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Abstract— We propose a novel adaptive MAC protocol for
wireless sensor networks. In existing protocols such as SMAC
[1], the sensor nodes are put to sleep periodically to save
energy. As the duty cycle is fixed in such protocols, the network
throughput can degrade under heavy traffic, while under light
loads, unwanted energy consumption can occur. In the proposed
Pattern-MAC (PMAC) protocol, instead of having fixed sleep-
wakeups, the sleep-wakeup schedules of the sensor nodes are
adaptively determined. The schedules are decided based on a
node’s own traffic and that of its neighbors. Our analytical
and experimental results show that in comparison to SMAC,
PMAC achieves more power savings under light loads, and higher
throughput under heavier traffic loads. Furthermore, unlike
SMAC, only the sensor nodes involved in communication wake
up frequently in PMAC and hence energy is conserved in other
sensor nodes.

I. INTRODUCTION

Wireless sensor networks are new types of special-purpose
ad hoc networks. They have numerous applications in vari-
ous fields such as monitoring animal/plant habitation, target
tracking, homeland security, etc. These networks are usually
deployed in an ad hoc manner with the nodes in the network
sharing the same communication medium. The sensor nodes
are usually operated by batteries and left unattended after
deployment. Therefore, power saving is a critical issue in
wireless sensor networks. Many research efforts in the recent
years have focused on developing power saving schemes
for wireless sensor networks. These schemes include power
saving hardware design, power saving topology design [2], [3],
power-efficient MAC layer protocols [1], [4], [6] and network
layer routing protocols [7], [8], to name a few.

A MAC protocol is required in sensor networks to co-
ordinate the sensor nodes’ access to the shared medium.
Designing power efficient MAC protocols is one of the ways
to prolong the lifetime of the network. In addition to energy
efficiency, latency and throughput are also important features
for consideration in MAC protocol design for sensor networks.
Commercial standards like IEEE 802.11 have a power manage-
ment scheme for ad hoc networks, wherein the nodes remain
in idle listening state at low traffic to conserve power. Studies
show that significant power is wasted even in the idle listening
mode [5]. Hence, 802.11 is not suitable for sensor networks.

†Author to whom all correspondence should be sent.

SMAC [1] is a MAC protocol specifically designed for
wireless sensor networks. It forces sensor nodes operate at
low duty cycle by putting them into periodic sleep instead of
idle listening. Sensor nodes also sleep during overhearing to
save power. Although, SMAC saves more power than 802.11,
it does not adapt to network traffic very well since it uses a
fixed duty cycle for all the sensor nodes. A duty cycle tuned
for high traffic loads results in energy wastage when the traffic
is low, while duty cycle tuned for low traffic loads results in
low throughput under high traffic loads. The Timeout-MAC
protocol (TMAC) [4] improves on SMAC by using an adaptive
duty cycle. If there is no activity in the vicinity of a node for
a time TA, the node goes to sleep. Such an adaptation frees
the application from the burden of selecting an appropriate
duty cycle. TMAC has the same performance as SMAC under
constant traffic loads, but saves more energy under variable
traffic.

The down-side of TMAC’s aggressive power conserving
policy is that nodes can go to sleep rather early, resulting in
increased latency and lower throughput. Another drawback in
both SMAC and TMAC is that, they group the communication
during small periods of activity. As a result, the protocols
collapse under high traffic loads [5]. Data-gathering MAC
(DMAC) [6] is another protocol that uses adaptive duty
cycle. It provides low node-to-sink latency in convergecast
communication by staggering the wake-up times of the nodes
in the convergecast tree. While DMAC outperforms SMAC in
terms of latency, throughput and energy efficiency, it remains
to be seen if DMAC can support communication paradigms
other than convergecast.

In this paper, we propose a new MAC protocol called
Pattern-MAC (PMAC) for sensor networks that adaptively
determines the sleep-wake up schedules for a node based on
its own traffic, and the traffic patterns of its neighbors. We
analytically and experimentally show that by doing so, our
protocol is able to achieve a better throughput at high loads,
and conserve more energy at light loads than SMAC.

We organize this paper as follows: In Sections II and III,
we describe the working of our protocol. In section IV, we
qualitatively analyze our protocol, and in section V, we present
an analytical model to calculate the steady state average power
savings in PMAC. Section VI shows the experimental results
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Fig. 1. Comparisons of the lengths of idle listening periods among SMAC,
TMAC and PMAC with no traffic.

comparing SMAC and PMAC. We state our future work and
conclude in section VII.

II. OVERVIEW OF PMAC

PMAC is a ‘time slotted’ protocol like SMAC. In SMAC,
a node can stay awake for a certain duration of a time slot,
and go to sleep in the remaining duration; while in PMAC, a
node can either be awake or asleep during a time slot.

A. Rationale behind PMAC

Idle listening is one of the main sources of energy wastage.
Energy saving MAC protocols try to minimize the length of the
idle listening period. Fig. 1 shows the lengths of idle listening
periods in SMAC, TMAC and the proposed PMAC protocols
in the extreme case of no traffic in the sensor network. In
SMAC, sensor nodes have to wake up periodically even when
there is no traffic in the network, thus wasting power. A small
duty cycle can reduce this wastage, but it will cause low
throughput when the traffic becomes heavy. In TMAC, sensor
nodes need to wake up at the beginning of each time frame
for a time TA even when there is no traffic in the network,
as a node needs to check for any activity in its neighborhood.
In PMAC, a sensor node gets information about the activity
in its neighborhood before hand through patterns. Based on
these patterns, a sensor node can put itself into a long sleep
for several time frames when there is no traffic in the network.
If there is any activity in the neighborhood, a node will know
this through the patterns and will wake up when required.
Thus PMAC tries to save more power than SMAC and TMAC,
without compromising on the throughput.

B. Pattern vs Schedule

A sleep-wakeup pattern is a string of bits indicating the
tentative sleep-wakeup plan for a sensor node over several
slot times. Bit 1 in the string indicates that the node intends
to stay awake during a slot time, while 0 indicates that the
node intends to sleep. For example, a pattern of 001 for a
node indicates that, the sensor node tentatively plans to be
asleep for two consecutive slot times, and stay awake in the
third. Since the pattern is only a tentative plan, it is subject
to change.

A sleep-wakeup schedule for a sensor node is a string of bits
indicating the actual sleep-wakeup itinerary which the node

will follow. Bit 1 in the string indicates that the node will stay
awake during a slot time, while 0 indicates that the node will
remain asleep.

The above definitions imply that a node’s sleep-wakeup
pattern need not be its sleep-wakeup schedule. In PMAC, the
schedule for a node is derived from its own pattern and, the
patterns of its neighboring nodes. Therefore patterns do affect
the sleep and wakeup times of a node, and thus the protocol’s
performance.

In the next few paragraphs, we explain our approach for
arriving at a node’s pattern and schedule.

III. PROTOCOL DETAILS

As explained before, a node’s pattern alters its sleep and
wakeup times. In order to achieve a good throughput without
compromising on the energy savings, it is important that the
generated pattern should adapt to the network traffic.

A. Pattern Generation

Let P j be the binary string representing the pattern of a
node j. This pattern is associated with node j over N time
slots. We call this sequence of N time slots as a period. In
case the length of P j is less than N , then the pattern gets
repeated for the remaining duration. For example if P j = 01,
and if N = 5, then tentative plan for node j over the next
five time slots will be 01010, i.e., the node will intend to
sleep during slots 1, 3, and 5, and to remain awake during
slots 2 and 4. In PMAC, we restrict a pattern to be 0m1,
where m = 0, 1, · · ·N − 1. The number of 0 bits in a pattern,
denoted by m, indicates the traffic load around the node having
the pattern. A large m indicates the traffic load is light, while
a small m (even a 0) indicates the traffic load is heavy.

In order to adapt to the traffic conditions, a node’s pattern is
updated during each period using the local traffic information
available at the node and exchanged at the end of each period.
Let P j

i be the working pattern of node j during period i,
where i = 1, 2, · · · . Note that P j

i can be different from
P j

i+1 depending upon the node j’s traffic conditions observed
during period i. P j

i+1 can be obtained from P j
i through either

single or multiple updates occurring in period i. Let xi be the
number of pattern updates during period i and P j

i,n, where
n = 0, 1, · · ·xi, be the nth new pattern obtained in the
sequence of updates. The starting pattern in the sequence
during period i, P j

i,0, is the working pattern P j
i . The last

updated pattern in the sequence, P j
i,xi

, is going to be the
working pattern in the next period i.e., P j

i+1 = P j
i,xi

.
When the network is activated, the working pattern at every

node has just one bit during the first period, which is 1, i.e.,
P j

1 = 1, ∀j in the network. This simply assumes the traffic
load is heavy at the beginning and every node should be awake.
Pattern updates during the first period start with the working
pattern P j

1 , i.e., P j
1,0 = P j

1 = 1. If there is no data1 for a node
j to send at the first time slot of bit 1, then it indicates that

1This data can be either the node’s own data, or the data generated by other
nodes which it has to relay.
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the traffic load around node j is potentially light. Therefore,
the node can afford to sleep for some time. Hence, node j
updates its pattern to 01, i.e., P j

1,1 = 01. If we find that the
node has no data to send during the second time slot of pattern
bit 1, the node is encouraged to sleep longer by doubling the
number of 0 bits in P j

1,1, i.e., P j
1,2 = 001. This doubling effect

continues in the following time slots of bit 1, until the number
of 0 bits in the updated pattern reaches a predefined threshold
δ. Beyond δ, the number of 0 bits is linearly increased. If there
is no data for node j to send during period 1, the following
sequence of patterns is generated at node j:

1, 01, 02 1, 04 1, · · · 0δ 1, 0δ 01,

0δ 02 1, 0δ 03 1, · · · 0N−1 1.

This approach of exponential increasing the sleep time during
light traffic allows the nodes to save considerable amount of
energy. As you can see from the above, the sleep pattern that
is generated mimics the slow-start algorithm of TCP [9].

If node j has any data to transmit at any time slot regardless
of the pattern bit at that time slot, then the next pattern in the
sequence goes back to 1. This enables node j to wake up
quickly to handle the traffic load. The following update, if
any, is going to start with this new pattern.

The pattern generation scheme used in PMAC is summa-
rized in the following expression:

P j
i,n+1 =




01 if P j
i,n = 1 and node j has no data

to send during the next slot of bit 1;
02m1 if P j

i,n = 0m1(0 < m ≤ δ/2) and
node j has no data to send during
the next slot of bit 1;

0m+11 if P j
i,n = 0m1(δ ≤ m < N − 1)

and node j has no data to send
during the next slot of bit 1;

0m1 if P j
i,n = 0m1(m = N − 1) and

node j has no data to send during
the next slot of bit 1;

1 if node j has data to send during
a slot, irrespective of the slot’s
pattern bit.

(1)
It is easy to see that by increasing δ, the application can
increase the aggressiveness of the sensor nodes to conserve
energy. Similar to this multiplicative increase - acute decrease
of the sleep times, other schemes such as additive increase -
multiple decrease, additive increase - acute decrease, etc. can
be employed, if the applications prefer them.

B. Pattern Exchange

A node’s pattern is just the tentative sleep-wake up plan.
In PMAC, the actual sleep-wakeup schedule is derived based
on the node’s own pattern and the pattern of its neighbors.
New patterns that are generated for the subsequent period are
broadcast by the nodes at the end of the current period.

To accommodate this pattern exchange, time is divided into
super time frames (STF) as shown in Fig. 2. Each STF consists

� �� �STF STF

� �PRTF ��PETF � �PRTF ��PETF

· · · · · ·
��

TR TE
�

w w
� �N slots � �N slots

Fig. 2. Division of Time Frames

of two sub-frames. The first is called Pattern Repeat Time
Frame (PRTF), during which each node repeats its current
pattern. PRTF in turn is divided into different time slots of
duration TR. PRTF is nothing but the sequence of N time slots
that we referred to as a period in the previous discussions. At
the end of these N slots, PRTF has one additional time slot
during which all the sensor nodes stay awake. This special
time slot is used to speed up communication. Long delay
may happen if the downstream neighbors are in a long sleep
mode when upstream nodes have data destined for them.
The upstream nodes cannot send data since they know the
destination nodes are not ready, while the downstream nodes
might think there is no traffic destined for them, and thus
update their patterns for even longer sleep. During this special
time slot, data from upstream nodes can be sent to downstream
nodes so that downstream nodes can update their patterns to 1
and wake up quickly. This special time slot can also be used
for broadcasting.

The second sub-frame of STF is called Pattern Exchange
Time Frame (PETF), during which new patterns are exchanged
between neighbors. PETF again, is divided into various time
slots of duration TE . New patterns are generated during PRTF
at every node to reflect the latest traffic information by fol-
lowing the rules summarized in equation 1. The last generated
pattern during a particular PRTF becomes the pattern for the
next PRTF, and will be advertised to the neighbors during
the PETF. The pattern is cyclically repeated during PRTF
such that each time slot has one pattern bit assigned. Patterns
received from its neighbors during the preceding PETF are
also repeated in the same way. If a node j receives no new
patterns from some of its neighbors during the preceding PETF
(probably due to collisions), it then repeats their old patterns.

� �PRTF � �PETF

A
0 0 1 0 0 1 w

Fig. 3. Illustration of Pattern Exchange

Fig. 3. illustrates how pattern generation process takes place
in PMAC. In Fig. 3, we assume that sensor node A has a
pattern 001 at period i. Node A repeats its pattern during
PRTF. Let δ = 4 and N = 6. Pattern updates start with PA

i,0 =
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TABLE I

RULES TO SET THE SCHEDULE BIT FOR A SLOT IN PRTF FOR NODE j

Pattern bit at node j Packet to send Pattern bit at the receiving node Schedule at node j

1 1 1 1

1 1 0 1−
1 0 ∗ 1−
0 1 1 1

0 1 0 0

0 0 ∗ 0

001. If A has no data to transmit during the entire PRTF period,
it generates a new pattern, PA

i,1, at time slot 3, since the node
has pattern bit set to 1 at that time slot. PA

i,1 becomes 04 1
based on the pattern generation rules presented earlier. PA

i,1

will be updated at time slot 6, at which another pattern bit 1
appears. PA

i,2 now becomes 05 1 and is the last updated pattern.
It is set as the pattern to be exchanged during PETF. However,
if there is data at node A at any time slot, the new pattern goes
back to 1. For instance, if there is data at time slot 2, PA

i,1 is
set to 1. Thereafter, if there is no data at time slot 3, PA

i,2 = 01.
The span of a time slot TR is chosen such that it is long

enough to handle a complete data transmission (contention
window + RTS + CTS + DATA + ACK). The choice for N ,
the number of time slots in PRTF depends on the application.
If N is high, then it is possible for the sensor nodes to have
more sleep time, and thus more energy can be saved. However,
this may also increase the latency in data transmission. Thus
there is a tradeoff between energy saving and latency.

The number of time slots in PETF is set to the maximum
number of neighbors a sensor node could have. The span of
a time slot TE in PETF is chosen long enough to broadcast
a pattern. A large contention window may be needed at the
beginning of each PETF time slot to avoid collision. However,
longer PETF is, more overheads are introduced and thus more
energy gets wasted. Here is a tradeoff between energy saving
and reliability.

C. Schedule Generation

So far, we have explained how a node generates and
exchanges its patterns with its neighbors. The purpose of the
above exercise is to come up with the sleep-wakeup schedule
for a node. To recall, the sleep-wakeup schedule for a node
is a string of bits indicating the actual sleep-wakeup itinerary
which the node will follow. Each bit in the string indicates the
actual state of the node during a slot time. Bit 1 indicates that
the node will stay awake, while 0 indicates that the node will
remain asleep.

For the first N slots in PRTF, a schedule bit of 1 or 0 is
obtained based on the pattern bit values of the node and its
neighbors corresponding to that slot. The rules for arriving
at the schedule bit value for node j for a given slot are
enumerated below:

1) Let the pattern bit at node j be 1 and let there be a packet

in its buffer to be sent to a neighbor. If the pattern bit
for the receiving node is also 1, then the schedule bit
for node j is set to 1. This means that node j will wake
up at that particular time slot and send the data, since it
knows that the receiver might be awake.

2) Let the pattern bit at node j be 1 and let there be a
packet in its buffer to be sent to a neighbor. However,
the pattern bit for the receiving node is 0. In this case,
the schedule bit at node j to be 1−, where 1− implies
node j should wake up at the beginning of that time slot
and listen for a certain period of time. If it hears nothing
from its neighbor within that period, it can go to sleep.
At the first glance, it would appear that it is better to set
the actual schedule at node j to 0. That is, let node j
sleep from the right beginning of that time slot to save
more power. However, since the pattern bit of node j
is 1, it could be a potential receiver and its neighbors
may try to send data to it. If node j ignores this possible
happening, and if it goes to sleep, the packet destined
to it will be lost, and the energy spent on transmitting
this packet is wasted.

3) The pattern bit at node j is 1 and there is no packet in
its buffer. In this case, irrespective of the pattern bits of
its neighbors, the schedule bit at node j is set to 1−.
The reason is the same as we explained in case 2.

4) The pattern bit at node j is 0 and there is a packet in
its buffer to be sent. If the pattern bit at the receiving
node is 1, the schedule bit of node j is set to 1.
This implies that, node j is going to wake up at that
time slot for transmission, although it intended not to.
This can improve the throughput without consuming any
additional energy. Throughput is improved by waking
up node j earlier than it is supposed to. No additional
energy is consumed because the packet in the buffer
needs to be transmitted sooner or later.

5) The pattern bit at node j is 0, and there is a packet in its
buffer to be sent. If the pattern bit at the receiving node
is 0, the schedule bit for node j is set to 0. This would
imply putting node j into sleep, since the destination
node is not ready to receive. To send the packet, node
j must wait until the time slot at which the destination
node has pattern bit 1.

6) The pattern bit at node j is 0 and there is no packet in
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its buffer. In this case, no matter what pattern bits its
neighbors have, the schedule bit of node j is set to 0.
This means that node j is going to sleep mode. If some
neighbors have packets for node j, they have to wait
until the time slot at which the pattern bit of node j
becomes 1. This would introduce longer delays for the
first few packets when the traffic becomes heavy, but
the subsequent packets will experience lower delays as
node j’s pattern adapts to the new traffic.

The above rules of setting the schedule bit for a slot are
summarized in table I.

IV. QUALITATIVE DISCUSSION

In this section, we give a qualitative discussion on the
efficacy of PMAC.

A. Adaptability to traffic conditions

As we stated in the previous section, the number of 0 bits in
a new pattern is grows exponentially when the traffic load is
light. This means that sensor nodes can fall into a long sleep
quickly under light loads. Hence, PMAC is able to save more
power than SMAC. If any data is detected during the current
PRTF, the new pattern generation process will start over from
1. This enables, a sensor node to wake up quickly when the
traffic load becomes heavy. PMAC is thus able to adapt to
the traffic conditions. We also note that the pattern repeating
process may compromise the speed of adapting to the network
traffic, since new patterns must wait until the next PRTF to be
effective.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �� � �

�
�

�

�

�

source

sink

�— sleep �— awake

Fig. 4. Illustration of Power Saving Through Localization

B. Power Savings through Localization

In PMAC, only those sensor nodes involved in a commu-
nication will wake up frequently. Other sensor nodes that do
not participate in the data gathering/relaying process will sleep
for longer times. In other words, PMAC selectively wakes
up sensor nodes. Fig. 4 illustrates the power saving through
localization feature of PMAC on a 5×5 mesh. Suppose that the
only traffic in the network is from the source node to the sink
node along the path indicated by the arrows. At steady state,

only those sensor nodes on the path will stay awake to handle
the traffic. Other nodes not involved in the communication will
sleep through most of the PRTF period.

C. Power savings through reduced Idle listening

We have just described how PMAC saves energy by allow-
ing sensor nodes that are not involved in any communication
to remain asleep. This in turn, reduces the energy wasted due
to idle listening during the periodic wakeups that take place in
SMAC. PMAC can also potentially introduce additional idle
listening than SMAC. This occurs if in the actual schedule of a
sensor node, there are two consecutive wakeup time slots, but
during the second time slot no communication is associated
with the sensor node. This is the case where its pattern has
two consecutive 1’s when the traffic load is light. Fortunately,
because of the sparse spurts of traffic in sensor networks, this
kind of pattern does not occur quite often.

The time-out scheme used in TMAC can be even introduced
into PMAC to save more power by allowing sensor nodes go
to sleep during their wakeup time slots if no activity in the
vicinity of those nodes.

D. Time Synchronization

Since time is slotted, some level of synchronization among
the sensor nodes is needed in PMAC as with SMAC. However,
as only large time scales are involved in PMAC (in the
order of hundred milliseconds), small clock drifts would not
be a problem. The sensor nodes can use some loose time
synchronization schemes, such as the one proposed in SMAC
[1] to synchronize the sensor nodes. At the end of a PETF,
a node can advertise a SYNC packet after waiting for a
random duration. The neighboring nodes that receive this
SYNC packet can adjust their clocks and need not advertise
their SYNC packets. In case a node receives SYNC from two
neighbors, it remembers and follows both of them.

V. ANALYTICAL MODEL

We present a simple analytical model to study the pattern
generation process and calculate the steady state average
power savings in PMAC under light traffic. We calculate the
average power savings by estimating the number of zero bits
appearing in the pattern. For simplicity, we ignore the pattern
repetition during PRTF presented earlier, and study PMAC
with the following model. Starting with a working pattern 1,
if no data is available at a node for transmission at the time
slot with bit 1, the pattern for the next two slots is set to be 01.
Again, if no data to be sent during the previous two time slots,
the next working pattern for the subsequent slots becomes 001,
and so on. While the above model may not completely capture
the complete traits of the protocol, the analysis does provide
good insight into the results that follow.

Let p be the steady state probability that the buffer at node
j is non-empty at a particular time slot. As we are interested
in the steady states, it is reasonable to assume p is a constant
over all the time slots. For the sake of simplicity, we also
assume δ = N = 2M . Now we can use the Markov chain
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(Fig. 5) to model the pattern evolution process. In the figure,
each state is indicated by the number of 0 bits in its pattern. Let
P0, P20 , P21 , P22 , · · · , P2i , · · · , P2N be the probability that
the sensor node is in each of those states. We can have the
following equations based on the Markov chain:

P20 = (1 − p)P0

P21 = (1 − p)(2
0+1)P20

P22 = (1 − p)(2
1+1)P21

...
...

P2i = (1 − p)(2
i−1+1)P2i−1

...
...

P2M = (1 − p)(2
M−1+1)P2M−1 + (1 − p)(2

M+1)P2M

By substitution, we have for 0 ≤ i ≤ M − 1

P2i = (1 − p)(2
i−1+1) · · · (1 − p)(2

0+1)(1 − p)P0

= P0(1 − p)[(
∑ i−1

j=0 2j)+(i+1)]

= P0(1 − p)(2
i+i) (2)

and

P2M = (1 − p)(2
M−1+1)P0(1 − p)(2

M−1+M−1)

+(1 − p)(2
M+1)P2M

=
P0(1 − p)(2

M+M)

1 − (1 − p)(2M+1)
(3)

From the Markov chain, we should also have

P0 = pP0 + τ0P20 + τ1P21 + · · ·+ τiP2i + · · ·+ τMP2M (4)

where τi = 1 − (1 − p)2
i+1 is the transition probability from

state P2i to P0 for all 0 ≤ i ≤ M . We can verify that (4) holds
by plugging (2) and (3) into it. Since a sensor node must be at
one of those states, the summation of the probabilities should
be 1.

1 = P0 + P20 + P21 + P22 + · · · + P2i + · · · + P2M

= P0 + P0

M−1∑
i=0

(1 − p)(2
i+i) + P0

(1 − p)(2
M+M)

1 − (1 − p)(2M+1)
(5)

Hence,

P0 =
1

1 +
∑M−1

i=0 (1 − p)(2i+i) + (1−p)(2M +M)

1−(1−p)(2M +1)

(6)

Now the probability at (2) becomes

P2i =
(1 − p)(2

i+i)

1 +
∑M−1

i=0 (1 − p)(2i+i) + (1−p)(2M +M)

1−(1−p)(2M +1)

(7)

for 0 ≤ i ≤ M − 1. The probability at (3) becomes

P2M =
1

1 +
∑M−1

i=0
1−(1−p)(2M +1)

(1−p)(2M−2i+M−i) + 1−(1−p)(2M +1)

(1−p)(2M +M)

(8)

The average number of 0 bits, denoted by E(0) in a pattern,
can then be obtained as follows

E(0) =
M∑
i=0

(
2i P2i

)
(9)

When the traffic is heavy, p is close to 1. From (6), we can see
that P0 is also close to 1 and thus E(0) is close to 0. When
the traffic is light, p is close to 0. From (8), we can see that
P2M tends to 1 and thus E(0) is close to 2M .

We will now derive an expression to determine the addi-
tional amount of power saved at a particular node in PMAC
over SMAC. Consider a time interval of length E(0) ∗ TR,
where TR is the slot time in PMAC. It is easy to see that, over
this entire duration, a sensor node will be asleep in PMAC. If
T is the frame duration in SMAC and d is the duty cycle, then
over the same time interval of E(0) ∗ TR, a node in SMAC
will be awake for the duation E(0)∗TR

T ∗ d. Thus the amount
of additional energy saved at a particular node in PMAC over
SMAC is given by

Esave =
E(0) ∗ TR ∗ d ∗ Pidle

T
(10)

where Pidle is the power consumption when sensor nodes are
in idle listening state. Let S be the number of sensor nodes
in the network not involved in the data gathering/relaying
process, then the idle listening energy saved by PMAC in the
sensor network during the time interval can be calculated as

Etotal
save = S ∗ E(0) ∗ TR ∗ d ∗ Pidle

T
(11)

VI. EXPERIMENTAL RESULTS

We have simulated both PMAC and SMAC using the latest
version of ns-2. Simulations were done on mesh topology,
as shown in Fig. 4, with different sizes. In both simulations,
we have used constant bit rate traffic source with different
time intervals and UDP as the transport layer protocol. The
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TABLE II

PARAMETERS USED IN THE SIMULATIONS

Parameter Value

initial energy 100 Joules

transmission power 0.5 Watts

receiving power 0.3 Watts

idle power 0.05 Watts

bandwidth 20 kbps

data cwnd 63 ms

simulation time is set to 1500 seconds. For PMAC, TR =
258ms and TE = 104ms, where TR and TE are the slot time
in PRTF and PETF, respectively. The number of time slots in
PRTF is 64 and the number of time slots in PETF is 4. The
duty cycle for SMAC is set to 10. Some of the parameters
used in the simulations are listed in Table II. We have set
the idle power to be smaller than the receiving power in our
simulations, but a larger value for idle power is going to favor
PMAC even more.

Fig. 6 compares the energy consumption, throughput and
power efficiency between PMAC and SMAC with different
number of nodes when the traffic load is heavy (100bytes/s).
Fig. 6(a) shows that SMAC consumes more energy than
PMAC. Fig. 6(b) shows that PMAC achieves a much higher
throughput than SMAC when the traffic load is heavy. This is
because in SMAC (without adaptive listening), sensor nodes
have to go to sleep periodically even when the traffic load is
heavy. In PMAC, patterns vary with the traffic load. If traffic
load is heavy, the patterns will contain less 0’s forcing the
sensor nodes to stay awake to handle the traffic, resulting in the
improvement. Our interest is in the calculation of throughput
as opposed to the end-to-end goodput because, in a sensor
network traffic may be aggregated at the intermediate nodes
without traveling all the way down to the sink node. Fig. 6(c)
compares PMAC and SMAC in terms of their power efficiency.
Power efficiency, which is the throughput achieved per unit of
energy consumed, is given as

power efficiency =
total throughput

total energy consumption

We observe that PMAC outperforms SMAC in terms of this
metric too.

Fig. 7 shows the contour maps of the remaining energy
distribution of a 5 × 5 mesh network with the same com-
munication path as shown in Fig. 4. We observe that in both
PMAC and SMAC, the sensor nodes along the communication
route consumes more energy, as they are involved in more
transmission and receiving. However, in PMAC, those nodes at
the upper-left corner and the lower-right corner, which are not
involved in the communication, have more remaining energy
in comparison with SMAC. This is because in SMAC, those
nodes not involved in the communication still have to wake
up periodically and in PMAC, these nodes fall into long sleep,

saving the energy that is otherwise wasted due to unnecessary
idle listening.

Fig. 8 compares the energy consumption, throughput and
power efficiency between PMAC and SMAC under different
traffic loads. This experiment was performed on the same 5×5
mesh network, and the number of time slots in PRTF is set
to 64. Fig. 8(a) shows that PMAC consumes less energy than
SMAC for all traffic loads. Fig. 8(b) shows that the throughput
of PMAC and SMAC are the same when the traffic is light, due
to the fact that sleeping in SMAC will not affect traffic flowing
through. However, when the traffic is heavy, PMAC has a
significant improvement on the throughput. Periodic sleeping
blocks the traffic flowing through in SMAC. We also observe
from Fig. 8(c), that PMAC has a better power efficiency,
especially when the traffic load is heavy.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a new MAC protocol, called PMAC,
where the sleep-wakeup times of the sensor nodes are adap-
tively determined. The schedules are decided based on a node’s
own traffic and that of its neighbors. Our experimental results
show that in comparison to SMAC, PMAC achieves more
power savings under light loads, and higher throughput under
heavier traffic loads. The improved performance of PMAC
suggests that ‘pattern exchange’ is a promising framework for
improving the energy efficiency of the MAC protocols used
in sensor networks.

Our on-going research efforts on PMAC are along many di-
mensions. Currently we are carrying out comparative analysis
of the proposed PMAC with other adaptive MAC protocols
such as TMAC and DMAC for variable bit-rate data transfers.
We also plan to carry out a detailed analysis of PMAC under
various kinds of traffic such as broadcast, convergecast, and
point-to-point. We believe that PMAC can be enhanced with
timeout mechanisms along the lines of TMAC, and thereby
achieve even better performance. We are developing better
pattern and schedule generation schemes to further improve
the energy efficiency and data transfer latency in PMAC.
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Fig. 6. Comparison of power efficiency between PMAC and SMAC with various network size under heavy traffic load.
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Fig. 7. Contour map of remaining energy on a 5 × 5 mesh for both PMAC and SMAC.
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tions between PMAC and SMAC with different
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