, so each chip can read
them and work out the global maximum. This adds about
100 cycles.
 The second algorithm will be in [3].

2.1.4 Sum. For large arrays, within-PE work is done
first. The across-PE work in SUM is done by shifting,

using the above "log(n)" approach. With 64 PEs, within-
chip Sum requires about 200 cycles for up to 32 bits. For
96 PEs, the last 2 stages can be replaced by copying 3
partial results to mono RAM, and about 250 cycles are
required. Across-chip adds about 100 cycles.

2.1.5 Broadcast. This is not strictly a reduction
operation, but is important. Broadcasting data from
mono RAM to all PEs is part of the instruction set of a
chip. With more than one chip on a board, each chip can
access all the mono RAM. When the mono data is stable,
such as when correlating a sequence of radar reports, no
validity check is needed, but in other cases validity needs
to be semaphored to achieve synchronization.

2.2 Report Correlation & Tracking

An ATC system has radar reports from many radars,
which give positions of objects in air space. There is a
real-time database of the tracks of flights in 3D air space
which are updated by correlating the position of each
radar report with the position of a track extrapolated to
current time. When a track correlates with a report the
track information is updated to absorb this new
information about the track. Over a 0.5 sec interval all
radar reports are assembled, and then one at a time these
reports are trial correlated against all tracks in the
database. (About 6000 reports every one-half second.)
 The track database is held in the mono DRAM, and at
the start of the Correlation task each track loads 3
position coordinates, plus the estimated uncertainties in
those coordinates into the on-chip poly RAM. With
14000 tracks and 192 PEs there are 73 tracks per PE.
 It is assumed in each report that the location
coordinates are x, y, and, often, h (height). There is also
an uncertainty in x, y, and h. Reports are dealt with one
at a time by broadcasting the 6 values and comparing the
positions of every track with the report. Boxes of
uncertainty are formed around both track and report
positions, so each track can decide if there is an
intersection between its box and a report box. If a unique
track intersects, then the report data is stored with that
track for later track update, and the track is marked not
to correlate with later records. If two or more tracks
correlate with the same radar report, then the correlating
tracks are marked as part of a multiple hit. If a report
does not correlate, it is marked to participate in a later
round of correlations with wider tolerances.
 With many tracks per PE, the broadcast of report data
is stored only once per PE. Likewise, the report box is
computed only once, after broadcast.
 Computing the track boxes is done only once per
“correlation period” (0.5 secs). Thus the only work per
track per report is 6 comparisons and 5 Booleans.

4

 For each report, each track’s Boolean correlation
result contributes to a count of the number of successful
correlations in each PE, and to find the within-PE track
number of the first correlated track. The count can be
done with 2-bit numbers, representing 0, 1 and many.
 The across-PE work is based on whether or not the
PE total is 0. A global OR test is done for each radar
report to find if there are any hits. If there are no hits, the
report is marked for the next correlation round. If there
are hit(s), a PickOne function is used to find the first PE
with a nonzero total. The Picked PE changes its count to
0 if it was previously 1. Then a global test is done to see
if any more tracks correlated. The result of this test is
broadcast, and if, globally, at least 2 tracks correlated, all
tracks are scanned to mark the correlated tracks as
multiple correlations. If there was just one correlation,
the Picked PE marks as successfully correlated the track
for which it saved the within-PE address, and copies the
report position data to the record for that track.
 When all reports for the period have been dealt with,
the process is repeated for all unmatched reports up to
twice more, with wider track tolerances. After 3 rounds,
any unmatched reports are used to start new tracks.
 The following was done before any correlations:

• empty tracks are identified
• the empty tracks are counted within-PE
• a within-PE list is formed of positions of empty

tracks. (1 byte of poly storage per track)
• a global “scan sum” gives each PE the 2-byte

global “empty number” of its first empty track
As this work is done only once, it takes negligible time.
 For each unmatched report:

• increment a mono count of new tracks
• compare this count with each PE’s empty track

numbers. (E.g. if this is the 57th new track, only
one PE will contain this empty track number. It
might e.g. be the 3rd empty track in that PE.)

• the within-PE address is used to initiate a track
in this unique empty track with the report data

2.2.1 Higher quality Correlation. The error in a radar
report has a component along the radar “radius” (from
measuring the time of the radar response) and a
component across the radius (from error in the azimuth
angle). Other than for short-range reports, typical
radars have much bigger errors in azimuth than range.
The ideal “report box” is an eccentric ellipse, but an
elongated rectangular box is quite a good
approximation. However, in system coordinates the
rectangle will not usually be aligned with the axes, and
for computing efficiency a box aligned with the axes is
needed. If such a box is to include all possible good
correlations, it must be much bigger than the original
box, but this will include dubious correlations. Better is
to do the correlation in “radar coordinates” with axes

along and perpendicular to the radar radius. This aligns
the original radar box to the axes. Detail of this
approach will be in [3].

2.2.2 Estimating cycles. With 6000 reports, the
estimated worst case is that 1000 fail to correlate on the
first round, 300 fail on the second round and 100 fail
on the last round (and hence start new tracks). Thus
there are 7300 correlations. We assume there are 200
multiple hits.
 There are 73 tracks/PE. The per track work of:

• 6 compares
• 5 Boolean ops
• one step of count hits and find the first

address
is estimated at ~40 cycles with low level coding, or
~400 cycles in Cn, the extension of ANSI C used to
program the chips. (The low level code assumes the
data is floating point, and that the pipelined effect of
the floating point subtracts is minimized by doing 4
tracks/PE as a batch.)
 With low level coding there are 73 x 7300 x 40 =
21.3 M cycles per correlation period.
 Each report (except those having multiple hits) can
generate one PickOne, up to 4 global tests and one
within-PE copying of report data. The average number
of global tests is 2.2. (5000 reports require 2 tests, 700
3 tests, 200 4 tests and 100 3 tests.) The reduction work
total is ~5800 x (100 + 2.2 x 115 + 20) = 2.2 M cycles.
 Starting 100 new tracks cost about 100*50 = 5k
cycles. Marking all hit tracks for the assumed 200
multiple-hit reports, is estimated as ~200 x 73 x 10 =
~146k cycles.
 The estimated total is thus ~23.7 M cycles, a 19.7%
load at 250 MHz in a 0.5 sec period.

2.2.3 Storage. Track storage is viewed as being
primarily in mono RAM, with data brought into poly
RAM as needed. The space per track needed is six 32-
bit numbers, plus 1 status byte and 1 byte for the empty
track list. If the report data for correlated tracks is to be
saved in poly RAM, this adds ~20 bytes. Slightly
slower is to save the report data in mono RAM. Thus
either 26 or 46 bytes/track is needed.
 There is 6 kB/PE of poly RAM in the successor
chip, although some working space is needed. Thus
each PE can hold a maximum of either ~210 or ~120
tracks.
 The time to load the 26 bytes/track at the start of a
period is negligible (~1 msec). Similarly negligible is
outputting data that needs saving at the end.

2.2.4 Faster Reductions in bulk. It is possible to
perform the reduction work in Correlation faster by
dealing with several (e.g. 16) reports before doing

5

across-PE reductions. The technique can greatly reduce
the time for reduction operations, and detail will be
given in [3]

2.3 Conflict Detection & Resolution

2.3.1 Conflict detection. Each IFR track is projected 20
minutes to see if there is a conflict with any other
projected track. This is done for each dimension in turn:

• Computing a min and a max closing velocity,
which might be negative

• Tolerances are applied to compute the min and
max current distance apart of the two tracks

• Division gives min and max times for that
dimension to be identical within tolerance.
Negative time means tracks are separating.

This produces 3 min times and 3 max times. If the
biggest min time is smaller than the smallest max time,
there is potentially a conflict. (This algorithm was
devised by Ken Batcher.) Conflict is declared after
potential conflicts with the same track in two successive
periods.

2.3.2 Conflict resolution. If there is a conflict, the
heading or altitude of the track is adjusted, and the
algorithm run again. A schedule of adjustments is gone
through until there is no conflict for that track. More
detail will be in [3].

2.3.3 Implementation. With 192 PEs and 14000 tracks,
there are 73 tracks/PE. If IFR tracks are held separately
from VFR, then they occupy only 21 of the 73. When
one IFR track in every PE (192 IFR tracks) has been
dealt with, tests need only be done against 72 tracks/PE.
Etc.
 Each track has 6 coordinates and 6 velocity
components, including both min and max. With a status
byte, this is 49 bytes/track. 73 tracks take up 3577 bytes
out of the 4k or 6k bytes of poly RAM/PE.
 The active IFR track is broadcast to every PE, and
then conflict detection is performed against up to 73
tracks/PE. Conflict detection can be done with:

• 6 subtracts to get min and max closing
velocities

• 6 subtracts to get min and max distances
• 6 divides by closing velocities for the min and

max distances
• Find max min and min max values. 4 compares
• Subtract max min from min max. Sign is result
• one step of within-PE OR (1 Boolean)

(Min and max mean nearest minus infinity and nearest
plus infinity respectively.)
 When all tracks/PE have been dealt with, a global
across-PE OR test finds if there is a conflict. If so,

another reduction finds the conflicting track, its’ track
number is stored and a decision made whether to declare
a conflict.

2.3.4 Performance. Floating point divides take 47
cycles. With 4 tracks/PE done together, the estimate is
about 332 cycles per track per PE. An average of 63
tracks/PE and 100 cycles for the global test, make 21k
cycles per IFR track. With 4004 tests, the total is ~86 M
cycles.
 The conflict period is 8 secs (1600 or 2000 M cycles),
so the processing load is about 5%. In Table 3 above,
this processing is 0.36/8 = 4.5% of the available time.

2.4 Cockpit Display

 The next set of up to 750 IFR flights for which
displays are required are identified. The x, y and h
positions of all tracks are transferred to poly RAM.

Display flights are dealt with sequentially. The x, y, h
and velocity data is broadcast to all PEs. The position of
the display flight is projected forward 10 secs. All track
coordinates are transformed so they are centered on the
broadcast track, and track coordinates and velocities are
rotated to coordinates in which the broadcast track is
heading “North”.

Every track is tested to see if it is in a 10 mile x 10 mile
box around the display flight, elongated to include a 30
sec projection of the display flight. It is assumed that the
worst case average number of hit tracks is 12. In the
worst case, all 12 could be in the same PE.

2.4.1 Algorithm and performance. More detail will be
in [3]. The task is estimated at 5.9 M cycles.

2.5 Controller Display Update

 ~7500 out of 14000 tracks are selected as being
within the controlled area. Information on these tracks is
sent, on a pipe, to everyone, with each control station
selecting the tracks relevant to its local area.
 The information required is track position (x, y, h),
heading and speed. Speed is in knots using BCD (3 or 4
decimals). Each track is made into a fixed size
“message” of 16B, which includes a flight ID. All data is
16-bit.
 There is no “all against all” component in the
algorithm, so this task is fast, estimated at 360k cycles.
Detail in [3].

2.6 Terrain Avoidance

6

 All flights within the local control boundaries
(assumed to be 7500, or 40 flights/PE) need to be warned
if they risk running into ground terrain. At 8 sec intervals
every flight is projected 1 minute and tested against
every feature in the terrain map.
 The terrain can be mapped (tiled) with thousands of
triangles of various sizes, whose vertices are stored. This
irregular mesh forms a surface in 3D, and covers both
the natural topography and buildings/masts etc. What
sticks up is more important than small valleys that stick
down. The tiling should be as high or higher than every
feature. Triangles are used because each triangle defines
a planar surface; a shape with more points, such as a
quadrilateral, might or might not lie on a single plane.
 Either (a) the triangles are loaded into poly RAM and
the flights are broadcast one at a time, or (b) flights are
loaded and triangles broadcast. The latter is assumed
here.
 Overhangs are not included, so only the base of the
flight projection box need be checked for intersection
with any triangle (or restricted flight zone).

2.6.1 Algorithm. The projected bottom surface must be
planar, ie the left and right bottom line projections must
lie in a plane. The line forming the intersection of this
plane and the plane containing a triangle is computed.
The parts of this line (if any) that lie inside (a) the
triangle and (b) the bottom of the projected box, are
computed. If any part of the line lies in both the triangle
and the bottom of the box, there is a collision, and the
shortest time to collision is computed and reported. 30
arithmetic, comparison and Boolean operations are
estimated.

2.6.2 Performance. The performance is nearly
proportional to the number of triangles.
 The x, y position of all ~14000 flights are transferred
from mono to poly. Selection of participating flights is
done based on x, y. The surviving track numbers are then
packed to make them dense in the poly RAM, and used
to construct mono addresses for loading the track data
into this dense space. There are ~40 bytes/flight, and
~40 flights/PE, so there is plenty of poly space. The two
bottom lines of the flight projections are computed. Due
to velocity uncertainties, these lines may not be parallel.
This setup work is estimated at ~900 usec (~450k cycles)
to transfer ~420 kB, ~60k cycles to pack the track
numbers and ~4k cycles to compute bottom surfaces.
 For each triangle:
• Broadcast ~40 bytes (pre-computed from the three

vertices), ~50 cycles
• Compute intersections, ~40x~70= ~2.8k cycles
• Within-PE OR of hits, ~40x~2=~80 cycles
• Single-chip global test for any hits, ~15 cycles
With 20k triangles, this totals ~60 M cycles.

 For each flight with at least 1 intersection, the
projected time to intersection and the triangle ID are
extracted to mono lists (separate for each chip). ~1000
cycles, or 5k with a worst case of 5 intersections per
chip.
 The short mono lists of intersections are output to
either the controller affected or to the automatic voice
advisory system for general aviation activities.
 Total time, ~61 M cycles. Over 8 secs, this is a load
of 3.8%. [1] allocated ~7% of all computing to this task,
so 20k triangles is manageable.

2.7 Sporadic (Aperiodic) requests

 This task is primarily the input of various pieces of
information into the various database tables held in
mono RAM, and responding to queries to the database.
The messages are buffered in the host computer over a 1
sec period. This happens simultaneously with the
processing of other tasks in the SIMD chips, and so does
not contribute to the cycle count. Once per second the
host writes the message data to the correct places in the
database. (Alternatively, the buffer can be transferred as
a block to the DRAM on the board, and the database
insertion done by one of the SIMD chips.) With no
simultaneous tasks, there are no synchronization or
scheduling issues. Queries extract data from the tables
and transmit responses to requesters.
 Most messages are small, but some, such as an update
to the wind table, can be larger. There are estimated to be
a maximum of 200 messages per second.
 The task is estimated to take about 1 M cycles.

2.8 Automatic Voice Advisory

 Automatic Voice Advisory (AVA) automatically
advises, by voice, an uncontrolled (VFR) flight of near
term conditions of other aircraft and terrain. It gives
them a near equivalent of the cockpit display. The
computing is similar to that for Cockpit Display, but
rather simpler. It is estimated to be ~60% of the load of
cockpit display. More detail in [3].

2.9 Final Approach (Runways)

Each flight has a flight plan which specifies (among
many other things):

• departure terminal and planned departure time.
• destination terminal and planned arrival time.

 A task is run once every 8 secs in which the
information for each of the assumed 100 runways is
gathered and, if needed, a queue is organized and any
consequential modifications are inserted in each flight
plan. Where a change is recommended for a flight, the
relevant controller is informed. If possible, stacking is

7

avoided by delaying tracks in flight, but in emergencies
tracks may be allocated to stacking, and the flight is told
the stack detail by the controller.
 This work applies primarily to the 4000 IFR flights,
but some others may be included. Thus all 14000 flights
participate, but some statistical estimates allow for most
tracks not being actively involved.
 Detail will be in [3]. The estimated cycle count is
~870k cycles. In 8 secs (1600 or 2000 M cycles) this is a
load of < 0.1%.

2.10 Other parts of the computing

 Flight Plan/Track Conformance has been studied in a
comparable way to Table 1 of [1]. Table 3 below shows
what can be achieved by programming in assembler,
using 32-bit floating point and dealing with 4 tracks/PE
at a time to minimize the effects of the pipeline.

Table 3
Operation Memory

(bytes)
Time
(cycles/track)

Select all flight plans 1 1
Get Xf, Yf, Hf, xd, yd, hd 24
Xf1 = Xf+xd, Yf1=
Yf+yd, Hf1=Hf+hd

 5.3

Get Xt, Yt, Ht, sin(hdg),
cos(hdg)

20

X’=(Xt-Xf)*cos + (Yt-
Yf)*sin

 7

Y’=(Yt-Yf)*cos - (Xt-
Xf)*sin

 3

If |X’| > K1, (set alert
flag)

 5

If |Ht – Hf| > K3, (set
alert flag)

 7

If |Y’|>K2, over-write
Yf1 with Yt

 6

Store Xf1,Yf1,Hf1 12
Total 57 34.3

There is no per track work required to get K1, K2, K3, as
they are fetched from mono and broadcast once. The
ABS operations have been added. The 57 bytes of
memory take ~15 cycles, but most of this (and the
looping) can be overlapped with processing. The
estimate for optimized code is ~38 cycles (0.19
usec)/track/PE. With 21 IFR tracks/PE this is 4 usec,
compared with the 7.34 usec of [1].

3. Speedup with Sorting

 Each of Terrain Avoidance, Correlation, Conflict
Detection, Automatic Voice Advisory and Cockpit

Display involve some kind of “all against all” matching,
involving proximity. Sorting can greatly speed these up.
 This is still SIMD computing. The sorting is partly
based on Batcher’s Bitonic Sort, is SIMD parallel, and
has data-independent deterministic speed. The rest of the
computing is somewhat data-dependent, but even in
worst cases there is a big speedup.
 The speed gains from sorting are dramatic. The pay-
off can be taken as:

• less optimized coding
• more complex or bigger requirements
• less hardware

The disadvantage is more complex algorithms.

3.1 Correlation

The x coordinate of all tracks is input to poly RAM,
sorted and mapped with PE LS and the poly address MS.
Thus each PE has tracks from across the x range. Track
numbers are retained through the sort and used to
construct a mono address with which to fetch the rest of
the track data from mono.
 The x range is divided into ~200 bins, and a mono
array is formed giving the minimum and maximum poly
addresses that have tracks for that bin.
 Each radar report is dealt with in turn. The min and
max x values are found, and, allowing for the worst track
x uncertainty, are used to look up in the mono arrays the
min and max poly addresses of tracks that might
correlate. Only addresses in this range are used.
 As the correlation boxes are not very big, only ~2
bins of tracks need be correlated, and the estimated worst
case average number of tracks per PE that need to be
processed is 3-4. (With 192 PEs, this is about 600-800
tracks.) This compares to 73 tracks/PE without the use of
sorting, or about 20 times less. With an average 3.5
tracks, the core correlation processing is estimated at
~1.2 M cycles.
 Four other contributions to the cycle total need
considering. Sorting is estimated to take ~200k cycles.
Reduction operations are still needed, and were
estimated at ~2.2 M cycles, or ~220k cycles with
advanced methods. The work to find the range of poly
addresses will take ~200k. The final output of the update
data from poly to mono will take ~400 usecs, or ~100k
cycles.
 Thus the total cycles (every 0.5 secs) is estimated to
reduce from ~24M to ~3.9 M (or ~1.92 M with advanced
Reduction processing), a speedup of over 6x (or 12x).

3.2 Terrain Avoidance

 If terrain is represented by a surface in 3D of about
20k triangles, then the triangles can be permanently
sorted on the minimum value of x in the triangle. The

8

sorted triangles are mapped onto the poly RAM, with
PEs as the LS dimension and RAM address as the MS
dimension. Details will be in [3]. The worst case speedup
due to sorting is estimated at about 9x. Increasing the
number of triangles increases the speedup.

3. Move key code to a mix of in-line assembler and
assembler routines. Do some speed and space
optimization. It is expected that real-time speed for
~5000 tracks can be achieved.
4. Extend the reduction codes to 2 SIMD chips, thus
enabling ~10000 tracks in the application.

3.3 Conflict Detection 5. Project performance to a board with two successor
chips. This should enable ~20k tracks at real-time speed.
6. Move the application to the successor board. Sorting by x velocity as well as x position enables an

estimated speedup of about 3x. Detail in [3]. 7. Demonstrations, reports and presentations.
8. Using sorting, develop faster code versions that will
enable bigger applications with less hardware.

3.4 Cockpit Display and Automatic Voice
Advisory Kent State University are well placed to do an ATC

project as they have a board with 2 CS301 chips and a
substantial amount of off-chip DRAM. It is estimated
that 1. to 6. above could be achieved in ~12 months.
Extensions to the project could do 7. and 8. above, as
well as further work to both study and implement the
needs of a live system, including fault tolerance.

Sorting on x is estimated to produce a speedup of 9x for
both these tasks.

4. Summary Table
 Table 4 summarizes the overall performance estimates.
Two next generation chips should do all the processing
with a good margin.

References

[1] W. Meilander, M. Jin, J. Baker. Tractable Real-Time Air
Traffic Control Automation. Proceedings of the 14th IASTED
International Conference Parallel and Distributed Computing
and Systems, Cambridge, USA, 2002, pp. 483-488

5. A staged plan of work

1. Establish requirements and algorithms to implement.

[2] www.clearspeed.com2. Implement them in a high level language (Cn) using
one CS301 chip.

[3] To be published.

Table 4. Performance Summary

Task Reference (sec) 3 x CS301 2 x next chip Next chip with sorting
1. Report Correlation & Tracking 1.44 1.98(1.8) 1.58(1.44) 0.25(0.123)
2. Cockpit Display (750 /sec) 0.72 0.24 0.19 0.021
3. Controller Display Update
(7500/sec)

0.72 0.015 0.006 0.006

4. Sporadic Requests (200 /sec) 0.4 0.04 0.033 0.033
5. Automatic Voice Advisory (600
/sec)

0.36 0.15 0.12 0.013

6. Terrain Avoidance 0.32 0.31 0.25 0.03
7. Conflict Detection & Resolution 0.36 0.44 0.35 0.12
8. Final Approach (100 runways) 0.2 0.005 0.004 0.004
Total 4.52 3.4(3.22) 2.54(2.4) 0.48(0.35)

1. All times are secs, and are the compute time over the total time available of 8 secs.
2. Times in () are with the faster bulk reduction operations
3. The next chip figures allow for 250 MHz (rather than 200 MHz for CS301).

9

http://www.clearspeed.com/

	Overview of Air Traffic Control using an SIMD COTS system

