QoS Aware Job Scheduling in a Cluster-based Web Server for Multimedia
Applications *

Jiani Guo and Laxmi Bhuyan
Computer Science and Engineering
University of California, Riverside, CA 92521
{jiani,bhuyan} @cs.ucr.edu

Abstract

We propose a cluster-based web server where a few com-
puting nodes are separately reserved for high-performance
computing applications, such as multimedia, SSL, and CGI.
As an example application, we consider a multimedia server
that dynamically generates video units to satisfy the bit rate
and bandwidth requirements of a variety of clients. To per-
form QoS aware scheduling of multiple multimedia jobs on
the computing servers, a two-step algorithm is proposed.
The first step is to fairly schedule multimedia streams to sat-
isfy each stream’s QoS requirement; and the second step
is to balance the workload among heterogeneous comput-
ing nodes in the cluster. We propose a new Quota-based
Adaptive CoScheduling (QACS) algorithm that greatly re-
duces delay jitter by eliminating the out-of-order departure
for outgoing streams, as well as achieves high throughput in
a heterogeneous cluster. Experimental results show that the
proposed scheduling technique gives adequate QoS guar-
antees to multiple streams.

1. Introduction

Several applications over the Internet involve process-
ing of secure, computation-intensive, multimedia, and high-
bandwidth information. Many of these applications require
large-scale scientific computing and high-bandwidth trans-
mission at the server nodes. The current generation of In-
ternet servers is mostly based on either a general-purpose
symmetric multiprocessor or a cluster-based homogeneous
architecture. However, as we attempt to scale such servers
to high levels of performance, availability, and flexibility,
the need for more sophisticated software architectures is be-
coming obvious. Additionally, contemporary distributed ar-
chitectures have limited abilities to handle overloads, load
imbalances, and compute-intensive transactions. Evolving

% This research has been supported by NSF grant CCF 0233858, UC Mi-
cro program and HP Laboratories.

Raj Kumar and Sujoy Basu
Hewlett-Packard Laboratory
Palo Alto, CA 94304
raj_kumar@ hp.com, basus @ exch.hpl.hp.com

applications such as web services, grid and peer-to-peer
computing further necessitate the need for scalable soft-
ware architectures for large-scale Internet servers. In this
paper, we propose a scalable distributed system architecture
where the major functionalities of the Internet servers (SSL,
HTTP, script and cryptographic processing, database man-
agement, multimedia processing, etc.) are partitioned and
computational resources are allocated on the basis of their
needs.

C i C i C ing [, ., ., |C i
Server Server Server Server

‘ Switch ‘

Database Server

Eﬁﬁﬁ—[mwiasﬂ{][mw Server ]
< Internet

Client 1
Client . Client

Figure 1. Cluster-Based Web Server

The proposed software architecture of the cluster-based
web server is depicted in Figure 1. Compared to traditional
web servers, the main difference lies in the availability of
a number of backend computing servers, which are used
for distributed computing associated with the requested web
page. The web server can provide variety of functionalities,
ranging from text contents, images, and database retrieval
to multimedia streaming. In this paper, we consider multi-
media processing as the example. Since Internet clients may
vary widely in their hardware resources, software sophisti-
cation and quality of connectivity, they require different me-
dia streaming service. Hence, a media server should be able
to differentiate streaming services among different clients
to meet each client’s demand in realtime.

In the web service area, a promising approach is to use

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



transcoding to customize the size of objects so as to al-
locate the available network bandwidth among clients [4].
Transcoding is a transformation that is used to convert a
multimedia object from one form to another. On-demand
transcoding (distillation) has been proposed to transform
media streams in the active routers [10, 18] or proxy servers
[6, 7] to adapt media streams to fluctuating network condi-
tions. Since transcoding is computation-intensive task, we
propose to set up several backend computing servers in
the web server cluster to dedicatedly provide on-demand
transcoding per client’s specific streaming requirement, as
shown in Figure 1. Any client intending to request a me-
dia stream first contacts the media server. If the media data
in storage satisfies the requirements, the media server sup-
plies the data. If on-demand transcoding is needed, the me-
dia server retrieves data, divides them into several tasks, and
distributes the tasks among computing servers for transcod-
ing. The transcoded data is then transmitted from the com-
puting servers to the client. A critical issue in enabling such
a scheme is how to efficiently provide real-time transcoding
service in the cluster to support a large number of streams
under heavy load situations. To ensure maximum through-
put, the workload should be balanced across the comput-
ing servers. In addition, the multimedia server should offer
QoS aware transcoding service to different media streams
because each client may have different reservations to the
video quality and network bandwidth. Hence, an efficient
QoS-based job-scheduling algorithm should be developed.

A few researchers have developed QoS-based schedul-
ing algorithms for cluster-based web servers. Aron et al[13]
extended existing mechanisms for service differentiation in
single-node servers to a cluster environment by formulating
the dynamic cluster-wide resource management problem as
a constrained optimization problem. Zhu proposed an ele-
gant scheduling algorithm to provide differentiated service
to multiple service classes of generic web requests [19]. But
their work focus on generic web requests instead of multi-
media jobs which present very different requirements to the
cluster processing. To provide performance guarantee to all
subscribers in a cluster-based web service system, Li[12]
implemented a generalized Web request distribution sys-
tem called Gage. They used weighted round-robin (WRR)
scheduling algorithm to select requests, and the server with
the least load is chosen to process the request. However, the
latency between packet deliveries in WRR becomes high
as the number of flows increases. That can create a prob-
lem for multimedia applications because the buffer size at
the receiver may be limited.

Load balancing is widely used in parallel and distributed
systems. A detailed survey of general load balancing algo-
rithms is provided in [17]. Adaptive load balancing poli-
cies are usually complicated and require prediction of com-
putation time [20]. In practice, simple static policies, such

as random distribution policy [16] or modulus-based round
robin policy [9], can achieve satisfactory results. Welling
and Ott scheduled transcoding jobs in round robin way in
a computing cluster that is attached to a dedicated router
[18]. But they did not provide experimental results. We de-
signed and implemented an active router cluster support-
ing transcoding service, and evaluated several load shar-
ing schemes [8]. We found that round robin is simple and
fast, but provides no guarantee to the playback quality of
output streams because it causes out-of-order departure of
processed media units. Adaptive load sharing scheme, pro-
posed by Kencl et al [11], achieves better unit order in out-
put streams, but involves higher overhead to map the media
unit to an appropriate node. As a result, the throughput is re-
duced.

In this paper, we implement a Linux-based media cluster
over Gigabit Ethernet and develop multithreaded software
architecture to schedule multimedia jobs for transcoding in
the cluster. We develop a load test mechanism by which the
workload on each server can be tested for allocation of jobs.
We make the following contributions: 1) We quantitatively
define the QoS requirements of a media stream as the mean
value of both average inter-playout time and playout jit-
ter; 2) We propose a new load balancing algorithm named
Quota-based Adaptive CoScheduling(QACS) to eliminate
out-of-order departure while maximizing the throughput in
a heterogeneous cluster; 3) We combine the fair scheduling
algorithm Multiclass WRR (MWRR) with QACS to satisfy
the QoS requirements of different media streams; 4) We im-
plement the algorithms using a gigabit cluster in our labo-
ratory and present the measurement results.

2. QoS Metrics for Streaming Applications

Most data streaming formats contain periodic zero-state
resynchronization points for increased error resilience, ef-
fectively segmenting the stream into independent blocks
which we call media units [14]. For instance, in an MPEG-
1/2 stream, a media unit can be a group of pictures(GOP)
that can be decoded independently. Since most transforma-
tions maintain the independence of media units, the trans-
formation of a single media unit can be considered an inde-
pendent processing job. In this paper, we assume that each
media stream consists of a sequence of media units that
are ready for independent transcoding. Hence, transcoding a
single media unit is an independent job which can be sched-
uled onto any computing server in the cluster. The only
inter-job dependence is the processing order of consecutive
media units in the same media stream.

Under heavily loaded situation, the cluster of comput-
ing servers needs to provide QoS aware transcoding service
to a large number of media streams simultaneously to meet
each one’s streaming requirement. Hence, the job schedul-

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



ing algorithm must be designed accordingly. Therefore, we
propose to define the QoS metrics from two aspects. One
is from the client’s point of view, where we define the set
of playout parameters specified by the client as video qual-
ity. The other is from the computing cluster’s point of view.
The parallel computing provided by the computing servers
to a media stream causes delay for each unit and possible
out-of-order departure of consecutive units. We define the
set of parameters that describe the unit departure pattern of
a stream as OQut-oF-Order (OFO) departure pattern.

In the following analysis, we assume that, as long as the
media units arrive in order, they are played out immediately
at the client. The OFO units are stored in the reorder buffer
and cannot be played out until the previous units arrive. We
also assume that the playout time is negligible. Hence, the
playout time of an in-order unit is its arrival time. The play-
out time of an OFO unit is the arrival time of its previous
unit, i.e, this unit can be played out immediately after its
preceder is played out. To measure how smooth a media
stream may be played out in realtime on the client, two met-
rics are defined to describe the video quality.

Metric 1: Average Inter-playout Time among media units
per Stream, denoted as IPT, is the mean of the inter-playout
time among consecutive media units. For each media unit
i(i > 1), IPT; is the time interval between the playout
time of the (i — 1)th unit and the ¢th unit. I PT is the mean
of all I PT;s.

Metric 2: Playout Jitter per Stream, denoted as Jitter, is
the standard deviation of all / PT;s in one stream.

Departure Time Sorted Departure List Departure Time Sorted Departure List
UnitNo.  Departure Time O UnitNo. Departure Time
wnitl |1 1 1 wnitl 1 1 1
wits 2 2 5 IPT2=4  IDD=4 wi2 2 2 2 PT=1  IDL=1
witd -3 3 4 IPT:=0  IDTs=-1 wit3 |3 3 3 IPT:i=1 DT =1
wit3 -4 4 3 IPT4=0  IDTe=-1 wnitd - 4 4 4 IPT:=1  IDTi=1
wi2 b5 5 2 IPTs=0  IDTs=-1 wits b5 5 5 IPTs=1  IDTs=1

AVGIPT=4/4=1
Playout jitter = 2
OFO rate =3/5=0.6

AVGIPT=1
Playout jitter = 0
OFO rate = 0

Inter—departure Time Inter—departure Time

(B) In—order Departure Pattern

(A) Out-of-order Departure Pattern
Figure 2. Calculation of QoS Metrics

Two metrics are defined to describe the OFO departure
pattern:

Metric 1:Gross OFO Departure Rate per Stream de-
scribes how many media units among all the media units
in a stream depart out of order. The OFO rate is calculated
as Noro /Niotai, Where Nopo is the total number of out-
of-order units and N;,;4; 18 the total number of media units.

Metric 2: Distribution of Inter-Departure Time per
Stream describes the OFO departure pattern in terms
of Inter-Departure Time (IDT) among OFO units. The
IDT; is calculated as the interval between the depar-
ture time of unit ¢ and unit ¢ — 1 for ¢ > 1. For OFO

units, /DT; may be negative. By examining the distri-
bution of the I DT;s, we can observe the OFO traffic in
detail.

As shown in Figure 2, the QoS parameters of a media
stream are calculated for in-order and OFO departure pat-
tern respectively. Although these two patterns produce the
same IPT, the latter incurs much higher jitter due to OFO de-
parture. Pattern A most likely occurs when a round robin or
a least load first scheme is used, where unit 2 is dispatched
to the slowest server and unit 5 is dispatched to the fastest
one. High jitter not only requires the client to use larger re-
order buffer to hold OFO units, but may also degrade the
video quality because the unit cannot arrive in time to be
played out.

The computing cluster aims to offer QoS aware transcod-
ing service to multiple media streams. It is able to sup-
port several service classes, each specified by the mean
value of both T PT and Jitter, i.e., (IPT, Jitter). When
a new stream comes in, it carries its own QoS requirement
in terms of maximum tolerable IPT and jitter, denoted as
(IPTaz, Jitter,qz), which can be mapped onto one of
the service classes. The cluster rejects any stream that re-
quests a service class which it cannot guarantee. For all the
streams the cluster admits, it guarantees the required ser-
vice. Each service class may have several streams, and all
streams in the same service class are treated equally.

3. Software Architecture of the Cluster

We implement a Linux-based media cluster over Giga-
bit Ethernet and develop multithreaded software architec-
ture for scheduling multimedia jobs in the cluster. The mul-
tithreaded software architecture is developed not only to
overlap disk access with computation to hide the disk ac-
cess latency, but also to overlap computation with commu-
nication to achieve maximum efficiency for the cluster op-
eration. Two separate softwares are developed, Load Dis-
tributor running on the media server and Load Processor
running on each computing server.

3.1. Software Framework

The Load Distributor is composed of four kinds of
threads, namely, retriever, scheduler, dispatcher and man-
ager, as shown in Figure 3(a). The retriever retrieves media
streams from the disk, partitions the data into media units
and stores them into a unit buffer. The unit buffer maintains
a Virtual Stream Queue(VSQ) for each stream, which facil-
itates the implementation of fair scheduling algorithm dis-
cussed in section 4. The scheduler fetches media units from
the unit buffer and puts them into different dispatch queues
according to the scheduling strategy. Two subschedulers,
namely UnitScheduler and NodeScheduler, are actually run-
ning in the scheduler. The UnitScheduler fetches a me-
dia unit from the unit buffer according to the fair schedul-

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



fomration

e P R Yo -
o ‘ o
]]DT z [ [ [ —=[Dispatche: to Computing Server
N v =3 0
| 2 :
Em 2l | 7T} Dispatger— 1o Compuiing Server
: z !
: 2 |
| £ |
; ]]]:’J g [[ [ —+{Dispatcher——+ to Computing Server
‘ 5 Dispatch :
Unit Buffer Queue

(a) Load Distributor Running on the Media Server

Heartbeat

Monitor ‘
T

Load Statistics T

Receiver T)

to the media server

Media

Server Media Data

Computing Server

(b) Load Processor Running on the Computing Server

Figure 3. Software Framework

ing policy. Subsequently, the NodeScheduler puts the media
unit into one dispatch queue according to the load balanc-
ing policy, also discussed in section 4. Note that one dis-
patch queue is maintained per server to hold all the units
that have been scheduled to a server. The dispatcher sim-
ply dispatches the media units in the corresponding dispatch
queue to the server. When the server completes transcoding,
it sends the processed media unit to the client. The manager
periodically sends heartbeat messages to all servers to col-
lect the load statistics information.

The Load Processor is composed of four threads,
namely, receiver, transcoder, sender and monitor, as shown
in Figure 3(b). The receiver receives packets from the me-
dia server through the Ethernet and ensembles them into
a complete media unit. Once a complete media unit is
ready, the transcoder transcodes the unit. After transcod-
ing, the sender sends the media unit to the client. Once the
receiver gives the media unit to the transcoder for transcod-
ing, it requests another media unit from the Load Distrib-
utor. The monitor reports its load statistics information to
the Load Distributor in each monitoring epoch when it re-
ceives a heartbeat message.

3.2. Load Test Mechanism

To efficiently schedule jobs in a cluster, it is necessary
for the Load Distributor to know the actual workload and
processing power of all computing servers. We design and
implement a load test mechanism as follows. In each mon-
itoring epoch At, the monitor running on each server re-
ports to the Load Distributor its throughput and CPU uti-
lization. Based on this information, the available process-

ing power of all N servers at time t, defined as a vector
(As(t),Az(t), As(t),..., An(t)), is calculated as follows.

Symbol Definition of the Symbol

a A real value between 0 and 1

ni(t)  The number of media units that are processed on the

ith server during last monitoring epoch

The CPU time used for computation task on the ith

server during last monitoring epoch

tdle; (t) Total CPU idle time of the ith server during last mon-
itoring epoch

u;(t)  CPU utilization of the ith server during last monitor-
ing epoch

AU;(t) The smoothed average of the CPU utilization of the
ith server till time t

s;(t)  The maximal possible throughput of the ith server
during last monitoring epoch

A;(t) The smoothed average of the maximal possible
throughput of the ith server till time t

S(t)  Maximal possible throughput of the cluster at time t

Table 1. Terms Used for Load Test

up;(t)

ui(t) = upi(t)/(upi(t) + idle;(t)), ()]
AU (t) = AU;(t) X (1 —a) + u(t) X a, )
si(t) = ni(t)/upi(t)/wi(t), 3
Ai(t) = Ai(t) x (1 —a)+si(t) Xa, )
Sty = =N, A1) ©)

The variation of throughput on a server is mainly caused
by the variance in the transcoding time of one media unit.
Since the load status varies from time to time, the smoothed
average with ratio a is adopted to filter occasional bursti-
ness.

4. QoS Aware Scheduling

110
111
Server 2

111
Server N

Step 1 Step 2
Load Balancing
among Multiple Servers

Stream 1

Stream 2

Scheduled Unit Sequence Outgoing Unit Sequence

Stream M IIII

Fair Scheduling
among Multiple Streams

Figure 4. QoS Aware Job Scheduling

QoS aware job scheduling in the cluster is carried out in
two steps, as shown in Figure 4. First, a weighted fair queu-
ing algorithm is executed to determine the service rate for
each stream according to its requested service class; sec-
ond, a load balancing algorithm is adopted to balance load
among computing servers to achieve the highest throughput.

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



To provide QoS guarantee (I PTy,qz, Jitterpq,) to each
service class, the scheduling algorithms need to be carefully
designed. First, a suitable fair queuing algorithm should be
chosen to control the inter-unit delivery time per stream.
We adopt Multiclass Weighted Round Robin (MWRR) al-
gorithm [5], where the latency among unit deliveries is in-
dependent of the total number of streams processed in the
system. For load balancing, we first present the implemen-
tation of the Least Load First (LLF) scheme. LLF achieves
high system throughput by dynamically adapting to current
load status on each computing server. However, LLF in-
curs high unit departure jitter because consecutive media
units are dispersed among different servers. To eliminate
OFO departure and also achieve high throughput, we pro-
pose a new load balancing algorithm, named Quota-based
Adaptive CoScheduling (QACS). QACS achieves high sys-
tem throughput by dynamically adapting to current load sta-
tus on each computing server. Moreover, QACS ensures in-
order unit delivery by pipelining the unit processing phase
and unit delivery phase.

4.1. Fair Scheduling - Multiclass WRR (MWRR)

Different weighted fair queuing (WFQ)-based schemes
[2], such as packetized generalized processor shar-
ing(PGPS) [15], self-clocked fair queuing (SCFQ),
worst-case fair weighted fair queuing (WF2Q) [3], have
been proposed to fairly schedule packets of compet-
ing flows on a single link. Efficiency of these schemes
are measured by both scheduling fairness and imple-
mentation complexity. The best fairness is achieved by
WF2Q. But WF2Q involves high implementation com-
plexity. Multiclass WRR, proposed by Chaskar et al.
[5], successfully preserves the good scheduling proper-
ties of WF2Q at much lower implementation costs.

We need to compare the fairness metrics of the fair queu-
ing algorithms with the QoS metrics of our streaming appli-
cations. The weighted fair queuing schemes can be catego-
rized into efficient schedulers and inefficient schedulers ac-
cording to their latency tuning characteristics [5]. In the fair
queuing domain, latency is defined as the maximal inter-
departure time among packets in a continuously backlogged
flow. Since we assume all streams are continuously back-
logged, the latency defined for flows are same as the I PT
for the streams. For inefficient schedulers such as Classical
WRR and DRR, the latency increases as the total number
of flows increases. For efficient schedulers such as PGPS
and WF2Q, the latency decreases inversely with the flow’s
share of the bandwidth, independent of the total number of
flows sharing the link. Because MWRR preserves the ef-
ficient latency tuning characteristics of WF2Q but incurs
much lower implementation costs than WF2Q, we choose
MWRR as our fair scheduling algorithm.

Stream| (class 1)

Stream 2 (class 2 v p e QACS

Stream 3 (class 2)

ST e AT A I TSI T AT 3 U

Stream 4 (class 2)

29Mpawds N

Stream 5 (class 3)|

Server 3
Quota =2
Service class 1 Ni=1
Stream 6 (class 3)| s, EIVEINE
Server 4
Quota =5

=16 Load Distributor

Figure 5. Combining MWRR with QACS

Assume K service classes are supported by the media
server, and there are IN; streams in the ith service class.
We define a slot as a visit to one media unit of a stream.
The length of a round-robin cycle of service class i(i =
1,2,..., K) is defined as the maximum number of slots in
which all the streams of class 7 must be visited. Table 2 de-
fines the terminology used in the rest of the paper.

Symbol  Definition of the Symbol

N; The total number of streams in service class 7,7 =
1,2,.., K

D; The length of a round-robin cycle of service class %,
and Dy > Dx_1 > ... > D,

I; I PT for any stream in service class ¢

;"™ Expectation of I;

Ji Jitter for any stream in service class ¢

Ji™ee™  Expectation of J;

t A random variable representing the time taken for
the computing cluster to produce a media unit to the
media server

T Expectation of ¢

tu A random variable representing the time taken for
the switch to transmit a media unit from a comput-
ing server to the media server

Ty Expectation of t,,

Table 2. Service Classes

The feasibility condition Efil N;/D; < 1 must hold
true for MWRR. MWRR evenly interleaves the units from
competing streams by embedding smaller round-robin
“minicycles” within larger ones. It works as follows: The
length of a minicycle is set to be D; visits. A new minicy-
cle always starts from the first stream in service class 1. In
any minicycle, the streams in class ¢ are visited from the
leftover visits, if any, from class 1,2,...,K. The streams in
class ¢ are not allowed to start their mth round-robin cy-
cle prior to the [(m — 1)(D;/Di1) + 1]th minicycle.
Such scheduling has a very nice property that the dis-
tance between any two successive Vvisits to any stream in
class ¢ is no more than D;. A MWRR scheduling exam-
ple is given in Figure 5.

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE

to media server



4.2. Load Balancing - Least Load First (LLF)

In an LLF scheme, the NodeScheduler always picks
the currently least loaded server when scheduling jobs. To
achieve this, two pieces of information are maintained for
each server: A;(t) calculated in section 3.2; and the num-
ber of outstanding requests, i.e., the number of media units
already dispatched to it and not yet completed. Subtract-
ing the second piece of information from the first one, the
scheduler always picks the least loaded server to send one
media unit, and then add 1 to its outstanding requests.

With this scheme, it is guaranteed that the servers get the
transcoding workload proportional to their capacity. So the
LLF scheme is able to produce high throughput in a het-
erogeneous cluster. However, the media units of the same
stream are distributed to different servers, and thus may
cause OFO departure. As illustrated in Figure 2A and dis-
cussed in section 2, once the media units depart out-of-
order, it complicates the calculation of the inter-playout
time among consecutive units, and makes it difficult to pre-
dict the playout jitter.

4.3. Load Balancing - Quota-based Adaptive
CoScheduling (QACS)

Unit Processing Phase 1 ——{

Unit Processing Phase 2——|

Unit Processing Phase 3 ——

=3 [Serverl 1 2 3 1 2 ] 1 2 3

=2 |Server2 4 5 4 5 4 5

=4 (Server3 6 7 8 9 6 7 8 9 6 7 8

9

‘ Unit Delivery Phase 1

123 450739-

123 [45]6 789 MO

Unit Delivery Phase 2 ——

Epoch

Quota-based Sequential Delivery

Figure 6. QACS Algorithm (7., < 1/5(t))

In the proposed Quota-based Adaptive CoScheduling
scheme, as demonstrated by Figure 6, we let the system pro-
ceed in steps by sending cluster-wide control messages. In
each epoch, each server is assigned a Quota that specifies
the number of units it is allowed to transcode during the
epoch. At the same time, the server delivers the units pro-
cessed in the previous epoch to the media server. The key
idea is that, in each epoch, the servers process units in par-
allel, but deliver the units processed in the previous epoch
to the media server sequentially. In this way, we maximize
the system throughput while eliminating out-of-order deliv-
ery of data. Since the processed units are first stored in a
buffer and then delivered in the next epoch, the Unit Pro-
cessing Phase and the Unit Delivery Phase are pipelined.
To control the sequential delivery, a Token is passed among
the servers such that only the server which holds the To-
ken has the right to deliver data to the media server. When

the system is started, the Load Distributor sends a message
to inform each server of its successor, defined as the next
server that is allowed to deliver data. Afterward, sequential
data delivery is enabled by distributed control.

The epoch is same as the monitor epoch (At) we men-
tioned in section 3.2. When the system starts, the Load Dis-
tributor assigns a default quota value to each server. At the
end of a epoch, the Load Distributor sends a heartbeat mes-
sage to each server to collect load statistics information and
calculates A;(t) as described in section 3.2. It then informs
the NodeScheduler of a new Quota Q;(t) = A;(t) x At for
server ¢, which specifies the number of units that should be
scheduled to server i. Since A;(t) takes into consideration
the CPU utilization on server t, it is a reasonable prediction
of the computing power of server 7. For 7 = 1,2, ..., N, the
NodeScheduler pushes Q;(t) media units into the ith dis-
patch queue and informs the dispatcher thread of the new
quota Q;(t). The dispatcher thread informs each server of
its new quota.

When the receiver thread of server ¢ gets a quota, it first
requests a unit from Load Distributor, and gives this unit to
transcoder. It then requests another unit while transcoder
is transcoding. Each time the receiver gets a unit, it decre-
ments the quota. In this way, server ¢ fetches and transcodes
at most Q; (¢) units during the epoch; at the same time, there
are Q; (t — At) units stored in its sending buffer. The sender
thread on server ¢ delivers these Q; (¢t — At) units to the me-
dia server once it is granted the Token.

The scheme is adaptive in terms of dynamically observ-
ing the processing power on each server and dynamically
updating the quotas assigned to the servers. The scheme
is efficient in terms of taking full advantage of the multi-
threading software architecture and overlapping the com-
putation with communication.

To evaluate the efficiency of the scheme, we need to ex-
amine the number of media units that are delivered to the
media server in a time unit. It depends on the relation be-
tween T, (transmission rate) and A¢/ Ef\; Qi(t— At) =
1/8(t — At) (system process rate). When T, < 1/S(t —
At), there is idle time on the transmission link to the media
server, because the cluster does not produce enough units
to fully utilize the transmission link. When T, approaches
1/S(t — At), both the cluster and the transmission link are
fully utilized. When T, > 1/S(t — At), the units produced
in the previous epoch cannot all be delivered to the media
server in the current epoch because the link speed cannot
catch up with the total processing rate of the cluster. How-
ever, this case will never happen. If this happened, the Load
Distributor would not have been able to deliver that amount
of data to the servers in an epoch because the data is deliv-
ered from the media server to computing servers at the same
transmission rate 73, !

In summary, when T, < 1/5(t), the cluster pro-

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



duces media units at the rate of S(t); when T,, approaches
1/8(t — At), the cluster produces media units close to the
rate of 1/T,. For example, taking into account the net-
work protocol stack processing overhead, let the transmis-
sion rate among servers be 500 units/sec, the process rate of
one server be 20 units/sec, and suppose all servers are ho-
mogeneous and the network condition is ideal such that
little transmission conflict occurs. When the cluster con-
tains exactly 500/20=25 servers, the scheme will guar-
antee that the cluster produces media units close to the
rate of 500units/sec, and all media units for each outgo-
ing stream depart in order! But note that, if more than
25 servers are connected in the cluster, the transmis-
sion link cannot support all those servers to their full
processing capacity.

4.4. QoS Guarantees Provided by Combin-

ing MWRR with QACS

By combining MWRR and QACS, as illustrated in Fig-
ure 5 (the details of dispatchers is ignored in the figure), the
scheduling is performed as follows: first, the UnitScheduler
fetches units from different streams according to MWRR
algorithm to ensure differentiated service rate; second, the
fetched units are scheduled by the NodeScheduler to com-
puting servers according to QACS algorithm to achieve the
highest throughput and in-order delivery. Actually, using
QACS scheme, the whole cluster can be viewed as a sin-
gle processing unit which continuously delivers media units
to the media server. Most importantly, QACS scheme main-
tains the unit order given by the UnitScheduler and thus
maintains all the fair scheduling properties of MWRR. In
this section, we mathematically analyze the QoS guaran-
tees provided by this combined scheduling scheme.

First, we model ¢, defined in Table 2, as exponential dis-
tribution. As discussed in section 4.3, its expectation, de-
noted by 7', is bounded by T;, < T < 1/8S.

As proved in MWRR scheme [5], the distance between
any two successive visits to any stream in class 4 is no more
than D;. Moreover, the visit order produced by MWRR is
maintained by the QACS scheme when the media units are
sent to the media server. Therefore, when Zfil N;/D; =
1, the distance between any two successive visits to any
stream in class ¢ is exactly D;. The I PT of service class
i, I;, can be expressed as Zf):il t;, where each t; is an
independent exponential variable whose mean is T". Thus,
[eon = D;T. When .5 | N;/D; < 1, the distance be-
tween any two successive Vvisits to any stream in class @ is
less or equal to D;. I; can be expressed as Zle t; where x
is a positive integer such that x < D;. Hence, I]"**" = zT,
which is no greater than D;T'.

As illustrated above, when Zfil N;/D; = 1,
I, = Zf):il t;, . Because the variance of t; is T2, the

Name Media Server Server 1 -4 Server 5 - 6 Server 7 - 8
CPU P4 2.53GHz P4 2.53GHz P4 1.80GHz Atholon 1.40GHz
Memory 1GB DDR 2100 1GB DDR 2100 1GB PC133 1GB PC133
[e Red Hat 9 Fedora Core 1 Mandrake 9 Fedora Core 1

Table 3. Configuration of the Cluster

standard deviation of Zf):il t; is vVD;T?, ie./D;T .
When Zfil N,;/D; < 1, the playout jitter is not pre-
dictable, it may be even larger because the distance be-
tween two successive visits to a stream is not a constant,
instead, it may change.

Therefore, the combined scheduling algorithm provides
QoS guarantees for all service classes as follows:

1. The feasibility condition ZK: , Ni/D; <1 must hold.

2. For serviceclass i = 1,2, ..., K,
T. < T<1/S ®)

K
Jreem = \/D;T when E N;/D; =1 (7
i=1

K
gmean | = D;,T Z:l Ni/D; =1
‘ < D;T Zizl N;/D; <1 (8)

5. Performance Evaluation

5.1. Experimental Settings

Table 3 describes the hardware and software configura-
tions of the Load Distributor node and Computing Server
nodes. Although our scheduling schemes are designed for
any transcoding operation that can be performed on in-
dependent media units, we do the experiments using only
MPEG-1 stream and the transcoding operation of convert-
ing color video to black/white. The media streams are
movies encoded in MPEG-1 format. A media unit is a GOP.
The average GOP size is around SOKB. The transcoding ser-
vice, provided by each server, is derived from a powerful
multimedia processing tool called FFMPEG [1].

5.2. System Throughput

The system throughput is defined as the total number of
units that are processed per second in the cluster. Scalabil-
ity of the system throughput is one of the most important
metrics that we need to examine when comparing differ-
ent load balancing schemes. Since the throughput is highly
affected by the total workload, the media server retrieves
enough number of streams such that the Media Unit Buffer
never becomes empty. Thus, the performance of different
load balancing schemes is measured in a fully loaded sys-
tem. The table in Figure 7 illustrates the detailed experi-
mental settings. The load test epoch is 0.5 seconds. Figure 7
describes the scalability of system throughput for the LLF

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



._.
S}
w
~
W
=
<
0

cluster size

number of streams | 4 | 7 | 11 | 15 | 17 | 19 | 22 | 25

s 120 LLF —— Il
- _
QACS ==
<100 =
Ay -
& _
S 80
B
£
S 60
=
2
= 40
£
2
2 20
= U
0

0 1 2 3 4 5 6 7 8 9

Cluster Size

Figure 7. Scalability of System Throughput

and QACS algorithms. They share similar scalability be-
cause they share the same load test mechanism. However,
it is shown later that QACS tremendously reduces the jit-
ter and OFO departure of video streams compared to LLF.

Cluster Size 1 2 3 4 5 6 7 8

Load Test (msecs) 0.87 1.6 | 23 | 3.0 | 5.1 76 | 9.5 12.2

Adaptation (usecs) 0 4.2 4.5 4.8 5.0 5.3 6.0 6.6

Table 4. Load Balancing Overheads

Table 4 depicts the overheads of load balancing. The
overheads can be divided into two parts: load test over-
head and load adaptation overhead. The load test overhead
is given in msecs, whereas the load adaptation overhead is in
usecs. Clearly, the load test overhead consumes most of the
time in load balancing. The load test overhead is the average
time consumed by the Load Distributor to poll through all
servers to collect the load statistics information. As shown
in table 4 , the load test overhead increases roughly propor-
tional to the cluster size. Load adaptation overhead is the
time used to set the current load for each server. Load adap-
tation overhead is much smaller than the load test overhead,
almost negligible. It is because that the adaptation overhead
is just the operation overhead, which is much less than the
network communication overhead involved in the load test.

5.3. QoS guarantee provided for streams

Table 5 demonstrates the QoS guarantees provided by
the MWRR+LLF and MWRR+QACS schemes to each ser-
vice class. In both experiments, 7 servers are used and the
monitoring epoch is 0.5 second. The IRT of each service
class is calculated as the inverse of the average retrieval
rate of all streams in the service class, which is measured
as how many units are retrieved from the disk per sec-
ond for each stream. The system throughput is 76units/sec.

According to equation 6, T is 1/76=0.013 secs, since Ty,
the average time to transmit a media through the switch
to the media server, is 2.2 millisecond in our experiment.
I PT™<%"s are calculated according to equation 8. The ex-
perimental results shown in Table 5 verify that the IPTs are
all bounded by the theoretical values. Note that, although
service class 3 generates much higher input load than its re-
quired service, the surplus workload also get serviced be-
cause there is idle system resource that can be utilized by
service class 3. As shown in table 5, both schemes pro-
duce similar IPTs because IPT largely depends on the sys-
tem throughput. However, MWRR+LLF scheme produces
higher jitter than MWRR+QACS because playout jitter is
mainly affected by the OFO departure rate.

If we calculate the Jitter™*™ according to equation 7,
we get the values 0.026, 0.045, 0.078 respectively. The jit-
ters shown in Table 5 are much larger than these theoreti-
cal values, because the equation doesn’t apply to this case,
where N1/D1+N2/D2+N3/D3=1/44+2/12+4/36 =
16/36 < 1. Besides, part of the jitter is caused by the large
discrepancy between T, and 1/.5(¢). In such case, the trans-
mission channel is not fully utilized and there exist larger
idle time between deliveries of data.

5.4. Video Quality

We do experiments in a cluster consisting of 7 servers
to test the video quality. The epoch is 0.5 second. There
are totally 3 service classes (N; = 1,Ny = 6,N3 =
9,D1 = 4,D5 = 12, D3 = 36). The total system through-
put is 85units/sec. Hence, T" is 1/85=0.012 secs. Accord-
ing to equation 8, the I PT™°*™ for service class 1, 2, 3 are
0.048, 0.144, 0.432 respectively. As shown in Figure 8(a),
the actual values are 0.05, 0.1493, 0.4985 for class 1, 2, 3
respectively. The experimental results are very close to the
theoretical expectation.

Figure 8(a) and 8(b) depict the video quality for each
service class when using the MWRR+LLF scheme and
MWRR+QACS scheme. All the values are calculated as the
average among all streams in the same service class. It is in-
teresting to find that the IPT are same for both schemes,
while the MWRR+LLF scheme incurs much higher playout
jitter than the MWRR+QACS scheme. The result is simi-
lar to the analysis we did in Figure 2, which further ver-
ifies the conjecture that higher out-of-order departure in-
curs higher jitter. In Figure 8(b), we find the actual jitters
are 0.092, 0.183 and 0.3011 for service class 1, 2 and 3 re-
spectively when using MWRR+QACS scheme. According
to equation 7, the mean of jitters should be 0.024, 0.042
and 0.072. The actual jitters are much higher than their the-
oretical expectations. It is because the theory assumes that
all data are delivered continuously to the router without idle
time in between; but in the experiments, because 7, is much

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



Service IPT [ pTmeen Jitter OFO rate
Class N; | D; T IRT M/LLF | M/QACS M/QACS M/LLF M/QACS M/LLF | M/QACS
1 1 4 1 0.013 | 0.05 | 0.0499 | 0.0493 0.052 0.1659 | 0.1174 | 0.6352 0
2 2 12 | 0.013 | 0.15 | 0.1495 | 0.1480 0.156 0.3046 | 0.2010 | 0.4710 0
3 4 36 | 0.013 | 0.15 | 0.1496 | 0.1480 0.468 0.5520 | 0.2660 | 0.4655 0

Table 5. Comparison of QoS guarantees provided by MWRR+LLF and MWRR+QACS

0.6 1.2

0.5 |- MWRR+QACS ==
MWRR+LLF ===

0.4

0.8

0.3

0.6

Playout Jitter per Stream

0.2 0.4
0.2

Average Inter-playout Time among GOPs

0 T :
0 ’_r 0

1 2 3 1
Service Class

(a) Average Inter-playout Time among Units

Service Class

(b) Playout Jitter per Stream

— £
g
3 -
MWRR+QACS == A 08 = MWRR+QACS ——|
MWRR+HLLF == g MWRR+LLF ==
2
506 =
2
El
5
m & 04
a
s 2
o 0.2
Al g,
2 3 1 2 3

Service Class

(c) Gross OFO Departure Rate per Stream

Figure 8. Video Quality

smaller than 1/5(¢), there are many idle times between de-
liveries of data, thus incurs higher jitter.

5.5. OFO Departure Pattern

Figure 8(c) illustrates the out-of-order departure rate for
each service class in the two scheduling schemes. The re-
sult verifies that the MWRR+QACS scheme has success-
fully eliminated out-of-order departure and improves the
playout jitter. With MWRR+LLF scheme, a high percent-
age of the units depart out-of-order. And the service class
with higher service rate has more OFO rate because its units
get scheduled more frequently and being dispersed among
different servers. Figure 9 gives the distribution of inter-
departure time of a typical stream in service class 1, with
respect to the two scheduling schemes. With these quanti-
tative description of the departure pattern of each outgoing
stream, we can see how QACS scheme improves the perfor-
mance.

6. Conclusion

We proposed a cluster-based web server where a
few computing nodes are separately reserved for high-
performance computing applications, such as multime-
dia, SSL, and CGI. Once a server receives a request
that needs computations, it partitions the job into sev-
eral tasks and schedules them on the computing nodes for

processing. The aim of this paper is to develop schedul-
ing algorithms so as to ensure highest throughput and
quality of service of the web requests.

We consider the multimedia streaming service which re-
quires computation-intensive on-demand transcoding oper-
ations as an example. We proposed and implemented an ef-
fective QoS aware scheduling algorithm in a media cluster
to support different service classes. QoS aware scheduling
is achieved in two steps, fair scheduling and load balanc-
ing. Mutliclass Weighted Round Robin (MWRR) is adopted
to provide tunable processing delay to different service
classes. Least load first (LLF) load balancing algorithm is
implemented to produce high system throughput. To fur-
ther reduce video playout jitter, a new QACS algorithm is
proposed to achieve high system throughput while eliminat-
ing out-of-order delivery. It is shown that, the QoS guaran-
tees, specified as (I PT, Jitter), can be ensured by com-
bining MWRR algorithm with QACS scheme. Experimen-
tal results were obtained through a cluster-based implemen-
tation to verify the results.

References

[1] Ffmpeg multimedia system. http:/ffmpeg.sourceforge.net/.

[2] S. K. A. Demers and S. Shenker. Analysis and simulation
of a fair queuing algorithm. Proceedings of SIGCOMM’89,
pages 1-12, September 1989.

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



0.2

0.15

0.1

Percentage

0.05

0

-0.1 0 0.10.20.30.40.50.60.70.80.9 1 1.11.21.31.41.51.61.71.81.9 2
Interdeparture Time Among Successive GOPs(secs)

(a) Distribution of IDT (MWRR+QACS,Service Class 1)

0.008

0.007

0.006

0.005

0.004

Percentage

0.003

0.002

0.001

-5 -4 -3 -2 -1 0 1 2
Interdeparture Time Among Successive GOPs(secs)

(b) Distribution of IDT (MWRR+LLF,Service Class 1)

Figure 9. Distribution of Inter-departure Time among Successive units

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

J. C. R. Bennett and H. Zhang. Wf2q:worst-case fair
weighted fair queueing. [EEE INFOCOM, pages 120-128,
September 1996.

S. Chandra, C. S. Ellis, and A. Vahdat. Differentiated mul-
timedia web services using quality aware transcoding. Pro-
ceedings of INFOCOM 2000 - Nineteenth Annual Joint Con-
ference of the IEEE Computer And Communications Soci-
eties, March 2000.

H. M. Chaskar and U. Madhow. Fair scheduling with tunable
latency: A round-robin approach. IEEE/ACM Transactions
on Networking, 11(4):592-601, 2003.

A. Fox, S. Gribble, E. Brewer, and E. Amir. Adapting to net-
work and client variability via on-demand dynamic distilla-
tion. Proceedings of the 7th International Conference on Ar-
chitecture Support for Programming Language adn Operat-
ing Systems (ASPLOS-VII), 1996.

A. Fox, S. D. Gribble, and Y. Chawathe. Adapting to net-
work and client variation using active proxies: Lessons and
perspectives. Special Issue of IEEE Personal Communica-
tions on Adaptation, 1998.

J. Guo, F. Chen, L. Bhuyan, and R. Kumar. A cluster-
based active router architecture supporting video/audio
stream transcoding services. Proceedings of the 17th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’03), Nice, France, April 2003.

E. Katz, M. Butler, and R. McGrath. A scalable http server:
The ncsa prototype. Computer Networks and ISDN systems,
27:155-164, 1994.

R. Keller, S. Choi, M. Dasen, D. Decasper, G. Fankhauser,
and B. Platter. An active router architecture for multicast
video distribution. JEEE INFOCOM, 2000.

L. Kencl and J. Y. L. Boudec. Adaptive load sharing for net-
work processors. IEEE INFOCOM, 2002.

C. Li, G. Peng, K. Gopalan, and T. Chiueh. Performance
garantees for cluster-based internet services. Proceedings of
the 23rd International Conference on Distributed Comput-
ing Systems (ICDCS’03), May 2003.

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

P. D. M. Aron and W. Zwaenepoel. Cluser reserves: A mech-
anism for resource management in cluster-based network
servers. Proceedings of the ACM Sigmetrics 2000 Interna-
tional Conference on Measurement and Modeling of Com-
puter Systems Sanata Clara,CA, June 2000.

M. Ott, G. Welling, S. Mathur, D. Reininger, and R. Izmailov.
The journey active network model. /[EEE Journal on Selected
Areas in Communications, 19(3):527-537, Mar. 2001.

A. Parekh and R. Gallager. A generalized processor shar-
ing approach to flow control in integrated services networks:
The single node case. IEEE/ACM Trans. Networking, pages
344-357, June 1993.

M. Satyanarayanan. Scalable, secure, and highly available
distributed file access. IEEE Computer, May 1990.

B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and
load balancing in parallel and distributed systems. /EEE CS
Press, 1995.

G. Welling, M. Ott, and S. Mathur. A cluster-based active
router architecture. [EEE Micro, 21(1), January/February
2001.

H. Zhu, H. Tang, and T. Yang. Demand-driven service dif-
ferentiation in cluster-based network servers. IEEE INFO-
COM, 2001.

H. Zhu, T. Yang, Q. Zheng, D. Watson, O. Ibarra, and
T. Smith. Adaptive load sharing for clustered digital library
servers. Proceedings of the seventh International Symposium
on High Performance Distributed Computing, pages 235—
242, 1998.

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



	Select a link below
	Return to Main Menu
	Return to Previous View




