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Abstract— We consider a dense wireless sensor network where
the radio transceivers of the sensor nodes are heavily duty-cycled
in order to conserve energy. The chief purpose of the sensor
network is surveillance and monitoring, where upon observation
of certain event of interest, a sensor node generates a message
and forwards it to a gateway located somewhere in or near
the network. This forwarding relies on routes constructed using
sensors whose radios are on/active. In order for such messages to
reach the gateway with minimal delay, any sensor in the network
should ideally have a route to the gateway consisting of active
sensors at all times. Prior approaches to similar problems include
clustering, virtual backbone, and connected dominating sets.
Low energy consumption and good connectivity are potentially
conflicting objectives. Our principal goal is to find an approach
that results in the lowest possible duty cycle, and that provides
better trade-off between the two objectives. In this paper we
introduce the concept of partial clustering, which may be viewed
as a generalized method of clustering. We compare the theoretical
performance of different instances of partial clustering to that of
standard clustering, and show that partial clustering can achieve
lower duty cycle and provide greater flexibility in the trade-off
between energy efficiency and connectivity. We then present a
distributed algorithm based on the partial clustering method.
Simulation results are provided to evaluate their effectiveness
and energy efficiency.

Index Terms— System design, wireless sensor networks, con-
nectivity, clustering, connected dominating set, energy efficiency

I. INTRODUCTION

Energy efficiency is a critical issue for the proper func-
tioning of wireless sensor networks and has been the focus
of many recent studies. It has been widely accepted that one
of the most effective ways of conserving energy is to put the
sensor nodes to sleep from time to time, i.e., to operate sensors
at a lower duty cycle, defined as the percentage of on/active
time. This could mean switching off the radio transceivers or
the sensory devices, or both. The price we pay for letting
the sensors alternate between on and off modes is perfor-
mance degradation. Duty cycling radios implies intermittent
communication capability while duty cycling sensory devices
implies intermittent sensing capability. Alleviating methods
include redundancy in sensor deployment and good scheduling
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algorithms by which sensors determine when to switch off and
for how long.

In this paper we study the problem of maintaining con-
nectivity in a sensor network where sensors are duty-cycled
1. We will limit our attention to the duty cycling of radio
transceivers only (for the rest of the paper the term duty cycle
will be used in this limited sense). The goal is to develop
methods that allow the network to operate at a low duty cycle
with balanced energy consumption across the network, while
maintaining connectivity.

Specifically, consider a wireless sensor network used for
surveillance. Sensors are scattered over a field to monitor the
area for events of interest. Upon occurrence of such an event, a
sensor detecting it may generate a message to be delivered to a
gateway (or controller) somewhere within or near the network.
The path toward the gateway has to rely on sensors that are
on/active. If a path consisting of active sensors does not exist,
the message will have to wait till one becomes available. In
order to have timely delivery whenever a need arises, it is
desirable for the network to have connectivity at all times, in
the sense that every node (active or inactive) should have a
path consisting of active nodes to the gateway. Note that an
inactive sensor detecting certain event may wish to switch on
its radio to communicate.

This reduces to the problem of selecting a subset of the
nodes, such that nodes within the set are reachable from the
gateway and every node outside the set is connected to at least
one node in the set. Once we have such a set, then only nodes
in the set need to be on while all other nodes may be turned off.
To balance energy consumption we then need multiple such
sets, preferably mutually exclusive but collectively including
all nodes, so that we can rotate among them.

This is essentially the problem of finding connected domi-
nating sets (CDS) in a network [1], [2]. To reduce duty cycle,
we need as many such sets as possible; to balance energy, we
need these sets to have as few common elements as possible.
This leads to the problem of finding the minimum connected
dominating set (MCDS) (e.g., [3], [4]), which is known to
be NP-complete in a circle graph [5] even as a centralized
algorithm.

Many simpler, heuristic-based approaches have been pro-

1An important underlying assumption of this study is that sensors are cheap
enough to be deployed in large quantities. It is this redundancy in deployment
that allows us to duty cycle the sensors while maintaining a desired level of
performance.
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posed that aim at finding reasonably good connected dominat-
ing sets rather than the minimum. There are two main types
of such constructions. The first type is (virtual) cluster-based,
where the sensing field is partitioned into multiple clusters
(or cells) of sensors and the partition satisfies the following
conditions.

Condition 1: All sensors in the same cluster can commu-
nicate with each other directly (via 1 hop).

Condition 2: All sensors in the same cluster can commu-
nicate with all sensors in the neighboring clusters directly.

Subsequently, only one sensor needs to be on in each cluster
to maintain connectivity. The definition of a “neighboring”
cluster varies, but has to be such that the resulting active
sensors form a connected set. Sensors in the same cluster may
take turns to be active in a round-robin fashion to share the
responsibility. Thus a particular sensor’s duty cycle is inversely
proportional to the number of sensors in the same cluster.
As this number varies from cluster to cluster (for a random
deployment), the network may need to be re-partitioned from
time to time to balance energy consumption. Examples of
this approach include GAF [6] and [7]. They partitioned the
field into small square clusters, each with 4 and 8 neighboring
squares, respectively. These methods will be analyzed further
in Section III. [8] uses the same square partition and derives
an asymptotic lower bound on the network lifetime.

The second type of construction is known as the virtual
backbone, used to support multicasting [9] and fault-tolerant
routing [3], [10], [11] for mobile nodes in an ad hoc network.
As long as the backbone is connected, this concept can be used
to duty cycle sensors while maintaining connectivity. Thus
Connected dominating sets may be viewed as a special case of
the virtual backbone. [2] proposed an approach called SPAN
to construct a connected dominating set of sensors.

In this paper, we introduce the concept of partial clustering,
where a field is first partitioned into clusters/cells, but only
nodes within a sub-area of each cluster/cell are selected to
form the connected dominating set (or virtual backbone). In
many instances partial clustering is a generalized form of
standard clustering, with tunable parameters. By limiting the
selection to sub-areas within clusters, this approach imposes
more structure on the formation of the backbone. In doing so
it also achieves low duty cycle and a more flexible trade-off
between energy efficiency and connectivity than standard clus-
tering. We will also show that this approach is asymptotically
order optimal.

For the rest of our discussion we will use the terms on,
active, and awake interchangeably and the terms off, inactive,
and asleep interchangeably.

The rest of the paper is organized as follows. Section II
presents the network model and the key ideas that differentiate
our approach from prior work. In Section III we compare
a number of cluster-based approaches. Section IV presents
in detail the partial clustering approach. We then develop
distributed algorithms based on the partial clustering idea
in Section V. Section VI evaluates the performance of the
distributed algorithms, and Section VII concludes the paper.
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Fig. 1. (a) Cluster-based duty cycling. (b) Basic Idea of our approach.

II. NETWORK MODEL AND PRELIMINARIES

We consider a field of size A, where N sensors are
randomly deployed according to some probability distribution.
This distribution is assumed to be uniform in our analysis
in Sections III and IV, but is not required in the distributed
algorithm presented in Section V. The node density is thus N

A
.

We adopt a simple binary physical layer model by assuming
that the transmission radius of each sensor is fixed at R,
and an active node can reach any other active node within a
circle of radius R. We also assume that links are bi-directional
and symmetric. We will not be concerned with interference,
as the scenario under consideration is one where traffic is
relatively light, and the main goal is to have connectivity. The
energy consumption is considered via the on time of a node in
this paper, i.e., we assume that the main consumption comes
from being active rather than from data relay and processing.
Sensors are assumed to have a fixed amount of initial energy.

We illustrate the idea behind our approach via the fol-
lowing example. In the standard cluster-based construction
of connected dominating sets (CDS), the size of the cluster
is typically determined by the worst case scenario (i.e., the
largest possible distance between two nodes in neighboring
clusters). Figure 1(a) illustrates such an approach by [6], where
the largest distance between nodes in two neighboring squares
is the diagonal marked by the dark line. This distance has to be
at most R in order for this construction to satisfy Conditions
1 and 2 when only squares adjacent to the four sides are
considered neighbors. This constraint limits the size of the
squares, which in turn limits the reduction in duty cycle.

Now consider the illustration given in Figure 1(b), where
we have two neighboring squares, but only nodes within the
shaded sub-squares are activated one at a time, while nodes
outside the shaded areas are asleep. Again the worst case is
marked by the dark line, which should be at most R, and
the size of the bigger square should be such that any node
outside the shaded area can directly connect to any node within
the shaded area. In essence, we are limiting the on sensors
to be closer to the center of the square. Thus the resulting
backbone or CDS will appear more like a grid. By doing so,
the bigger square can now cover a larger area without losing
connectivity, which leads to lower average duty cycles for the
nodes. Furthermore, it can be seen that Figure 1(a) is simply a
special case of Figure 1(b) if we let the shaded square and the
bigger square completely overlap. Subsequently, the shaded
area within the bigger square will be referred to as a sub-area,
and the bigger square will be referred to as a cell or cluster
of the partition. The drawback of this approach is that since
nodes are selected from a smaller area, the probability of being
able to find one is also lower, which may potentially affect
connectivity depending on the density. This is nevertheless
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an attractive approach for a dense network. In addition, by
generalizing the idea of clustering and making the size of the
sub-area adjustable, we have greater flexibility in trading off
duty cycle for performance.

Note that in the case of Figure 1(b), nodes are activated in
a round robin fashion within a single sub-area. Periodically
the field needs to be repartitioned using the same squares but
with a proper offset in their coordinates. This ensures that a
different set of nodes are now within sub-areas. This process
then repeats to balance the energy consumption 2. However, in
effect we only need one sensor to be on for the area covered
by the bigger square.

In the next two sections, we will first examine a number
of standard clustering methods and then present the partial
clustering approach. Both are evaluated by the following two
metrics:

1) Average duty cycle D: the average percentage time that
a sensor is on or active.

2) Probability of failure Pf : the probability of finding no
sensor in a cluster or a partial cluster.

III. CLUSTER BASED METHODS

The basic idea of standard clustering methods is to partition
the sensing field into many cells. Sensors in the same cell
form a cluster. The partition is chosen such that Conditions 1
and 2 are satisfied. Subsequently only one sensor in a cluster
needs to be on at a time. The selection of which sensor should
be on can be done in a round-robin fashion (with additional
consideration of residual energy if applicable). What remains
to be determined is the type of partition used to form clusters.

These are fundamentally centralized algorithms in that
a global partition requires global knowledge of the field.
Practical implementation of these approaches usually requires
the sensors to have loose time synchronization and to have
geographical information with respect to the entire field [7],
[6]. The field is also often pre-configured into static cells. This
allows each sensor to determine which cell it belongs to.

In the discussion that follows we will assume that some
centralized entity controls the partition and the duty-cycling
of sensors, and ignore extra overhead. We will also ignore
edge effects that may occur when a particular partition does
not constitute a complete tessellation of an area of a certain
shape. The edge effects become more negligible as the field
becomes larger compared to R.

Suppose the partition contains cells of average size a. Since
only one sensor needs to be activated in each cell, there are
na = A

a
total number of active sensors at a given time. Then

the average duty cycle measure is given by D = na

N
= A

aN
,

where N is the total number of nodes. The probability of
failure is defined as follows: Pf = (1 − a

A
)N .

A. Some Typical Partitions

The first partition is also used by [7], defined as follows.

2Note that such repartition is also needed in a standard clustering approach,
since under any static clustering two clusters may contain very different
number of nodes. Without repartition it could also lead to unbalanced energy
consumption.
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Fig. 2. (a) S-8: The field is partitioned into squares (cells) with side length
r = R

2
√

2
. (b) Hex: The field is partitioned into hexagons with side length

r = R
√

13
.

Definition 1: (S-8) The field of interest is divided into
equal squares (cells) as illustrated in Figure 2(a). Each square
has a side length R

2
√

2
and area size R2

8 . For any square, its 8
surrounding squares are considered neighboring clusters.

It is obvious that S-8 satisfies Conditions 1 and 2, and that
among similar equal square tessellations this one achieves the
largest cells. Since each cell has 8 neighbors, the minimum
degree of the resulting connected routing graph is 8. (Degree is
defined as the number of active neighbors of an active sensor.)

If we only consider 4 neighboring cells in the above, we
obtain the following partition, also used in [6]:

Definition 2: (S-4) The field of interest is divided into
equal squares (cells). Each square has a side length R√

5
and

area size R2

5 . For any square, 4 squares adjacent to its sides
are considered neighboring clusters.

It’s obvious that this partition also achieves the largest
cells among all square partitions satisfying the two conditions
when only 4 neighbors are considered. The resulting connected
routing graph has a minimum degree of 4.

Similarly we could use a hexagon tessellation. The follow-
ing gives the largest cells among all hexagon tessellations that
satisfy the two conditions.

Definition 3: (Hex) The field of interest is partitioned into
equal hexagons as illustrated in Figure 2(b). Each hexagon has
side length R√

13
and area size 3

√
3R2

26 .
We summarize D and Pf of these partitions in Table I,

which follow directly from the above definitions and simple
trigonometry calculations. We can see that S-4 has the best
performance (note that we want both D and Pf to be small),
although the difference between Hex and S-4 is virtually
negligible. On the other hand, the minimum degrees of S-
4, Hex, and S-8 are 4, 6, and 8, respectively. From a routing
perspective, higher degree gives better and more robust routes
and is thus preferred.

S-8 S-4 Hex

Pf (1 −

0.125R2

A
)N (1 −

0.2R2

A
)N (1 −

0.1999R2

A
)N

D 8A
NR2

5A
NR2

5.0037A
NR2

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT PARTITIONS.
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B. Order Optimality

Theorem 1: For the average duty cycle D, S-8, S-4, and
Hex are asymptotically order optimal.

Proof: We utilize a result provided in [12] on the
condition of asymptotic connectivity of a random graph.
Suppose that there are N sensors uniformly distributed in a
square with area A and side length l. Each sensor has com-
munication radius R. Among these N sensors we randomly
select n, which are again uniformly distributed. Asymptotic
connectivity here means a sensor can find a path to any other
sensor as N → ∞, A → ∞ while N

A
remains fixed. For

the n chosen sensors to achieve asymptotic connectivity, [12]
derives necessary condition n = β A

R2 , for some constant β.
The proof of the necessary condition is done by considering
point isolation probability, which is general and holds for all
partitions. We now use this necessary condition to prove our
result.

Following the necessary condition, we need at least n =
β A

R2 active sensors in order to have connectivity. This means
that the duty cycle of the network D is lower bounded by
n
N

= β A
R2 = θ( A

NR2 ). It follows from Table I that S-8, S-4,
and Hex have D = θ( A

NR2 ), which is of the same order as
the lower bound.

IV. PARTIAL CLUSTERING METHODS

As described in Section II, under partial clustering, the field
is first partitioned into cells and then a sub-area is selected
within each cell. In order to maintain connectivity, the partition
and the sub-area selection need to satisfy the following 2
conditions.

Condition 3: Any sensor in a sub-area is connected di-
rectly to all sensors in the sub-areas within neighboring cells.

Condition 4: Within a cell, sensors outside the sub-area
can communicate directly with any sensor in the sub-area.

Comparing partial clustering with clustering, denoting by
Dp and Dc the respective average duty cycle, we have the
following

Dp =
np

N
, Dc =

nc

N
, (1)

where np and nc are the number of cells in a partial clustering
and standard clustering methods, respectively. Thus so long as
np < nc, partial clustering achieves lower average duty cycle.

A. A Few Examples of Partial Clustering

Definition 4: (P-S(y)) The field of interest is partitioned
into equal squares (cells) with side length

√

R2 − y2 − y,
where 0 ≤ y ≤ R√

5
, as illustrated in Figure 3(a). The sub-areas

are chosen as the shaded co-centered squares, as illustrated in
Figures 3(a) and (b). For any square cell, the 4 square cells
adjacent to its sides are considered its neighboring clusters.

From Figure 3(b), we can see that the largest distance from
any sensor in a cell to a node in the sub-area of the cell is less
than R. Furthermore, the largest distance between two nodes
in neighboring sub-areas equals R. Thus both Conditions 3
and 4 are satisfied. Since x has to be non-negative and one
can obtain that x =

√

R2 − y2 − 2y from Figure 3(b), the

R - y   - y
2
 2
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Fig. 3. (a) P-S(y): One sensor needs to be chosen in each shaded sub-area.
(b) Details of P-S(y): Square ABCD is a cell.
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Fig. 4. (a) P-H(y): An active sensor is chosen within the shaded area. (b)
Details of P-H(y): Triangle ABC is a cell. One node chosen in the shaded
area DEFBG needs to be activated. (c) Triangle AFB can decide the range of
y.

range of the tunable parameter y is 0 ≤ y ≤ R√
5

. The side
length

√

R2 − y2 − y is also easily obtainable from Figure
3(b).

Definition 5: (P-H(y)) The field of interest is first parti-
tioned into equal hexagons with side length

√

R2 − 3
4y2 − y

2 ,
where 0 ≤ y ≤ R√

3
, and then each hexagon is further

divided into 12 equal triangles, as illustrated in Figure 4(a).
2 neighboring triangles form 1 large triangle, which is the
cell (e.g., the triangle ABC in Figure 4(a)(b)) in this partition
method. The sub-area is shaded as illustrated in Figure 4(b)
(e.g., shaded area DEFBG within cell ABC).

From Figure 4(b), we can see that the largest distance from
any sensor in a cell to a sub-area node is R. Furthermore, the
largest distance between sub-area nodes from neighboring cells
is less than R (e.g., the largest distance from a sub-area node
in DEFBG to a sub-area node in HIJED in a neighboring cell
is less than R.) Thus this construction satisfies both Conditions
3 and 4. As an example, in Figure 4(a) the sub-area node (in
black) of cell ABC is connected directly to 3 neighboring sub-
area nodes. The range of y can be obtained from Figure 4(c).
Since x is non-negative, we have 0 ≤ y ≤ R√

3
.

Proposition 1: The above two partial clustering approaches
have duty cycles and failure probabilities as function of the
tunable parameter y as follows:

D(y) =
A

NAt(y)
, (2)

Pf (y) = (1 − Ag(y)

A
)N , (3)

where At(y) is the size of the cell and Ag(y) is the size of
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Fig. 5. Pf and D when N = 200, A = 10, and R = 1.

the shaded sub-area. Furthermore, we have for P-S(y),

At(y) = (
√

R2 − y2 − y)2, (4)

Ag(y) = y2, 0 ≤ y ≤ R√
5
. (5)

For P-H(y):

At(y) =

√
3

4
(

√

R2 − 3

4
y2 − y

2
)2, (6)

Ag(y) =

√
3y(

√

R2 − 3
4y2 − 3

2y)

2
+

√
3y2

4
, (7)

where 0 ≤ y ≤ R√
3

.
For brevity, we do not present the detailed calculations here

since they are relatively straightforward given the illustrations
presented earlier. We note that for partial clustering, the
measure Pf is only determined by Ag , the size of the sub-
area, while the duty cycle is determined by the size of the cell
since only one sensor needs to be on for the entire cell.

The following theorem can be established from the preced-
ing definitions and the proof of Theorem 1.

Theorem 2: For the average duty cycle D, P-S(y) and P-
H(y) are asymptotically order optimal.

B. Comparison and Discussion

Below we compare different approaches presented earlier.
Figures 5 and 6 show Pf and D as functions of y under
different duty-cycling approaches when N = 200, A = 10,
and R = 1 and when N = 200, A = 10, and R = 4,
respectively.

Not surprisingly, we see that both Pf and D decrease as
R increases from 1 to 4, and they decrease as N increases as
well. Note that here we consider only the duty cycle not the
actual energy consumption; increasing R would increase the
transmission power consumption as well.

In general partial clustering approaches achieve lower D
than clustering at the expense of higher Pf . For a partial
clustering method, as we adjust parameter y, D and Pf change
in opposite directions. For example, for y = R√

5
P-S(y) is

equivalent of S-4. As we decrease y, using P-S(y) attains a
lower D but higher Pf than using S-4. On the other hand, for
the very same reason the class of partial clustering methods
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Fig. 6. Pf and D when N = 200, A = 10, and R = 4.

exhibit greater flexibility and offers more control over the
trade-off between D and Pf .

It’s worth mentioning that Pf diminishes exponentially fast
as the total number of nodes increases. As a result, in dense
networks partial clustering methods can achieve much lower
D at the expense of very slight increase in Pf compared to
clustering methods. Therefore partial clustering methods are
particularly attractive in a dense network.

Note that both clustering and partial clustering approaches
encompass many different variations. The ones presented here
are more or less based on typical tessellations. It’s worth
emphasizing that the idea underlying partial clustering is to
introduce extra structure (e.g., the “grid” structure in P-S(y),
the hexagonal or “ring” structure in P-H(y) ) to the standard
clustering method in order to obtain either lower duty cycle
or better trade-off.

Finally both clustering and partial clustering methods as
presented above are centralized algorithms, and designing cor-
responding distributed implementations can be very difficult
and complicated. To show the complexity note that finding
a cluster with only Condition 1 is the same as the CLIQUE
problem which is known to be NP-complete.

As mentioned before, distributed algorithms based on stan-
dard clustering require sensors to have global geographical
information. On the other hand, under partial clustering the
additional structure introduced into the connected set gives
rise to simple heuristics in designing a decentralized algorithm
which only requires relative location information. We explore
this further in the next section.

V. DISTRIBUTED PARTIAL CLUSTERING

In this section we present a distributed algorithm based on
the partial clustering concept, under which nodes coordinate
to decide who should be on. The main assumption we will
make is that a node has knowledge about the positions of its
neighbors relative to itself. We do not require nodes to be
clock-synchronized.

Depending on whether we follow the hexagon-based P-H
or the square-based P-S constructions, different variations of
the algorithm may be derived. The resulting algorithms will be
denoted DPC-H and DPC-S, respectively. Here we will use the
former for presentation purposes, while we include simulation
results on both in the next section.
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Fig. 7. Partition of the communication area of the head node (in dark) and
the connected ring of supports (in white). All non-support sensors inside the
big circle are potential heads.

The key to the distributed partial clustering algorithm is
illustrated in Figure 7. As mentioned earlier, the hexagon-
based partial clustering essentially attempts to form a “ring”
of active nodes (12 of them to be precise) around an area in
which all nodes can go to sleep. If a node can find such a
ring of nodes (subsequently called supports) to be active, then
the node can safely switch off (such a node is subsequently
called a head). Once this ring of supports are identified, all
other nodes surrounded by this ring can also become heads and
switch off. The head node will be off for a pre-specified period
of time and wake up; the ring of supports will be relieved of
their role, and the process will repeat. A node that is neither
a head nor a support will be called a regular node.

We proceed to discuss key elements of this algorithm in
more detail. To maintain clarity, we will largely keep the
description on a conceptual level and some of the details of
the algorithm are left out.

A. Basic Operations

A regular node i periodically runs a head selection function
(to be described in more detail in Section V-B) to determine
whether the required number of supports can be located. If
the process succeeds, it sends out a packet PKT-H containing
the source ID, the set of selected nodes, and the time until
switching off. Due to the broadcast nature of the transmission,
this information is known to all active nodes within the
neighborhood. The selected supports subsequently respond
with a PKT-S packet announcing their role as supports. At
the scheduled time i becomes a head and goes to sleep for a
period of time specified by a constant Ts (the supports will be
awake for the same period of time). Upon expiration of this
period, node i wakes up and it (along with its supports) will
reset itself to a regular node. The whole process then repeats.
If the head selection is not successful, then node i continues
to be a regular node, unless it is selected to be a support by
some other node.

Sensors also use a PKT-E as a keep-alive packet to maintain
a neighbor list. This packet can also be used to deliver
information such as residual energy, etc.

All packet transmission times are offset by a randomly se-
lected small delay in order to avoid synchronous transmissions.
In particular, to de-synchronize neighboring nodes from trying
to simultaneously selecting each other to be supports, from the
time node i becomes a regular node, it has a window of Tc

units of time to initiate and execute the head selection function.
A regular node will randomly select a starting time to execute
the head selection function within this window. The selection
of this starting time can also be based on consideration of

residual energy (e.g., the less the energy the sooner to start
so the node may have a better chance of becoming a head),
in ways similar to that shown in Equation (8) below. In our
simulation we have set Ts = 10Tc.

It remains a possibility that two neighboring sensors (e.g.,
sensors i and j) execute head selection function at approxi-
mately the same time, where sensor i may choose sensor j as
the support while j decides to be a head. As long as j receives
PKT-H from i it will become a support instead. However, if
the packet is lost due to error or collision, then i may end
up with fewer number of supports than expected unless error
correction or retransmissions are used.

B. Head Selection Function

A sensor is eligible to be a head if it can locate 12 neighbors,
each chosen within a cell of the partition, denoted by Ai as
shown in Figure 7. Note that all non-support sensors inside the
grey circle (the communication area of the dark head node)
are potential heads. Any potential head i can become a head
if it satisfies the following condition:

Condition 5: All its neighbors outside the circle are di-
rectly connected to at least one of the announced supports
within the circle.
Testing this condition requires knowledge of the relative
position of neighbors as well as the broadcast of PKT-H and
PKT-S. Since any sensor in cell Ai can communicate with
the chosen support in Ai directly and the 12 chosen supports
are connected, the connectivity within the communication area
of the head is maintained if all 12 supports remain active.
The connectivity between neighboring (possibly overlapping)
communication areas of different heads is maintained since
the above condition is satisfied.

In order to have as many qualifying heads as possible, a
potential head node should choose supports as far away as
possible. In order to balance energy consumption, it’s desirable
to choose supports with higher residual energy. It also makes
sense to select as supports the nodes that are already chosen
as supports by other heads.

There are many ways of selecting supports. In our simula-
tion, we adopted the following simple formula of a weighted
sum of distance and residual energy. This is calculated for
each of the 12 cells by a potential head:

support node = argmaxi∈NS

{

κ
di

R
+ µ

Ei

E

}

, (8)

where NS is the set of sensors in the current cell that have
already been chosen as supports, di is the distance between
node i and this head node, Ei is i’s residual energy, constant
E is the initial energy, κ + µ = 1 and 0 ≤ κ, µ ≤ 1. If NS

happens to be empty, then we repeat the same calculation over
the set of all sensors in the current cell.

The distributed partial clustering algorithm based on con-
struction P-S(y), DPC-S, is very similar to DPC-H that we
just described. The key difference is that in the head selection
process a potential head node selects 4 supports based on the
illustration given in Figure 3.

The routes established based on the connected set generated
by DPC-H are longer than that may be established when all
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Fig. 8. An example of path length increase from 2 to 7 links. The triangular
nodes are intermediate sensors of the data path.

sensors are on. But they are only longer by a constant factor
in the worst case. This is illustrated in Figure 8, where the
triangular nodes and the head are the intermediate sensors
of the original data path. When the head is turned off, the
data path needs to be re-routed through the supports. In the
worst case the path length is increased from 2 links to 7 links.
Therefore, in the worst case the increase of path length due to
DPC-H has a constant factor 3.5. Similarly, in the worst case
the increase of path length under DPC-S has a constant factor
2.

VI. PERFORMANCE EVALUATION

We simulate DPC-H and DPC-S in Matlab and compare
their performances to the ideal results obtained using central-
ized algorithms.

The field of interest is a square with length L and size
A = L2. N sensors are deployed according to the uniform
distribution. The sensor transmission radius is R, with R � L.
The following energy model from [13] is adopted. Energy
consumption on packet transmission and on reception are
α11 + α2d

2
1,2 J/bit and α12 J/bit, respectively, where α11 =

45nJ/bit, α12 = 135nJ/bit, α2 = 10pJ/bit/m2, and d1,2 is
the distance between the transmitting and receiving nodes. We
assume that there is no energy consumption when a sensor is
off and the idle energy consumption in the on state is 35mW
[14]. We will also assume all transmissions are error/collision
free. This makes the results comparable to the ideal theoretical
results derived earlier.

Each sensor will execute the algorithm every Tc + Ts

duration. We call this duration a “round”. The initial energy is
set such that each sensor can continuously run for 120 rounds
without being turned off. A sensor dies when it has depleted
all its energy. The sizes of packets PH , PS , and PE are 13
bytes, 1 bytes, and 2 bytes, respectively. The shortest distance
from sensor i to the field boundary is denoted by Di. The
results are obtained from sensors located with Di ≥ R to
remove the boundary effect and make the results comparable.
The simulation results shown are the average of 30 random
topologies.

A. Energy Efficiency and Energy Balancing

We denote the total on duration by Ton(i) and total off
duration by Toff (i) of each sensor i. These are obtained before
the first sensor’s death. Then we calculate the average duty
cycle as 1

N

∑N

i=1
Ton(i)

Ton(i)+Toff(i) , and its standard deviation.
The left graph in Figure 9 compares the average duty cycles
of DPC-H, DPC-S, and theoretical results on approaches
presented in Sections III and IV. In the graph the upper and
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Fig. 9. Left: comparison of average duty cycles. The upper and lower dotted
lines of a simulated average duty cycle (the thick line with markers) are the
95.4% confidence interval. Right: the standard deviations of duty cycles.

lower dotted lines of a simulated average duty cycle (the thick
line with markers) are the 95.4% confidence interval. In all
cases the duty cycle decreases as N increases.

The main observation here is the difference between theo-
retical centralized approaches and distributed approaches. The
distributed algorithms result in much higher duty cycles, but
seem to scale as well as the centralized algorithms as N
increases. This difference is expected as distributed algorithm
cannot achieve a perfect field partition as shown in Sections III
and IV. Furthermore, the results of the theoretical centralized
approaches do not include any control overhead.

There is no significant difference between the 2 sets of
parameters for DPC-H. The choice of these control parameters
is subject to further study. Between DPC-H and DPC-S, the
latter performs better. The reason seems to be that the latter
results in fewer number of regular nodes and supports.

Looking at the right graph in Figure 9 we see that for all
these algorithms energy balancing improves as N increases.
(The standard deviation for the ideal centralized algorithms
will all be zero, thus not shown in the figure.)

We also obtain the times when 20% sensors are dead under
DPC-H and DPC-S, respectively shown in the left graph in
Figure 10. Similar to previous results, DPC-S performs the
best.

B. Complexity and Control Packets Overhead

The complexity of DPC-H and DPC-S is Θ(Mi) for sensor
i per round, where Mi is the number of neighbors sensor i
has. This is because in the head selection function partition-
ing neighbors into 12 sub-areas has complexity Θ(Mi) and
Equation (8) has the same complexity. Furthermore, checking
Condition 5 has complexity Θ(Mi).

If a sensor executes the head selection function and decides
to be the head, our algorithm generates 1 PKT-H and a number
of PKT-S (12 for DPC-H and 4 for DPC-S). Each sensor will
generate 1 PKT-E packet every round. The average control
overhead per round obtained from simulation is shown in
the right graph in Figure 10. Control traffic increases as
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Fig. 10. Left: the time when 20% sensors are dead; Right: average amount of
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N increases since the number of sensors running the head
selection function increases. The increasing rate is less than
linear. DPC-H has more control traffic than DPC-S since it
generates more PKT-S.

C. Comparison with SPAN

In this section we briefly compare our algorithms with
SPAN, a pure virtual backbone approach proposed by [2]. The
basic idea of SPAN is for a node to stay on if it detects that it
has at least two neighbors that do not share common neighbors
other than itself. This algorithm does not require nodes to have
the relative location information of its neighbors as required
by our algorithms. But it requires a node to have the list of
all nodes within two hops, which results in a large amount
of comparisons with a complexity O(M 4) where M is the
average node degree3.

The scenarios simulated in Section VI-A have node degrees
that are too large to run SPAN in Matlab. We thus reduce the
field size (A = 64), transmission radius (R = 1), and number
of sensors (N ). From the simulation results, SPAN has an
average duty cycle 0.52 when N = 100 (about 1−2 nodes in a
single transmission circle); however, DPC-S with κ = µ = 0.5
has an average duty cycle 0.98. This is due to the obvious
reason that when the density is too low, the requirement of 4
supports is almost never satisfied. The performance of DPC-
S improves as N increases; when N = 1200, DPC-S has
an average duty cycle 0.43. On the other hand, we were not
able to obtain results for SPAN when N > 200 due to the
complexity.

VII. CONCLUSION

In this paper we introduced the concept of partial clustering
to construct connected dominating sets in a dense wireless
sensor network, in order to achieve connectivity and low
duty cycle. We examined three cluster-based approaches and

3This is obtained from the pseudo-codes provided in [2]. [7] also makes a
similar claim that SPAN does no scale with sensor density.

compared them with two partial clustering methods in terms
of average duty cycle and the probability of failure. We
showed that all these schemes achieve asymptotically order
optimal average duty cycles. We then developed a distributed
algorithm based on the partial clustering idea and showed
its performance via simulation. We demonstrated that partial
clustering is an attractive method of construction especially
for dense networks, as it provides low duty cycle and greater
flexibility in the trade-off between duty cycle and failure
probability.
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