
Resource Allocation for Periodic Applications in a Shipboard Environment

Vladimir Shestak†, Edwin K. P. Chong†, Anthony A. Maciejewski†, H. J. Siegel†§,
 Lotfi Benmohamed‡, I-Jeng Wang‡, and Rose Daley‡

Colorado State University
†Department of Electrical & Computer Engineering

§Department of Computer Science
Fort Collins, CO 80523-1373

{shestak, echong, aam, hj}@engr.colostate.edu

The Johns Hopkins University
‡Applied Physics Laboratory
11100 Johns Hopkins Road

Laurel, MD 20723-6099
{lotfi.benmohamed, i-jeng.wang, rose.daley}@jhuapl.edu

Abstract

Providing efficient workload management is an
important issue for a large-scale heterogeneous
distributed computing environment where a set of
periodic applications is executed. The considered
distributed system is expected to operate in an
environment where the input workload is likely to
change unpredictably, possibly invalidating a resource
allocation that was based on the initial workload
estimate. The tasks consist of multiple application
strings, each made up of an ordered sequence of
applications. There are quality of service (QoS)
constraints that must be satisfied for each string. This
work addresses the problem of finding a robust initial
allocation of resources to application strings that is
able to absorb some level of unknown input workload
increase without rescheduling. An allocation feasibility
analysis is presented followed by four heuristics for
finding a near-optimal allocation of resources. The
performance of the proposed heuristics is evaluated
and compared using simulation. The proposed
heuristics also are compared to a mathematically
derived upper bound.

1. Introduction and Problem Statement

The Adaptive and Reflective Middleware Systems

This research was supported by the DARPA Information Exploitation
Office under contract No. NBCHC030237, by the Colorado State
University George T. Abell Endowment, and by the Colorado State
University Center for Robustness in Computer Systems (funded by
the Colorado Commission on Higher Education Technology
Advancement Group through the Colorado Institute of Technology).
Approved for public release, distribution unlimited.

(ARMS) program supported by DARPA includes
designing an efficient resource allocation capability for
a Total Ship Computing Environment (TSCE). One
objective of this research program, which is a
collaborative effort of many technology developers, is
to investigate the problem of robust resource allocation
in this class of heterogeneous computing systems. In
this paper, we consider a subset of the actual TSCE and
application model being examined in ARMS.

The TSCE consists of a set of heterogeneous
machines, heterogeneous network links, continuously
running periodic applications, and a number of quality
of service (QoS) constraints that must be satisfied
during the operation of the system. Generally, the
TSCE system operates in an environment that
undergoes unpredictable changes, e.g., in the system
input workload, which may cause QoS violations.
Therefore, even though a good initial allocation of
resources to applications may ensure that no QoS
constraints are violated when the system is first put into
operation, dynamic mapping approaches may be needed
to reallocate resources during execution (e.g., [22, 26]).

Two different resource allocation schemes were
considered in this work. Partial resource allocation
occurs when some part of a given set of applications
considered for mapping cannot be allocated due to
limited system resources or QoS constraint violations.
In contrast, complete resource allocation takes place in
a system that has enough resources to accommodate all
applications considered for mapping without violation
of any of the imposed QoS constraints. The goal of this
work is to find the “best” static initial mapping (i.e.,
one found during an off-line planning phase) of
applications to computing and networking resources,
which maximizes the “total worth” of the system’s
performance and the system’s capacity to absorb

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

unpredictable increases in input workload without QoS
violations (explained in Section 4).

The development of heuristic techniques to find
near-optimal solutions for resource allocation problem
is an active area of research (e.g., [1, 6, 7, 17, 25, 28,
30]). For the intended distributed system, the
contributions of this work include developing a method
to analyze the feasibility of an allocation, quantifying
the performance goal, designing and developing
heuristics for mapping the applications to resources to
optimize the performance goal, evaluating the relative
performance of these heuristics, and deriving
mathematical bounds in performance.

The reminder of this paper is organized in the
following manner. Section 2 develops models for the
applications and hardware platform. Sections 3 and 4
present a quantitative basis for the feasibility analysis
and performance measure for a given resource
allocation, respectively. Four heuristics to solve the
posed initial mapping problem are described in Section
5, followed by the simulation setup in Section 6. A
mathematical model for finding performance upper
bounds in different simulation scenarios is provided in
Section 7. The simulation experiments and performance
evaluation of the heuristics are discussed in Section 8.
A sampling of some related work is presented in
Section 9. Section 10 concludes the paper.

2. System Model

The overall TSCE system is composed of a number
of heterogeneous computational resources distributed
across a shipboard environment and connected by a
communication network 1 . Details behind the real
communication network are outside the scope of this
paper, where its functionality is modeled via all
possible independent virtual point-to-point
communication routes, each characterized by a
maximum available bandwidth. The existing
networking technologies can enforce that
communication model through resource reservations at
system initialization time. Each machine in the system
is capable of multitasking. Similarly, a given
communication route is shared among multiple active
data transmissions traversing that communication route.

In the TSCE system, a string is defined as a
continuously executing sequence of applications
connected in precedence order by specified data
transfers 2 . Data is received by a string from other
strings or from sensors with a fixed period. The output

1
In the final ARMS system, computational resources will be divided

into pools; in this paper, we assume each pool consists of one
machine.
2

The final ARMS program may include DAGs of applications.

produced by the string serves as an input to other
application strings or to actuators.

Let kS be the thk string, specified by a sequence

of kn applications: 1 2
k

k k k k
nS a a a= To model the

importance each string represents in the system, for
each k, the kth string is preassigned one of three possible
worth factors, [] {1,10, 100}.I k ∈ Let []P k be the

period associated with string ,kS where each k
ia must

execute once each period. The minimum throughput
constraint states that the computation time of any
application or the time of any inter-application data

transfer in kS is required to be no larger than [].P k

For each string kS the maximum end-to-end latency

constraint max []L k is specified as a limit on the total

amount of time for a given data set to be sequentially

processed by string .kS Assuming that the resource

allocation for string kS is made, let [,]m i k denote the

machine to which application k
ia is assigned. Let

[]k
compt i be the estimated computation time for

application k
ia for each data set (executing on [,]m i k).

Let []k
trant i be the estimated transfer time required to

send output of size []kO i from application k
ia (on

[,])m i k to application 1
k
ia + (on [1,])m i k+ within

string .kS A typical allocation of string kS in the
system is illustrated in Figure 1 below.

...

1 [1]compt 1 [1]trant 1 [2]compt 1 []kcompt n

1
1a

]1,1[m

1
2a

]1,2[m

1[1]O 1[2]O 1[1]kO n − 1
kna

]1,[knm

max[1]L

Figure 1. The string model. Rectangles
denote applications in the string and the
machines where they execute. The arrows
represent output data transfers within the
string.

Mathematically, for a given resource allocation for
a string, the aforementioned constraints are satisfied if:

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

()
1

max

1

[] [] 1

[] [] 1 1

[] [] [] []
k

k
comp k

k
tran k

n
k k k
comp k comp tran

i

t i P k i n

t i P k i n

t n t i t i L k
−

=


 ≤ ≤ ≤
 ≤ ≤ ≤ −

 + + ≤


∑
(1)

If these constraints are satisfied for an allocation, the
allocation is said to be feasible. Because both machines
and communication routes are assumed to be shared,

][it k
comp and []k

trant i will depend on the level of

sharing—i.e., the number of applications assigned to a
computational resource and currently active, or the
number of current data transfers assigned to a
communication route. Furthermore, these values will
depend on how an application or a data transfer is
prioritized by a machine’s or network’s local scheduler
with respect to all other applications or data transfers
that share this computation or communication resource.

3. Allocation Feasibility Analysis

To validate the feasibility of resource allocations
produced by the proposed heuristics, the following two-
stage feasibility analysis was developed. The first-stage
analysis verifies whether the overall utilization of both
computation and communication resources is below the
full system’s capacity.

 Two parameters are used in the TSCE
environment to specify the workload imposed by each
application on a particular machine: the nominal
execution time and the nominal CPU utilization. The

nominal execution time [,]kt i j is the time required by

application k
ia in string kS to process a data set when

k
ia is the only application executing on machine j.

Hence, [] [, [,]].k k
compt i t i m i k≥ The nominal CPU

utilization [,]ku i j is the average CPU utilization of

machine j during that execution. The product

[,] [,]kt i j u i j × can be interpreted as the fixed

amount of CPU work required for application k
ia to

process a data set on machine j. This fixed amount of
CPU work can be performed in many different ways.

For example, if only half of],[jiu k is allocated, then
the execution time required to accomplish the same

fixed amount of CPU work is twice [,]kt i j .
Let the conditional 1 function be defined by:

1 if is true;
()

0 otherwise.

condition
condition


≡ 


1

If A strings are allocated in the system then the overall

machine utilization []machineU j is computed as:

1 1

[,]
[,]

[] []

([,])

k
k

nA k
machine

k i

t i j
u i j

U j P k

m i k j= =

 
× × =  

 = 
∑∑

1

 (2)

The term
[,]

[,]
[]

k
kt i j

u i j
P k

× provides the average CPU

utilization allocated for application k
ia over [].P k This

is the minimum average CPU utilization that allows k
ia

to complete processing without a throughput constraint
violation. The sum of such minimum CPU utilizations
across all the applications executing on j determines the
overall machine utilization.

If 1 2[,]w j j denotes the total bandwidth of

communication route from machine 1j to machine 2 ,j
the overall communication route utilization

1 2[,]routeU j j is:

1 2
1 2

1

1 2
1 1

1
[,]

[,]

[]
([,] & [1,])

[]

k

route

nA k

k i

U j j
w j j

O i
m i k j m i k j

P k

−

= =

= ×

 
× = + =   

∑∑ 1

 (3)

The term
[]

[]

kO i

P k
 can be interpreted as the minimum

average bandwidth allocated to application k
ia for

output transfer over []P k that allows it to be completed
without a throughput constraint violation.

For a given allocation, the result of the first-stage
analysis is considered satisfied if the computed
utilization value is no larger than one for each machine
and each communication route.

The second-stage analysis focuses on checking the
throughput and end-to-end latency constraints for each
allocated string and relies on an assumption that
scheduling at the machine level is carried out based on
the “relative tightness” of a string. Relative tightness

][kT is the ratio of the total time required for a data set

to be processed by string kS (no sharing assumed on
computation and communication resources) to the end-

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

to-end latency constraint][max kL specified for this
application string, determined as:

max

1

1

1
[]

[]

[, [,]]

[, [,]] []

[[,], [1,]]

k

k
n

k k
k k

i

T k
L k

t i m i k

t n m n k O i

w m i k m i k

−

=

= ×

  +
  

+  
  +  

∑

 (4)
Assume that the local scheduling policy is based on the
rule that applications and data transfers with higher
relative tightness values are given higher execution
priorities and will be scheduled first. This analysis can
be modified if a different scheduling policy is used.
Without loss of generality, assume that the []T k values
are distinct.

To provide insight into the method of computing

[],k
compt i consider the example, depicted in Figure 2,

with three possible cases of CPU sharing on machine j.

Two applications 1
1a and 2

1 ,a illustrated in this
example, belong to different strings (1 and 2) and share
CPU resources of machine j. To capture the worst-case
overlap between processes, periods [1]P and [2]P are
lined up at their beginnings, and each application
receives an input at the beginning of its period. Suppose

that string 1 (to which application 1
1a belongs) is

relatively tighter than string 2. Based on the local

scheduling policy, application 1
1a has a higher

execution priority for the CPU than application 2
1 .a As

a result, 1
1 'sa estimated computation time is not

affected by CPU sharing—i.e., 1 1[1] [1,].compt t j=
The simplest case of overlap is illustrated in case

(1) in Figure 2. Strings 1 and 2 have the same periods,

and 1
1a and 1

1a are able to utilize 100% of the CPU,
1 2i.e., [1,] [1,] 1.u j u j= = Taking into account the

delay caused by the execution of application 1
1a , the

estimated computation time for application 2
1a can be

found as 2 2 1[1] [1,] [1,].compt t j t j= + Thus, 2
1a must

wait for a time interval of 1 [1]compt before it can begin

executing for each period.

Now suppose that applications 1
1a and 2

1a have
different periods, while all other parameters remain the
same. For example as shown in case (2), [1]P is

twice [2]P . Note that the processing of only every other

data set of application 2
1a is delayed now. Therefore,

the average waiting time for application 2
1a in this case

becomes affected by the ratio of [2]P to [1],P and can

be expressed as 1[2]
[1,].

[1]

P
t j

P
×

time

1

0.5

time

1

0.5

time

1

0.5

(1)

(2)

(3)

]1[1
compt

]1[2
compt

1
1a 2

1a 1
1a

]2[]1[PP =

]1[2
compt

]1[2
compt]1[1

compt

]2[P

]1[P

1
1a 1

1a2
1a 2

1a

]1[1
compt

]1[2
compt

]1[2
compt

]2[P

]1[P

1
1a 1

1a

2
1a 2

1a

machineU

machineU

machineU

Figure 2. Three possible cases of data set
processing overlaps resultant from CPU
sharing between applications 1

1a and 2
1a .

Application 1
1a has a higher execution priority

than application 2
1a .

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

In case (3), applications execute under the same

conditions as in case (2), except that application 1
1a is

able to utilize at most 50% of the CPU on average,
1i.e., [1,] 0.5.u j = This fact allows part of application

2
1a to execute concurrently with 1

1a by utilizing the

remaining 50% of the CPU cycles. Application 2
1a

completes processing each overlapping data set earlier

that it would have if 1
1a was to require 100% of the

CPU. This observation allows the average waiting time
(hypothetical in this case) to be determined by

including the dependence on 1[1,]u j into the
expression derived in case 2. Specifically, the average

waiting time is 1 1[2]
[1,] [1,].

[1]

P
u j t j

P
× ×

Based on the examples discussed above, equation
(5) below is one way to estimate computation time for
each prioritized periodic application executing on a
shared CPU:

1

1

[]
[] [, [,]]

[]

[, [,]] [, [,]]

([,] [,] & [] [])

z

A
k k
comp

z

n z z

p

P k
t i t i m i k

P z

t p m p z u p m p z

m p z m i k T z T k

=

=

= + ×

 × ×
  = > 

∑

∑ 1

 (5)

Similarly, the estimated transfer time for each
prioritized periodic output transfer traversing over a
shared communication route is:

1

1

1

[] []
[]

[[,], [1,]] []

[]

[[,], [1,]]

([,] [,] & [1,] [1,]] &

[] [])

z

Ak
k
tran

z

z

n

p

O i P k
t i

w m i k m i k P z

O p

w m p z m p z

m i k m p z m i k m p z

T z T k

=

−

=

= + ×
+

 
× 

+ 
 = + = +
 

> 
 
 

∑

∑ 1

 (6)
The first term in equations (5) and (6) represents

the nominal time required for an application to process
or transfer a data set, respectively. The second term
quantifies the average waiting time before the processor
or communication transmitter becomes available for a
data set. The accuracy of the time estimates produced
by these equations depends on many factors related to a
particular environment. For example, in equation (5), it
depends on how the data arrivals of different
applications are relatively phased and to what extent
each application deviates from the corresponding

nominal CPU utilization value at each point in time.
Furthermore, a variety of different local schedulers are
possible within each processor. If specific schedulers
were known, equations (5) and (6) could be adjusted
accordingly.

For the second-stage analysis, a given allocation is

considered feasible if for each string kS the estimated
computation and data transfer times satisfy the
constraints in (1).

4. Performance Goal

In the context of the intended system, the
performance metric for evaluating an application-to-
machine mapping generated by the heuristics has two
components. The primary component is total worth,
defined as the sum of the worth factors associated with
strings in the mapping that successfully passed the two-
stage feasibility analysis. The secondary component is
system slackness. Let Ω be the set composed of all
computation and communication resources in the
system. System slackness Λ is a measure of the
minimum utilization capacity remaining across all of
the hardware resources in the set .Ω It quantitatively
reflects the system’s potential to absorb unpredictable
increases in input workload and is defined as:

1 2 1 2

{1 [] : }
min

{1 [,] : , }

machine

route

U j j

U j j j j

 − ∈ Ω
 Λ =  − ∈ Ω ∪

 (7)

The goal of each of the heuristics in section 5 is to
achieve the highest level for the primary component
while maximizing system slackness Λ at that level.

With the given “worth” scheme, a high worth
string has the same value as 10 medium worth strings.
A different, alternate scheme is possible, where higher
worth strings have a value of more than the total value
of any number of strings of medium or low worth. In
such a scheme, high worth strings can be put in a
special class. The content of this class is allocated first
in the system. Such a scheme, described in [25], is
outside the current requirements of this work.

5. Descriptions of Heuristics

This section develops four heuristics for the
problem of finding an initial static allocation, and
begins by introducing some additional terms. Suppose
that a set of strings considered for mapping is given.
Let the permutation space be all possible orders of the
given strings, and let the solution space be all possible
application-to-machine assignments. An allocation is
considered feasible if the two-stage feasibility analysis

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

presented in Section 3 is satisfied for this allocation. It
was observed experimentally a genetic algorithm [30],
operating in the solution space, failed to find any
feasible allocation even for a relatively small set of
strings in the reasonable amount of time. Therefore, the
first four heuristics presented in this section search over
the permutation space instead of directly over the
solution space. A permutation ordering of strings in the
permutation space is translated into a mapping in the
solution space by applying the Incremental Mapping
Routine (IMR). The IMR maps a single string. The
four heuristics differ in the order in which the strings
are mapped by the IMR.

Incremental Mapping Routine: The allocation
algorithm used in the IMR heuristic is based on the
greedy mapping technique. The IMR handles one string
at a time, retrieving applications in the string for
mapping in a certain order, and having its resource-
candidate search guided by impact on the resource
utilization. Starting from the most computationally
intensive application, determined by the equation in
step 1 in the pseudo code shown below, the heuristic
maps all the intermediate applications along the string
up to the next most computationally intensive
application. In selecting a mapping, a parameter of
interest is the maximum value of the resource
utilizations (given by equations (2) and (3)) in the
machine-route pair affected by an application
assignment. The selection process determines a
machine for mapping by finding the minimum value of
this parameter across all machines in the system, with
ties broken arbitrarily. Then, the next unassigned most
computationally intensive application is found, and the
same mapping procedure is repeated until the allocation
for a given string is completed. The IMR approach
attempts to map computationally intensive applications
early, but also maps their neighboring applications, so
that network utilization also can be taken into account
as the heuristic progresses.

To describe the IMR heuristic in detail some
additional notation must be introduced. Let

[, ,]machineU j i k be the utilization of machine j if

application k
ia was assigned to machine j (in addition

to the applications assigned previously to this machine).

Similarly, let 1 2[, , ,]routeU j j i k be the utilization of

communication route if application k
ia was assigned to

machine 1j and passed an output to its successor

mapped on machine 2.j Assuming M machines in the

system, the average nominal execution time []k
avt i and

average nominal machine CPU utilization requirement

for application k
ia []k

avu i are defined as follows:

1

1
[] [,]

M
k k

av
j

t i t i j
M =

= × ∑ (8)

1

1
[] [,]

M
k k
av

j

u i u i j
M =

= × ∑ (9)

The IMR heuristic can be summarized by the
following procedure.

1. As a starting point, identify application
max

k
ia in the

given string kS as follows:

max
[] []

arg max{ : 1, ..., }.
[]

k k
av av

k
t i u i

i i n
P k

×
= =

2. Assign application
max

k
ia to the machine max[,]m i k

found as:

max max[,] arg min{ [, ,] :

1, ..., }.

machinem i k U j i k

j M

=
=

3. Initialize set
max

{ }.k
iD a=

4. While set D does not contain all applications in the

given string kS do
a. max application index in ;righti D=

min application index in ;lefti D=

b. identify unassigned application
max

k
ia in the

given string kS as follows:

max
[] []

arg max{ :
[]

1, ..., & };

k k
av av

k
k i

u i t i
i

P k

i n a D

×=

= ∉

c. while max righti i> do

� 1right righti i= +

� assign
right

k
ia to the machine [,]rightm i k

found as follows:
[,]

arg min max{ [, ,] ,

right

machine
right

m i k

U j i k

=

[[1,], , ,] : 1 };route
right rightU m i k j i k j M− ≤ ≤

� include application
right

k
ia in set D;

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

d. while max lefti i< do

� 1left lefti i= −

� assign
left

k
ia to the machine [,]leftm i k

found as follows:

[,]

arg min max{ [, ,] ,

[, [1,], ,] : 1 };

left

machine
left

route
left left

m i k

U j i k

U j m i k i k j M

=

+ ≤ ≤

� include application
left

k
ia in set D.

Most Worth First Heuristic: The MWF heuristic
begins by ranking strings in the order of their worth.
Then, it uses the IMR heuristic to map applications
within the current string and applies the two-stage
feasibility analysis to each intermediate mapping
produced. If a given intermediate mapping fails to pass
the feasibility test, the mapping process is terminated,
and the previous intermediate mapping is considered as
a final result. Thus, in such a case, only a subset of the
strings will be mapped.

Tightest First Heuristic: The TF heuristic is
conceptually similar to MWF, but differs in the
criterion used for ranking. The chosen ranking criterion
here is relative tightness, given by equation (4). It is
important to note that the procedure given in Section 3
for calculating relative tightness assumes that the
complete allocation of all strings in the system is
known. Thus, to be used as a ranking criterion, equation
(4) is modified such that all terms related to a specific
allocation are replaced with average values. The
average inverse of bandwidth is determined as an
average across all possible communication routes in the
system:

1 2

2
1 21 1

1 1 1

[,]

M M

av j j
w w j jM = =

= × ∑∑

Equations (8) and (9) provide the average nominal
execution time and average nominal machine CPU

utilization requirement for application .
k
ia

Permutation Space GENITOR-Based Heuristic:
This PSG heuristic was developed by combining the
IMR heuristic with concepts from the GENITOR
approach. GENITOR is an evolutionary steady-state
genetic search algorithm that has been shown to work
well for several problem domains (e.g., [6, 24, 32]). For
the TSCE problem, each chromosome in the heuristic
represents an ordered list of strings in the permutation
space. GENITOR-specific operators, such as selection,

crossover, and mutation, are applied in that space.
Chromosomes differ in their list orders, which results in
different mappings in the solution space obtained via
“projecting” a chromosome to the solution space by
applying the IMR. The two-component performance
metric defined in Section 4 is used to measure the
fitness of each chromosome.

The PSG heuristic was implemented as follows.
First, an initial population composed of 250 different
chromosomes is generated randomly by reordering the
initial given set of strings. After evaluation, the entire
set of chromosomes is sorted (ranked) by their fitness.
Next, a special function (described later) is used to
select two chromosomes to act as parents. These two
parents perform a crossover operation, and two
offspring are generated. The offspring are then
evaluated and must immediately compete for inclusion
in the population. If the considered (single) offspring
has a higher fitness than the poorest member in the
population, the offspring is inserted in sorted order in
the population, and the poorest chromosome is removed.
Otherwise, the offspring is discarded.

In the crossover step, for the pair of the selected
parent chromosomes a random cut-off point is
generated that divides the chromosomes into top and
bottom parts. Then, the strings in each top part are
reordered. The new ordering of the strings in one top
part is the relative positions of these strings in the other
parent chromosome in the pair. It is important to note
the choice of the top parts of the parent chromosomes
for reordering. This allows the offspring to differ from
their parents in the case of a partial resource allocation.
In such a case some strings in the bottom part of each
chromosome cannot be mapped, and, as a result, the
reordering among these strings will not be reflected in
the solution space.

After each crossover, the same special function
(described below) is applied again to select a
chromosome for mutation. A mutation operator
generates a single offspring by perturbing the original
chromosome order via swapping two randomly chosen
application strings. The resultant offspring is
considered for inclusion in the population in the same
fashion as for an offspring generated by crossover.

The special function for selecting parent
chromosome(s) is a bias function, used to provide a
specific selective pressure [32]. For example a bias of
1.5 implies that the top ranked chromosome in the
population is 1.5 times more likely to be selected for a
crossover or mutation than the median chromosome.
The bias value 1.6 was found experimentally by
observing the performance of the heuristic while
varying the bias values across the range [1,2] in steps
0.1. Elitism, the property of guaranteeing the best
solution remains in the population [29], is implicitly

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

implemented by always removing the poorest
chromosome.

As the PSG runs, the crossover operator will be
sequentially repeated followed by the mutation operator
until one of the stopping conditions is reached. The
stopping conditions chosen in this study for the PSG
heuristic are: (1) 5,000 iterations (where an iteration is
one crossover and one mutation), (2) 300 iterations
without a change in the elite (best) chromosome, or (3)
all chromosomes converged to the same solution.

Seeded PSG Heuristic: The solutions (seeds)
found by the MWF and TF heuristics were included in
the initial population of the Seeded PSG. All other
operations and stopping conditions remained identical
to the PSG described above.

6. Simulation Setup

The purpose of this study was to evaluate the
performance of the mapping heuristics in three different
workload scenarios. For all these scenarios, the
hardware part of the intended system was composed of
a heterogeneous suite of 12 machines. The bandwidth
of each inter-machine communication route was chosen
by sampling a uniform distribution in the interval
between 1 and 10 Mb/sec. All intra-machine
communication routes were assumed to have infinite
bandwidth. In addition, the time-of-flight—i.e., time
needed for a transmitted bit of data to reach the
destination [20]—was assumed to be negligible on each
communication route. For all the experiments, it also
was assumed that an application could execute on any
machine, and an output could be transferred over any
communication route. Each of the three workload
scenarios was distinguished by a different number of
strings considered for mapping and different
specification ranges for each string’s period and end-to-
end latency constraint.

In the first scenario, the modeled system is
considered highly loaded—i.e., not all strings in a given
set can be successfully allocated due to the fact that
some hardware component in the system reaches its
computation or communication capacity limit. As an
indicator, the first-stage feasibility analysis becomes
unsatisfied at this point, and the sequential string
allocation process is stopped. To model this situation, a
set consisting of 150 strings was generated. The
throughput and latency parameters were intentionally
relaxed in this scenario for each string to avoid any
possible stoppage of a mapping process caused by the
QoS constraints violation.

The second type of partial mapping of a given set
of strings is investigated in the second simulation
scenario by modeling a QoS-limited system. In this
scenario, 150 strings were used again, but the
throughput and latency constraints associated with them

were set tighter. As such, the allocation process is
forced to stop before any of the system’s hardware
resources reaches its capacity limit.

The third simulation scenario involves a lightly
loaded system where the entire set of strings can be
allocated—i.e., it contains only 25 strings with relaxed
QoS constraints. Clearly, because a complete mapping
is achievable now, only the secondary component of the
performance metric, i.e., the system slackness, matters
in this scenario.

For each scenario, 100 simulation runs were
performed, resulting in reasonably tight 95%
confidence intervals [14]. In each simulation run, the
heuristics were tested using strings composed of a
different number of applications determined randomly
within the range from 1 to 10. The nominal execution
time and nominal machine CPU utilization requirement
associated with each application in the string were set
by sampling a uniform distribution in the intervals
between 1 and 10 seconds, and between 0.1 and 1,
respectively. In the same fashion, the size of a data
output generated by each application in the string was
chosen in the interval from 10 to 100 Kbytes.

7. Upper Bound Calculation

In each scenario, the performance of the proposed
allocation heuristics was compared with a
mathematically derived upper bound, UB. The upper
bound was computed by allowing “fractional
mappings.” In this method, it is assumed that every
application considered for mapping in the suite of M
machines can be decomposed into any M fractions.
Each of these M fractions corresponds to a particular
machine and represents the part of the application
assigned to this machine. It also is assumed that an
application fraction assigned to a machine receives the
equivalent fraction of the application’s data input and
produces the equivalent fraction of the application’s

data output. For example, if 2 3 of application k
ia is

allocated to machine j then this fraction receives 2 3 of

the application’s input [1]kO i − and produces 2 3 of

the application’s output [].kO i These assumptions
allow the problem of finding the UB to be solved by
applying a Linear Programming (LP) approach, e.g., the
Simplex algorithm [12] or one of the interior-points
methods [18].

Specifically, the employed LP algorithm operates
with fractions of applications and fractions of
application outputs, considering them as decision
variables and producing the fractional mapping that
maximizes the performance metric. Remarkably, the
global optimal solution in LP problems can be found in
polynomial time [8]. Of course, this fractional

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

allocation cannot be implemented in practice because,
in general, applications are not fractionally
decomposable in the TSCE environment.

To specify mathematically the LP problem of
finding the UB, some additional notation needs to be

defined. Let [,]x i k j , be the fraction of application k
ia

assigned to machine j. Similarly, let 1 2[, , ,]y i k j j be

the fraction of the output generated by k
ia assigned to

the communication route from machine 1j to machine

2.j Because application assignments are considered on
a fractional level now, equation (2) for machine
utilization and equation (3) for communication route
utilization need to be restated:

1 1

[,]
[,]

[] []

[, ,]

k
k

nA k
machine

k i

t i j
u i j

U j P k

x i k j= =

 
× × =  

  
∑∑ (10)

1 2

1

1 2
1 2 1 1

[,]

1 []
[, ,]

[,] []

k

route

nA k

k i

U j j

O i
y i k j j

w j j P k

−

= =

=

 
× × ,   

∑∑
 (11)

Suppose that Q represents the total number of
strings considered for mapping in the system. In the
case of partial resource allocation (simulation scenarios
1 and 2), the primary objective was to maximize the
total worth of the strings deployed in the system, as
defined in Section 4. This transforms into the formal LP
representation of an objective function:

1 1 1

[] [, ,]
knQ M

k i j

Maximize

I k x i k j
= = =

 
 ×
  

∑∑ ∑

The optimization problem is subject to the set of
constraints (a)–(g), explained in detail below.

1

For 1 , [1, ,] 1
M

j

k Q x k j
=

≤ ≤ ≤∑ (a)

1 1

For 2 , 1 ,

[, ,] [1, ,]

k

M M

j j

i n k Q

x i k j x k j
= =

≤ ≤ ≤ ≤

 =∑ ∑ (b)

For 1 , , 1 ,

[, ,] 0
ki n k Q j M

x i k j

≤ ≤ 1 ≤ ≤ ≤ ≤
 ≥

 (c)

2

1

1 1 2
1

For 1 , 1 ,

[, ,] [, , ,]

k

M

j

i n k Q j M

x i k j y i k j j
=

1 ≤ ≤ −1, ≤ ≤ ≤ ≤

 = ∑ (d)

1

2

2 1 2
1

For , 1 , 1 ,

[, ,] [, , ,]

k

M

j

i n k Q j M

x i k j y i k j j
=

2 ≤ ≤ ≤ ≤ ≤ ≤

 = ∑ (e)

For 1 , [] 1machinej M U j≤ ≤ ≤ (f)

1 2 1 2For 1 , , [,] 1routej j M U j j≤ ≤ ≤ (g)

Condition (a) bounds the range of possible values of the
x decision variables related to the first application in
each string. Note that condition (a) is specified with an
inequality, which implies that applications can be
mapped partially—otherwise, no feasible solution will
be found in the case of partial resource allocation.
Condition (b) requires the same fraction of all
applications in the same string be mapped. Condition
(c) takes out of consideration any possible negative
solutions. Condition (d) requires that an application
fraction assigned to a machine produces the equivalent
fraction of the application’s data output. Similarly,
condition (e) stipulates that an application fraction
assigned to a machine receives the equivalent fraction
of the application’s data input. Condition (b) and (e)
apply to the strings that are composed of more than one
application. The enforcement of the first-stage
feasibility analysis is represented by the remaining two
conditions (f) and (g). These conditions bound the total
CPU utilization on each machine and the total transfer
utilization on each communication route. Note that
conditions (f) and (g) are based on equations (10) and
(11), respectively.

In the case of complete resource allocation
(simulation scenario 3), the objective was to maximize
system slackness ,Λ given by (7). Thus, the objective
function in the LP problem is formally stated as:

Maximize Λ

The optimization problem is subject to constraints (b)–
(g), which remain identical to the case of partial
resource allocation considered above. In contrast to that
case, condition (a) needs to be restated to force all
applications to be completely mapped:

1

For 1 , 1 , [, ,] 1
M

k
j

i n k Q x i k j
=

≤ ≤ ≤ ≤ =∑

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Note that the described optimization method for
UB computation can be potentially applied to the
problem of finding the actual mapping in scenarios (1)
and (3) by introducing an additional condition:

For 1 , 1 ,

[, ,] {0,1}
ki n k Q j M

x i k j

1≤ ≤ , ≤ ≤ ≤ ≤
 ∈

However, with such a condition, the problem falls into
the category of NP-complete Integer Programming (IP)
problems [27]. It is important to note that because the
global optimal solution for the LP version of a given
problem in each scenario is indeed the upper bound for
the more restricted IP one, the proposed method of
computing UB is mathematically justified.

8. Experimental Results

An interactive software application has been
developed that allows simulation, testing, and
demonstration of the heuristics examined in Section 5.
The software allows a user to specify the number of
machines M, the number of strings Q, and the
maximum possible number of applications in the string.
Let µ be a random variable chosen in a particular

range. The end-to-end latency constraint max []L k for
each generated string was assigned in the experiments
as follows:

1

1

max []
[]

[] []
kn

k
av

i

k
k
av k

av

t i
O i

L k t n
w

µ
−

=

+
  

= × +  
   

∑

The period []P k associated with each string was set in
the experiments as follows:

[] max{ , :

}

[]
[]

1 , 1 1

k
k
av

av

k k

O
P k

z
t i

w
i n z n

µ= ×

≤ ≤ ≤ ≤ −

The ranges for the random variable µ specified with
respect to a simulation scenario executed are shown in
Table 1. The commercial optimization package Lingo
9.0 was applied to the generated workload parameters
in each simulation run to compute the corresponding
upper bounds, as described in Section 7.

The experimental results from multiple simulation
runs are illustrated in Figures 3, 4, and 5. In simulation
scenarios 1 and 2, the experimental results represent the
total worth achieved for the partial mapping averaged
across 100 simulation runs. In each simulation run, only
the best result of the four different trials produced by

the evolutionary algorithms (PSG and Seeded PSG)
contributed to the graph statistics. As such, four
different starting points in the permutation space were
established allowing each algorithm to iterate in four
different convergence paths. The performance results of
the proposed heuristics in these two simulation
scenarios were compared with the upper bounds
indicating the maximum performance achievable. The
largest difference between the performance of heuristics
and computed upper bounds was observed in simulation
scenario 2, where a QoS violation occurred before any
of the resources reached its maximum computation or
communication capacity. Results for simulation
scenario 3 represent system slackness averaged across
100 simulation runs.

Table 1. Range specifications for the
random variable .

0

500

1000

1500

2000

2500

3000

3500

P
S

G

M
W

F T
F

S
ee

d
ed

P
S

G U
B

to
ta

l w
o

rt
h

0

500

1000

1500

2000

2500

3000

3500

Figure 3. The total worth of allocated strings
generated by each heuristic and the upper
bound for partial mapping in a highly loaded
system (scenario 1).

parameter maxL [k] P[k]

scenario 1 [4, 6]µ ∈ [3, 4.5]µ ∈

scenario 2 [1.25, 2.75]µ ∈ [1.5, 2.5]µ ∈

scenario 3 [4, 6]µ ∈ [3, 4.5]µ ∈

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

As the figures show, the PSG and Seeded PSG
heuristics perform comparably, providing the best
allocations in all three scenarios. It was expected
because evolutionary algorithms perform well in large
search spaces. Furthermore, the concept of elitism
ensured that the algorithms used in these heuristics are
globally monotone—i.e., any new solution is either the
same as or better than any prior solution.

The MWF and TF heuristics are an attempt to find
a solution in one iteration. For this reason, strings
considered for mapping are sorted, and then passed in a
certain order to the IMR for allocation. Thus, both of
these heuristics use just one ordering of strings for
generating a resource allocation. In contrast, the PSG
heuristics operate with numerous iterations and evaluate
numerous orderings of strings. Furthermore, the initial
population for the Seeded PSG includes the MWF and
TF orderings. This is the reason for relatively poor
performance of MWF and TF as compared to that
achieved by the PSG heuristics.

When comparing mapping heuristics, the execution
time of the heuristics themselves is an important aspect.
Both of the fast heuristics (MWF and TF) executed in a
few seconds. The evolutionary algorithms (PSG and
Seeded PSG) required approximately two hours per
single run because they manipulate entire populations
and progress through multiple iterations. The LP
algorithm from Lingo 9.0 employed for the upper
bound calculations runs extremely fast—i.e., its
execution time was less than two seconds.

0

500

1000

1500

2000

2500

3000

3500

P
S

G

M
W

F T
F

S
ee

d
ed

P
S

G U
B

to
ta

l w
o

rt
h

0

500

1000

1500

2000

2500

3000

3500

Figure 4: The total worth of allocated strings
generated by each heuristic and the upper
bound for partial mapping in a QoS-limited
system (scenario 2).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
S

G

M
W

F T
F

S
ee

d
ed

P
S

G U
B

sy
st

em
 s

la
ck

n
es

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: The system slackness generated by
each heuristic and the upper bound for
complete mapping in a lightly loaded system
(scenario 3).

9. Related Work

A number of papers in the literature have studied
the issue of initial resource allocation robust against
unpredictable workload increases (e.g., [2, 4, 11, 13, 15,
19]). These studies are compared below.

The nature of the problem described in study [2] is
similar to the one in this paper. Periodically running
applications are organized in sequential strings, which
are subject to the imposed end-to-end latency and
throughput constraints. That study assumes that the
computation time of an application sharing a given
machine with 1N − other applications is N times its
nominal execution time. This results in conservative
estimated execution times in a shared environment.
Furthermore, there is no notion of nominal utilization—
i.e., it is assumed that all applications utilize 100% of
the CPU when executing. Our research does not make
such assumptions about execution time and CPU
utilization; therefore, the approach taken is quite
different from that in [2].

 Slack-based techniques explored in this work aim
to approach robust resource allocation by increasing the
amount of unused computation or communication
capacity across all hardware resources in the system. A
similar performance metric was applied in [13] and [19]
to achieve robust schedules in job-shop and real-time
environments, respectively. Specifically, an attempt in
those works was made to provide each task with extra

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

time (defined as slack) to execute so that some level of
uncertainty can be tolerated without having to
reallocate.

In [4] it was demonstrated that when application
execution parameters are known as a function of
workload then a measure of robustness better than
system slackness could be used. However, in the TSCE
problem, such a function is unknown, and therefore the
system slackness is an appropriate measure to use.

The research in [11] considers a single-machine
scheduling environment where the processing times of
individual jobs are uncertain. The system performance
is measured by the total flow time (i.e., the sum of
completion times of all jobs). Given the probabilistic
information about the processing time for each job, the
authors determine the normal distribution that
approximates the flow time associated with a given
schedule. A given schedule’s robustness is then given
by one minus the risk of achieving substandard flow
time performance. The risk value is calculated by using
the approximate distribution of flow time. It is
important to note that, in contrast to [11], the workload
increases are expected in the TSCE environment but not
specified stochastically. If this information was known,
the accuracy of a robustness metric could be improved
by using techniques similar to those in [11].

Our combination of evolutionary algorithms with
the IMR heuristic is conceptually similar to [15, 31].
For example, in [15] the goal is to minimize a weighted
combination of the cost of the system and the execution
of a set of tasks. A genetic algorithm manipulates a set
of chromosomes, where each chromosome composed of
a subset of resources available in the system, and an
ordering of tasks. A separate greedy heuristic operates
on each chromosome to derive a mapping and the
associated execution time for the set of tasks.

10. Summary

This paper presents potential methods for
efficiently and robustly managing both computation and
communication resources in the intended distributed
system. The system is expected to operate in an
unpredictable environment where the workload is likely
to increase, possibly invalidating a resource allocation
that was based on the initial workload estimate. In this
study, two distinct issues related to static resource
allocation are investigated: its feasibility analysis and
the heuristic approaches used to determine the
allocation. For the former, a two-stage feasibility
analysis was developed that allows a scheduler to
evaluate a given allocation. The focus in the design of
the allocation heuristics was to achieve the highest level
of total worth of the strings deployed in the system
while maximizing system slackness at that level.
System slackness is the measure that quantitatively

reflects the system’s potential to absorb unpredictable
increases in input workload.

The proposed PSG and Seeded PSG heuristics
perform well when tested under a variety of simulated
computing environments. Essentially, these heuristics
combine the GENITOR-based search methods with a
specially designed string allocation routine IMR. The
comparable performances of these two heuristics
indicate their significant potential to produce effective
resource allocations in an environment associated with
unpredictable workload increases.

References

[1] S. Ali, J.-K. Kim, H. J. Siegel, A. A. Maciejewski, Y. Yu,
S. B. Gundala, S. Gertphol, and V. Prasanna, “Greedy
heuristics for resource allocation in dynamic distributed
heterogeneous computing systems,” 2002 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2002), June 2002,
pp. 519–530.

[2] S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H.
J. Siegel, A. A. Maciejewski, and V. Prasanna,
“Utilization-based techniques for statically mapping
heterogeneous applications onto the HiPer-D
heterogeneous computing system,” Parallel and
Distributed Computing Practices, Special Issue on
Algorithms, Systems and Tools for High Performance
Computing, accepted, to appear,
http://www.ece.umr.edu/~shoukat/AliShoukatPDCP2004
.pdf, accessed September 1, 2004.

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,
“Robust resource allocation for distributed computing
systems,” The 2004 International Conference on
Parallel Processing (ICPP 2004), Aug. 2004.

[4] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,
“Measuring the robustness of a resource allocation,”
IEEE Transactions on Parallel and Distributed Systems,
Vol. 15, No. 7, July 2004, pp. 630–641.

[5] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S.
Ali, “Representing task and machine heterogeneities for
heterogeneous computing systems,” Tamkang Journal of
Science and Engineering, Special 50th Anniversary Issue,
Vol. 3, No. 3, Nov. 2000, pp. 195–207 (invited).

[6] T. D. Braun, H. J. Siegel, and A. A. Maciejewski, “Static
mapping heuristics for tasks with dependencies,
priorities, deadlines, and multiple versions in
heterogeneous environments,” 16th International Parallel
and Distributed Processing Symposium (IPDPS’02), Apr.
2002, pp. 78–85.

[7] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F.
Freund, D. Hensgen, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao, “A comparison of
eleven static heuristics for mapping a class of

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

independent tasks onto heterogeneous distributed
computing systems,” Journal of Parallel and Distributed
Computing, Vol. 61, No. 6, June 2001, pp. 810–837.

[8] E. K. P. Chong and S. H. ak, An Introduction to
Optimization, Second Edition, John Wiley & Sons Inc.,
New York, NY, 2001, Chapter 18.

[9] E. G. Coffman, Jr. ed., Computer and Job-Shop
Scheduling Theory, John Wiley & Sons, New York, NY,
1976.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, MIT Press, Cambridge, MA,
1992.

[11] R. L. Daniels and J. E. Carillo, “ -Robust scheduling for
single-machine systems with uncertain processing
times,” IIE Transactions, Vol. 29, No. 11, Aug 1997, pp.
977–985.

[12] G. B. Dantzig, Linear Programming and Extensions,
Princeton University Press, Princeton, NJ, 1963.

[13] A. J. Davenport, C. Gefflot, and J. C. Beck, “Slack-based
techniques for robust schedules,” 6th European
Conference on Planning (ECP-2001), Sep. 2001, pp. 7–
18.

[14] J. L. Devore, Probability and Statistics for Engineering
and Sciences, Fifth Edition, Duxbury Press, Los Angeles,
CA, 1999.

[15] M. K. Dhodhi, I. Ahmad, and R. Storer, “SHEMUS:
Synthesis of heterogeneous multiprocessor systems,”
Microprocessors and Microsystems, Vol. 19, No. 6, Aug.
1995, pp. 311–319.

[16] D. Fernandez-Baca, “Allocating modules to processors
in a distributed system,” IEEE Transaction on Software
Engineering, Vol. SE-15, No. 11, Nov. 1989, pp. 1427–
1436.

[17] I. Foster and C. Kesselman, eds., The Grid: Blueprint for
a New Computing Infrastructure, Morgan Kaufmann,
San Francisco, CA, 1999.

[18] C. C. Gonzaga, “Path-following methods for linear
programming,” SIAM Review, Vol. 34, No. 2, June 1992,
pp. 167–224.

[19] S. Ghosh, Guaranteeing Fault Tolerance Through
Scheduling in Real Systems, PhD thesis, Faculty of Arts
and Sciences, Univ. of Pittsburgh, 1996.

[20] J. L. Hennessy, and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Third Edition,
San Francisco, CA, Morgan Kaufmann, 2003, Chapter 8.

[21] E. Huh, L. R. Welch, B. A. Shirazi, B. Tjaden, and C. D.
Cavanaugh, “Accommodating QoS prediction in an
adaptive resource management framework,” Parallel and

Distributed Processing, J. Rolim et al. eds., Lecture
Notes in Computer Science, Vol. 1800, Springer-Verlag,
New York, NY, 2000, pp. 792–799.

[22] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task
mapping algorithms for a distributed heterogeneous
computing environment,” 4th IEEE Heterogeneous
Computing Workshop (HCW ’95), Apr. 1995, pp. 30–34.

[23] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on non-identical
processors,” Journal of the ACM, Vol. 24, No. 2, Apr.
1977, pp. 280-289.

[24] W. Keuffer, Visual Coding with Genitor, Miller Freeman,
San Francisco, CA, 1997.

[25] J. K. Kim, D. A. Hensgen, T. Kidd, H. J. Siegel,
D. S. John, C. Irvine, T. Levin, N. W. Porter, V. K.
Prasanna, and R. F. Freund, “A flexible multi-
dimensional QoS performance measure framework for
distributed heterogeneous systems,” Cluster Computing,
Special Issue on Cluster Computing in Science and
Engineering, accepted, to appear.

[26] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R.
F. Freund, “Dynamic mapping of a class of independent
tasks onto heterogeneous computing systems,” Journal
of Parallel and Distributed Computing, Vol. 59, No. 2,
Nov. 1999, pp. 107–121.

[27] K. G. Murty and S. N. Kabadi, “Some NP-complete
problems in quadratic and nonlinear programming,”
Mathematical Programming, Vol. 39, No. 2, Nov 1987,
pp. 117–129.

[28] K. Ramamritham, J.A. Stankovic, and W. Zhao,
“Distributed scheduling of tasks with deadlines and
resource requirements,” IEEE Transactions on
Computers, Vol. 38, No. 8, Aug. 1989, pp. 1110–1123.

[29] G. Rudolph, “Convergence Analysis of Canonical
Genetic Algorithms,” IEEE Tranaactions, Neural
Networks, Vol. 5, No. 1, Jan. 1994, pp. 96-101.

[30] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
Maciejewski, “Task matching and scheduling in
heterogeneous computing environments using a genetic-
algorithm-based approach,” Journal of Parallel and
Distributed Computing, Vol. 47, No. 1, Nov. 1997, pp.
8–22.

[31] J. P. Watson and L. Barbulescu, “Contrasting structured
and random permutation flow-shop scheduling
problems: Search-space topology and algorithm
performance,” INFORMS Journal on Computing, Vol.
14, No. 2, Apr. 2002, pp. 98–123.

[32] D. Whitley, “The GENITOR algorithm and selective
pressure: Why rank-based allocation of reproductive
trials is best,” 3rd International Conference on Genetic

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Algorithms, D. Shaffer, ed., Morgan-Kaufmann, San
Francisco, CA, June 1989, pp. 116–121.

Biographies

Vladimir V. Shestak is pursuing a Ph.D. degree from
the Department of Electrical and Computer Engineering
at Colorado State University, where he has been a
Research Assistant since August 2003. His current
projects include resource management for clusters for
IBM, Boulder. He received his M.S. degree in computer
engineering from New Jersey Institute of Technology in
May 2003. Prior to joining the New Jersey Institute of
Technology he spent three years in industry as a
Network Engineer working for CISCO Business Unit in
Moscow, Russia. He received his BS degree in
electrical engineering from Moscow Engineering
Physics Institute, Moscow, Russia. His research
interests include resource management within
distributed computing systems, algorithm
parallelization, and computer network design and
optimization.

Edwin K. P. Chong received the B.E.(Hons.) degree
with First Class Honors from the University of
Adelaide, South Australia, in 1987; and the M.A. and
Ph.D. degrees in 1989 and 1991, respectively, both
from Princeton University, where he held an IBM
Fellowship. He joined the School of Electrical and
Computer Engineering at Purdue University in 1991,
where he was named a University Faculty Scholar in
1999, and promoted to Full Professor in 2001. Since
August 2001, he has been a Professor of Electrical and
Computer Engineering, and Professor of Mathematics,
at Colorado State University. His current interests are in
communication networks and optimization methods. He
coauthored the best-selling book, An Introduction to
Optimization, 2nd Edition, Wiley-Interscience, 2001.
He received the NSF CAREER Award in 1995 and the
ASEE Frederick Emmons Terman Award in 1998.
Professor Chong is a Fellow of the IEEE. He was
founding chairman of the IEEE Control Systems
Society Technical Committee on Discrete Event
Systems, and was an IEEE Control Systems Society
Distinguished Lecturer. He has been on the editorial
board of the IEEE Transactions on Automatic Control.
He is currently on the editorial board of the journal
Computer Networks. He has also served on the
organizing committees of several international
conferences, including the IEEE Conference on
Decision and Control, the American Control
Conference, the IEEE International Symposium on
Intelligent Control, IEEE Symposium on Computers
and Communications, and the IEEE Global
Telecommunications Conference. He was the

Conference (General) Chair for the Conference on
Modeling and Design of Wireless Networks, part of
PIE ITCom 2001. An up-to-date vita is available at
www.engr.colostate.edu/~echong.

Anthony A. Maciejewski received the B.S.E.E, M.S.,
and Ph.D. degrees in Electrical Engineering in 1982,
1984, and 1987, respectively, all from The Ohio State
University under the support of an NSF graduate
fellowship. From 1985 to 1986 he was an American
Electronics Association Japan Research Fellow at the
Hitachi Central Research Laboratory in Tokyo, Japan
where he performed work on the development of
parallel processing algorithms for computer graphic
imaging. From 1988 to 2001, he was a Professor of
Electrical and Computer Engineering at Purdue
University. In 2001, he joined Colorado State
University where he is currently the Head of the
Department of Electrical and Computer Engineering.
Prof. Maciejewski’s primary research interests relate to
the analysis, simulation, and control of robotic systems
and he has co-authored over 100 published technical
articles in these areas. He is an Associate Editor for the
IEEE Transactions on Robotics and Automation, a
Regional Editor for the journal Intelligent Automation
and Soft Computing, and was co-guest editor for a
special issue on “Kinematically Redundant Robots” for
the Journal of Intelligent and Robotic Systems. He
serves on the IEEE Administrative Committee for the
Robotics and Automation Society and was the Program
Co-Chair (1997) and Chair (2002) for the International
Conference on Robotics and Automation, as well as
serving as the Chair and on the Program Committee for
numerous other conferences. An up-to-date vita is
available at www.engr.colostate.edu/~aam.

H. J. Siegel holds the endowed chair position of Abell
Endowed Distinguished Professor of Electrical and
Computer Engineering at Colorado State University
(CSU), where he is also a Professor of Computer
Science. He is the Director of the CSU Information
Science and Technology Center (ISTeC). ISTeC a
university-wide organization for promoting, facilitating,
and enhancing CSU’s research, education, and outreach
activities pertaining to the design and innovative
application of computer, communication, and
information systems. Prof. Siegel is a Fellow of the
IEEE and a Fellow of the ACM. From 1976 to 2001, he
was a professor in the School of Electrical and
Computer Engineering at Purdue University. He
received a B.S. degree in electrical engineering and a
B.S. degree in management from the Massachusetts
Institute of Technology (MIT), and the M.A., M.S.E.,
and Ph.D. degrees from the Department of Electrical
Engineering and Computer Science at Princeton
University. He has co-authored over 300 technical

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

papers. His research interests include heterogeneous
parallel and distributed computing, communication
networks, parallel algorithms, parallel machine
interconnection networks, and reconfigurable parallel
computer systems. He was a Coeditor-in-Chief of the
Journal of Parallel and Distributed Computing, and has
been on the Editorial Boards of both the IEEE
Transactions on Parallel and Distributed Systems and
the IEEE Transactions on Computers. He was Program
Chair/Co-Chair of three major international conferences,
General Chair/Co-Chair of six international conferences,
and Chair/Co-Chair of five workshops. He is currently
on the Steering Committees of three continuing
conferences/workshops. He is a member of the Eta
Kappa Nu electrical engineering honor society, the
Sigma Xi science honor society, and the Upsilon Pi
Epsilon computing sciences honor society. An up-to-
date vita is available at www.engr.colostate.edu/~hj.

Lotfi Benmohamed received his Ph.D. from The
University of Michigan, Ann Arbor, in 1993. In 1994
he was a visiting researcher at the National Institute of
Standards and Technology where he contributed to
standards activities within the ATM Forum. In 1995 he
joined Bell Laboratories in Holmdel, New Jersey,
where he worked on control, design, and management
of ATM and IP networks with emphasis on algorithms
for congestion control, admission control, and network
design. He joined Corvis Corporation as a Senior
Network Architect in 2000 where he worked on a
number of performance modeling and analysis tasks for
optical networking products. Since 2003 he has been
with the Johns Hopkins University's Applied Physics
Laboratory as a Senior Research Scientist where his
current research interests include control and routing in
sensor networks and mobile ad-hoc networks.

I-Jeng Wang is a senior research scientist and the
sectional supervisor of the probabilistic modeling and
inference section with the Research and Technology
Development Center at the Johns Hopkins University
Applied Physics Laboratory (JHU/APL). He received
the M.S. degree from Penn State University in 1991 and
the Ph.D. degree from Purdue University in 1996, both
in Electrical Engineering. From 1996 to 1997, he was a
postdoctoral fellow with the Institute for Systems
Research at the University of Maryland, where he
conducted research in intelligent control and stochastic
approximation. Since October 1997, he has been with
JHU/APL where he manages and directs internal
research in developing scalable algorithms for solving
large-scale DoD problems in areas including resource
allocation, wireless networking and pattern recognition.
He was the PI of a project on adaptive information
control to develop efficient resource allocation
techniques for dynamic QoS provisioning over

distributed and disparate networks, funded by the
DARPA AICE program. He was a Co-PI of a project on
autonomous internetworking funded by the Army
Collaborative Technology Alliance, under which he
leads a multi-organization team to develop scalable and
dynamic routing protocols for the Army. He is the Co-
PI of a project sponsored by the DARPA IXO ARMS
program to develop robust resource management
techniques for the Total Ship Computing Environments.
His current research interests include stochastic
optimization and control, resource allocation, wireless
networking, and Bayesian modeling and inference.

Rose Daley is a member of the Senior Professional
Staff at the Applied Physics Lab. She holds a B.S. in
Electrical Engineering from Rensselaer
Polytechnic Institute and an M.S. in Computer
Science from the John Hopkins University, specializing
in Distributing Computing. She has over seventeen
years experience architecting and implementing
software systems, including both distributed
large-scale tactical systems encompassing multiple
operating systems and communication protocols, and
enterprise systems with large databases on internal
Intranets. She is the Architecture lead for Mission-
Centric Network Defense (MCND) IR&D effort, an
approach to determining tactical mission sensitivity to
network resource attacks and casualties, the
system architect and lead software engineer for the
Active Adjunct Processor for the AN/SQQ-89 surface
ship sonar system (a distributed computing system for
complex sonar detection/classification algorithms), and
senior software engineer for the Tactical Combat
Training System (TCTS), the AN/BSY-2 Team Trainer,
and the CCS MK2 Submarine Combat
System.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

