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Abstract

Predictive multiplexed switching is a new approach
for building interconnection switches for high perfor-
mance parallel systems. This approach advocates sacrific-
ing some link bandwidth in return for more efficient network
control and simpler connection management. The main
idea is to depart from the traditional packet and worm-
hole switching in favor of row data communication over
established communication pipes (connections). The over-
head of this circuit switching approach can be justified
when established connections are repeatedly used be-
fore they are torn down. For this, we use multiplexing to al-
low multiple connections to share the same resources (links
and switches), thus avoiding tearing down connections pre-
maturely. The connection establishment overhead is fur-
ther reduced by exploring communication locality and
predictability in applications that exhibit these proper-
ties.

We present the design of an interconnection sys-
tem which is based on multiplexed switching and which
establishes connections either reactively, in response to dy-
namically generated requests, or proactively, in response to
compiler or application directives. A communication pre-
diction component may be supported to reduce the network
control overhead in applications that exhibit communica-
tion locality and predictability. The design is evaluated
using hardware design, synthesis, and cycle-accurate sim-
ulation. Comparison with more traditional switching
paradigms shows the potential of our predictive multi-
plexed switching approach.

1. Introduction

Circuit switching and wormhole routing are three domi-
nant switching methods that have been used in parallel com-
puting networks [1]. The Intel iPSC/2 and iPSC/860 use

circuit-switched communication; e.g. when a source node
and a destination node need to communicate, a dedicated
path is established for a message. Wormhole routing has
been used in a variety of parallel systems including the In-
tel Paragon, Cray T3D, IBM Power Parallel SP series, and
the Quadrics switch.

Multiprocessor interconnection networks can bene-
fit from both temporal and spatial communication local-
ity just as memory systems exploit locality of references
through caches. Temporal locality represents the ef-
fect of temporal aggregation of the inter-processor commu-
nications [2]. High temporal locality suggests that during
any given time period inter-processor communication oc-
curs across a certain number of connections, which can be
called a communication working set. This provides the op-
portunity to reduce communication latency by dynamically
grouping and scheduling messages and pre-establishing
statically known connections. Spatial locality is deter-
mined by the distribution of the connections in the applica-
tion and determines the size of the working set. It has been
shown that each node tends to have a small number of fa-
vored destinations for the messages it sends [3, 4]. For ex-
ample, the NAS parallel benchmark suite exhibits very
high spatial locality and therefore contain small work-
ing sets [4].

Besides locality, communication patterns in parallel al-
gorithms may exhibit some degree of regularity. This regu-
larity exists due to code artifacts such as loops and implies
a certain level of predictability of the communication pat-
tern. By appropriately predicting connection requirements
and loading these working set connections into the network
before they are actually used, it is possible to reduce con-
tention and increase utilization of the interconnect.

There have been several attempts to take advantage of lo-
cality to increase the efficiency of parallel systems. For ex-
ample, establishing dedicated connections based on appli-
cation specific communication patterns has been shown to
achieve very efficient interconnect utilization in Systems-



on-a-Chip [5] and in clusters [6]. In [7] an analysis frame-
work was developed to exploit locality of communication
and in [8] techniques to take advantage of locality for re-
ducing the overhead of communication were examined. Dy-
namic grouping and pre-scheduling of communication have
been shown in [9] to reduce the overall execution time of
some parallel programs.

In this paper we present an interconnection system that
is intended to enable the exploitation of communication lo-
cality and regularity by establishing end-to-end connection
pipes on which data is transferred in a DMA manner. This
connection oriented paradigm allows proactive circuit es-
tablishment when possible to avoid contentions at run time,
allows predictive techniques to establish connection before
they are needed, and still allow the accommodation of irreg-
ular communications (reactively).

Regular and predictable communication patterns are
cached by the scheduler. The number of connections that
can be simultaneously established in the network is in-
creased, through Time Division Multiplexing (TDM), so
that the network can cache the entire communication work-
ing set of an application. TDM also allows the flexibility of
rapidly changing the size and content of the communica-
tion cache in the network to closely track the changes in the
working set.

The remainder of this paper is organized as follows:
In Section 2, techniques to exploit locality for amortizing
the control overhead of connection establishment are dis-
cussed. Techniques to utilize connection regularity to pre-
dict both statically and dynamically known communication
patterns are presented in Section 3. In Section 4, the de-
sign of an interconnection system is described. This de-
sign allows for the preloading of static communication pat-
terns and the prediction of dynamic communication patterns
while efficiently handling irregular and non-local communi-
cation patterns. Results from a hardware design, synthesis,
and cycle-accurate simulation framework are related in Sec-
tion 5. Conclusions are discussed in Section 6.

2. Amortizing the control overhead of connec-
tion establishment

A dedicated circuit between a source and a destination
is very effective for data transmission since it simplifies
tremendously the communication protocols. Specifically,
no congestion control is needed, no routing or control in-
formation has to be included with the data, no intermediate
buffering and routing is needed and only end-to-end flow
control is required. However, circuit switching is only ef-
fective when the cost of establishing the circuits is small
compared to the cost of transmitting the data, which is only
the case when an established circuit is extensively used be-
fore it is torn down.

Circuit switching would be an ideal switching scheme if
the capacity of the interconnection network would be large
enough to satisfy all the connections requested during exe-
cution without any conflict. For instance, ifC is the set of
connections that are used during the execution of a paral-
lel program and the interconnection network can satisfy all
the connections inC without conflict, then circuit switching
will pay the overhead of establishing each connection only
once during the execution of the program. Specifically, the
overhead will be paid only when a connection is requested
for the first time. Moreover, ifC is known before the pro-
gram starts execution, then the network can be configured to
satisfy the connections inC before execution starts, thus re-
moving any run-time overhead to establish the circuits.

Unfortunately, a scalable interconnection network can-
not realize all the communication requirements of real ap-
plications without conflict. Hence, due to the limited ca-
pacity of networks, circuits will have to be repeatedly torn
down and re-established during execution. Thus, the re-
sulting large overhead may cause a severe bottleneck at
the scheduler which will have to resolve contention among
competing requests and establish new circuits at run time.

A possible solution to the problem of limited network
capacity is to decompose the set of connections,C, into a
number of sets,C1 ,...,Ck, such thatC = C1∪ ...∪Ck, and
eachCi, i = 1, ..., k, can be realized in the network without
conflict [10]. Time division multiplexing (TDM) can then
be used to realize each setCi periodically in a separate time
slot. In this paper, we call any set of connections that can
be realized in the network without conflict, a network con-
figuration set, or simply a configuration. Hence, with TDM,
the connections in each configuration setCi could be real-
ized in the network everyk time slots.

Although using TDM all the connections inC can co-
exist in the network, each connection gets only1/k of the
maximum possible connection bandwidth. Hence, it is im-
perative to keepk as small as possible. Exploring communi-
cation locality can be very useful in that regard since it im-
plies that only a subset ofC is being used at any given time
during the execution of a program.

Specifically, assume thatW (1), ...,W (p), is a sequence
of sets of connections that represents the communication
requirements during the execution of the program. That is,
the program goes throughp phases and during the execu-
tion of each phase,j, j = 1, ..., p, it uses the connections
in setW (j). We call each setW (j) a communication work-
ing set. Note that the setsW (1), ..., W (p) are not necessar-
ily disjoint, butW (1) ∪ ... ∪W (p) = C. During the execu-
tion of phasej, the multiplexing degree is set tokj , where
the setW (j) can be decomposed intokj network configura-
tions.

The partitioning of the communication requirements into
phases is not unique, but is strongly influenced by the com-



munication locality. For programs with strong spacial com-
munication locality, it should be possible to find a partition-
ing in which the size of each working setW (j) is small, thus
leading to a small multiplexing degreekj . For programs
with strong temporal communication locality, the number
of phases,p, should be small leading to fewer network re-
configurations during execution. This is a desirable property
since network reconfiguration and circuit establishment will
be performed at the rate of the change in communication lo-
cality, rather than at the rate of communication requests.

In the next section, we will discuss different schemes for
identifying communication phases present during program
execution. However, it should be clear that there is a trade-
off between the number of phases,p, and the size of each
working setW (j). At one extreme, we can consider that
p = 1 and that the entire execution is regarded as a sin-
gle phase, withW (1) = C, andk1 = k. At the other ex-
treme,p is considered to be as large as it takes to allow
the connections in each working setW (j) to be realizable
in the network without conflict. More phases lead to more
frequent reconfigurations and thus to larger reconfiguration
overhead while larger than necessary multiplexing degree
leads to inefficient network utilization. Specifically, if dur-
ing a phasej, the actual communication traffic utilizes only
s of thekj multiplexed slots needed to establish the work-
ing set, then onlys/kj of the available network bandwidth
is utilized.

3. Predictive control of networks

Traditional circuit switching falls naturally into the gen-
eral framework described in Section 2. Specifically, circuit
switching amounts to TDM with a multiplexing degree of
one. Hence, each realizable active working set is necessar-
ily a configuration that can be established in the network
without conflict. Moreover, the establishment of each new
requested circuit represents a change in the active working
set. This change may require removing some existing con-
nections even if these connections must be re-established in
the near future. As discussed in Section 2, it is crucial for
communication efficiency to track and minimize the active
working of the running application. TDM allows caching of
larger working sets of connections, and provides the abil-
ity to change the multiplexing degree as required by the ap-
plication. In the following, we explore different schemes for
identifying, predicting, and tracking communication work-
ing sets.

3.1. Compile-time and load-time prediction of
working sets

Many parallel applications have regular communication
patterns that can be identified either at compile time or at

load time after the mapping of the application to processors
is determined. In [11], an experimental compiler was de-
veloped to determine the communication requirements of
programs written in a shared memory language, such as
OpenMP. A similar concept was applied in [12] to thread
level computations and in [4] to programs that use message
passing. In general, it was found that in parallel scientific
applications, most inter-processor communications can be
determined at compile or load time [13, 14].

Developing parallel programs using message pass-
ing gives application developers explicit control over
inter-processor communications, while many shared mem-
ory parallel languages give the application developer ex-
plicit control over the allocation of the address space
to memory modules. Moreover, new languages such as
StreamIt [15], assume that communication patterns be-
tween processes are specified and MPI has facilities called
communicatorsfor explicitly specifying the communica-
tion working set. In order to obtain efficient programs,
users usually take advantage of the capability to con-
trol communications and memory allocation. Hence, it
is reasonable to ask the user to give some directives
to the compiler about the active communication work-
ing set in different phases of the program, if the user wishes
to increase the efficiency of inter-processor communica-
tion.

Compiled communication allows the compiler to stati-
cally determine and optimize the communication require-
ments in parallel systems [16]. It has been used in combi-
nation with message passing in the iWarp system [17, 18].
In [19], the compiler inserts the commands needed to estab-
lish the needed connections in the network before the com-
munication takes place. However, because circuit switching
is used, the overhead of establishing the connection turned
out to be extremely large. In our work, we use TDM to take
advantage of compiled communication for static communi-
cation patterns without the significant overhead of circuit
switching. A similar TDM approach is proposed in [12] for
adaptive System-On-a-Chip.

In this paper we will not elaborate on compiler tech-
nology, but we will assume that the compiler can identify
the appropriate communication working sets when such an
identification is possible [12, 20]. Instead, we will present
in Section 4 the design of a communication network which
can greatly benefit from compiler identification of the com-
munication patterns.

3.2. Dynamic prediction of the working set

Branch prediction proved to be a very powerful tech-
nique for improving the performance of microarchitectures,
and many attempts have been made to apply the same con-
cepts to improve communication performance. The idea is



to predict the communication requirement and to establish
the corresponding circuits in the network before they are ac-
tually needed, thus eliminating circuit establishment over-
head. Using the notation of Section 3, the works in [21, 22],
for example, attempt to predict the connections in the work-
ing setW (j+1) while W (j) is being used. In order for such
prediction to be useful, however, the processors should be
doing useful computational work while the network is be-
ing configured fromW (j) to W (j+1).

When TDM is used to increase the size of the set of es-
tablished connections, the overhead of adding a new con-
nection is incurred only the first time the connection is used.
Once established in the network, there is no overhead for
reusing the connection. The overhead of establishing a con-
nection when it is used for the first time is similar to the
penalty for compulsory misses in caches; if the right cache
size is used, then a cache miss occurs only on the first ref-
erence to a memory location, while successive references
to the same location are all hits. In order to keep the multi-
plexing degree small, however, a connection which will no
longer be used should be removed from the working set.
Going back to the cache analogy, trying to keep the multi-
plexing degrees small is similar to allowing the cache size to
decrease by evicting cache lines before they have to be re-
placed with other cache lines.

Hence, instead of trying to predict when to add a new
connection to the working set, the role of dynamic predic-
tions in our network will be to predict when to remove a
connection from the working set. The purpose of this paper
is not to compare the effectiveness of different predictors
but to present a network architecture that will allow such
prediction. For this reason, we will use in our experiments
a simple ”time-out” predictor in which a connection is re-
moved if it is not used for a certain period of time. A differ-
ent predictor can be implemented by associating a counter
with each connection in the working set. This counter is
reset to zero every time that connection is used and is in-
cremented every time another connection is used. When
the counter reaches a certain threshold, the connection is
evicted from the network. In other word, a connection is
evicted if it is not used while other connections are being
used, but is not evicted if the application is in a computa-
tion phase, where no communication takes place.

3.3. Dynamic reconfiguration with compiler assis-
tance

High-level knowledge of the program’s structure is use-
ful to dynamic prediction discussed in Section 3.2. This in-
formation can either be provided by the user as directives or
in many cases discovered by a compiler. For example, con-
sider a compiler that detects different communication pat-
terns between two consecutive loop structures. Even if the

compiler cannot detect the patterns themselves, it can in-
sert an instruction in the code that flushes all current con-
nections in the network between the two loops. Thus, when
the second loop executes it will not mis-predict the pattern
based on the previous loop, but rather build a new work-
ing set immediately. This idea has been verified by the work
in [20]. Other points that may indicate changes in commu-
nication localities include procedure boundaries, “if” state-
ments, and points of remapping tasks to processors for load
balancing.

The compiler can assist a dynamic reconfiguration strat-
egy considerably in more subtle ways. The compiler might
be able to statically determine a portion of the working set,
allowing the dynamic reconfiguration strategy to only work
on non-predicted communications. For example, consider
the case where a loop contains an embedded “if” statement.
The communication pattern for the loop may now depend
on the condition of “if” statement. The predictor’s knowl-
edge of the conditional can significantly simplify the com-
munication pattern detection. One way this could be used is
to store a second level working set that is swapped in only
when the conditional is true.

If the compiler can predict only a portion of the com-
munication operations statically, the predicted configura-
tions can be preloaded to the network, while the scheduler
can continue to schedule dynamically requested connec-
tions that are not preloaded. There are two ways to accom-
plish this in TDM networks: (1) by increasing the multiplex-
ing degree or (2) by temporarily preempting the preloaded
connections that conflict with the dynamic connections, and
re-establishing the preloaded connections after the dynamic
connections are no longer needed.

4. An example switch design

In this section, we present an example design for anNxN
interconnection system that allows both compiled commu-
nication and dynamic prediction, and yet can be used for ap-
plications where communication is neither predictable nor
regular. Figure 1 shows the block diagram of such a sys-
tem. The switching fabric in the system is a passive fabric
with no buffering or control capabilities. The fabric can rep-
resent a crossbar interconnection, a multistage fabric, a fat
tree organization, or any other direct interconnection topol-
ogy.

The configuration of the fabric is determined by config-
uration registers. By loading specific values into the regis-
ters, specific mappings between the input ports and the out-
put ports are realized. In its simplest forms, a configuration,
C, may be represented by a Boolean matrix,B, whereBu,v

is 1 when inputu is connected to outputv, andBu,v is 0,
otherwise. For the case of a crossbar fabric, the only con-
straints onB are that there is at most one non-zero entry in
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each row and at most one non-zero entry in each column.
More complicated constraints may be derived for fabrics
that have limited permutation capabilities (e.g. multistage
networks) or multi-paths from inputs to outputs (e.g. fat tree
fabrics). In the remainder of this paper, we will present a de-
tailed design for a system based on a crossbar fabric.

The network interface card (NIC) for each processor in
the system contains an input buffer and an output buffer.
The output buffer is used to implementN logical queues,
one for each destination. For clarity, we show the input and
the output side of each NIC separately in Figure 1, and we
separate theN logical queues of the output buffer.

The scheduler receives a request,Ru, 0 ≤ u ≤ N − 1,
from each of theN NICs indicating which of the logical

queues of that NIC is not empty. Hence, eachRu is anN-bit
signal,Ru,0, ..., Ru,N−1, transmitting to the controller the
communication requirements of NICu. The controller re-
ceives requests for connections from all the NICs (a matrix
R), schedules the connections and communicates anN-bit
grant signal,Gu , to each NICu. The scheduler sets thevth

signal ofGu, Gu,v, to 1 whenever a circuit is established be-
tween the output port of NICu and the input port of NICv.
At most one ofGu,v, v = 0, ..., N − 1 can be non-zero at
any given time. Note that the grant signalsG0, ..., GN−1 ,
are the rows of the configuration matrixB.

In order to support a multiplexing degree ofK,
the scheduler has to createK configuration matrices,
B(0), ..., B(K−1), one for each of theK multiplexed time
slots. The scheduler satisfies requests from NICs in any of
theK slots. However, in any given time slot,t, only the cor-
responding matrixB(t) is copied to the fabric configu-
ration register and the corresponding grant signals are
sent to the NICs. Figure 2 shows a more detailed dia-
gram of the scheduler, in which a time slot clock controls
the copying of the configuration matrix to the switch fab-
ric. The TDM counter shown in the figure is a counter
which counts from 0 toK-1, but which skips a particu-
lar count t, if the corresponding matrixB(t) is all zeros.
This feature skips over empty configurations and al-
lows the scheduler to reduce the multiplexing degrees
by controlling the content of the configuration regis-
ter.

Note that in the above design, we provide an explicit
grant signal from the scheduler to the NICs, thus giving the
scheduler the responsibility of controlling the synchroniza-
tion among the NICs. Specifically, the grant signals indi-
cate to each NIC the period in which it can send data, thus
removing the need for the NICs to keep track of the TDM
slot boundaries. However, aguard bandshould be enforced
between consecutive time slots. During that band, circuits
should not be used due to uncertainties in the fabric state.
The length of the guard band depends on the variations of
the propagation delays of the grant signals and on the time
needed to change the setting of the switch fabric. For ex-
ample, when 1µs time slots are used, if the time to recon-
figure the switch fabric is within 50ns and the maximum
length of a grant line is 50 feet (50ns propagation delay),
then the length of the guard band is 50ns, which means that
5% of each time slot cannot be used for data transfer. Note
that during a 1µs slot, 125 bytes of data can be transmit-
ted per serial Gb/s link.

The block designated “scheduling logic” in Figure 2 is
responsible for generating the schedule for a particular time
slot,s. The SL counter selects the time slot,s, 0 ≤ s ≤ K,
to which it will try to insert the pending requests. Assuming
that the current multiplexing degree isk, k ≤ K, a simple
scheme to select s is to apply a round robin rotation among



Ru,v B∗
u,v B

(s)
u,v Description of the case Lu,v

0 x 0 Connection not requested and not realized in slots 0
0 x 1 Connection not requested and realized in slots (should release) 1
1 1 x Connection requested and realized in some slot 0
1 0 0 Connection requested and not realized in any slot (should establish)1

Table 1. The possible inputs to the pre-scheduling logic

Lu,v Au,v Du,v Action Tu,v Au+1,v Du,v+1

0 x x No change in connection 0 Au,v Du,v

1 1 1 Release the connection in slots 1(B(s)
u,v1 –> 0) 0 0

1 1 0 Need connection but resources not available 0 Au,v Du,v

1 0 1 Need connection but resources not available 0 Au,v Du,v

1 0 0 Establish connection in slots 1(B(s)
u,v1 –> 0) 1 1

Table 2. The function of a scheduling logic module, SL u,v

SLu,v

Au,v

Au+1,v
Tu,v

Lu,v

Du,v Du,v+1

Figure 3. The inputs and outputs to SL u,v.

thek currently active configurations. The current configura-
tion matrix for slots, B(s), is selected by a multiplexer and
fed to a pre-scheduling logic, along with the request ma-
trix R and a matrixB∗ which is set toB(0) + ... + B(K−1)

, where + is the bit-wiseor operation. The matrixB∗ repre-
sents all the connections that are currently established in the
network (in any of theK time slot). Specifically,B∗

u,v = 1
if and only if the connection from portu to portv is estab-
lished during any one of theK time slots. By comparing
B∗

u,v, Bs
u,v andRu,v , the scheduler can figure out whether

it needs to make any change to the value ofBs
u,v (the state

of the connection fromu to v in slot s).

In Table 1, we describe the possible cases that the pre-
scheduling logic has to deal with. The value ofLu,v shown
in the last column of the table is generated to be equal to 0
if no change is to be made in the value ofBs

u,v. The value of
Lu,v is equal to 1 either if a connection is to be released or if
a connection is to be established. In order to release and es-
tablish connections, we need to keep track of resource avail-
ability. For crossbar switch fabrics, resources are output and
input ports. Hence, two vectorsAO andAI are used to ex-
press the availability of ports in the current schedule of slot
s. Specifically,AO is obtained by taking the “or” of the

columns ofB(s). That is,AOv = B
(s)
0,v + ... + B

(s)
N−1,v,

which is equal to 0 if and only if output portv is unsched-
uled in slots (no input is connected to outputv). Similarly,
the vectorAI is obtained by taking the “or” of the rows of
B(s). That is,AIu = B

(s)
u,0 + ... + B

(s)
u,N−1 which is equal

to 0 if and only if input portu is unscheduled in slots (in-
put u is not connected to any output).

The scheduling logic for a crossbar switch is com-
posed of anNxN array of identical modules, SLu,v ,
u = 0, ..., N − 1, v = 0, ..., N − 1. Each SLu,v re-
ceives the signalLu,v and is responsible for scheduling
or releasing the connection from input portu to out-
put port v. Two sets of port availability signals propagate
in the SL array to carry information about the availabil-
ity of input and output ports in slots. One set of sig-
nals,Au,v, propagates upwards through rows0, ..., N − 1
of the array and is initialized such thatA0,v = AOv for
v = 0, ..., N − 1. The other set of signals,Du,v, propa-
gates rightwards through columns0, ..., N − 1 and is ini-
tialized such thatDu,0 = AIu for u = 0, ..., N − 1. At
any given scheduling module, SLu,v, the input Au,v is
equal to 0 if and only if output portv is available (not oc-
cupied) andDu,v is equal to 0 if and only if input portu
is available (not occupied). Each SLu,v passesAu,v up-
ward (asAu+1,v) and Du,v rightward (asDu,v+1) un-
changed ifLu,v = 0. However, ifLu,v = 1, then SLu,v sets
Au+1,v = Du,v+1 = 0 if it is releasing the connection be-
tween portsu andv, or setsAu+1,v = Du,v+1 = 1 if it is
using input portsu and output portv to establish a connec-
tion.

Figure 3 and Table 2 describe the way the availability
signals propagate in the scheduling array. Table 2 also spec-
ifies the output signalTu,v generated for each input combi-



nation. An outputTu,v = 0 means that the value ofB(s)
u,v

should not be changed, while an outputTu,v = 1 means

that the value ofB(s)
u,v should be toggled. Note that by ini-

tializing A0,v = AOv, v = 0, ..., N − 1, andDu,0 = AIu,
u = 0, ..., N − 1, we make the unused network ports avail-
able to a requestRu,v before they are available to another
requestRa,b if u < a or v < b, thus always giving a
higher priority to the former. A more fair schedule can be
obtained by rotating the priority such thatAa,v = AOv,
v = 0, ..., N − 1, andDu,b = AIu, u = 0, ..., N − 1,
wherea and b are selected randomly or through a round
robin scheme.

The output of the scheduling logic,T (Tu,v, u, v =
0, ..., N −1) is then used to update the configuration matrix
B(s) (see Figure 2), thus completing the scheduling process
for slot s in one SL clock cycle. Note that the period of the
SL clock depends on the propagation delay in the schedul-
ing logic and is independent of the period of the time slot
clock. In other words, the scheduling for a particular slot,s,
is performed while the switch fabric is configured accord-
ing to the configuration for a possibly different time slott.

Because of the time needed for the signalsAu,v andDu,v

to propagate in the SL array, the scheduling delay should be
linearly proportional to the system size,N. We have syn-
thesized the scheduler circuit on an Altera Stratix FPGA
(EP1S25F1020C-5), and the latency of the resulting circuit
is shown in Table 3 for different system sizes. ASIC results
tend to be 5 to 10 times better than the FPGA results. In the
simulation described in Section 5, we conservatively chose
the ASIC performance to be 80 ns for a 128x128 scheduler
(about 5x better).

The system described above can be extended to improve
the scheduling efficiency and to support the different com-
munication paradigms described in Section 3. For instance,

1. It is possible to use two or more copies of the “schedul-
ing logic” to simultaneously schedule requests on
different time slots. The requests can be parti-
tioned among the scheduling logic units or pipelined
through them.

2. It is possible to add the capability of inserting a con-
nection in more than one time slot, thus increasing the
bandwidth available to that connection.

3. By adding appropriate circuitry to the scheduler, it is
possible to keep a connection in the network even if the
NIC drops the request signal for that connection. This
can be accomplished by adding latches in the paths
of the request signals and is useful if it is determined
that a connection may be used in the near future. The
latches may be explicitly cleared by the NICs or can be
cleared to release connections that have not been used
for a certain time-out period.

System size 4 8 16 32 64 128
Latency (ns) 34 49 76 120 213 385

Table 3. Latency of the scheduling circuit

4. To support the communication paradigm described in
Section 3.3, the request signal from a NIC may be aug-
mented to add the capability of requesting the sched-
uler to flush all the requests currently established in the
network.

5. To support compiled communications, the request sig-
nal may be augmented to transmit to the scheduler spe-
cific pre-defined configurations to load onto (or evict
from) specific configuration registers. After loading
predefined configurations to some registers, the sched-
uler can still accept dynamic requests for connections
from NICs and either satisfy these new requests in
other time slots, or temporarily replace some of the
connections in the predefined configurations with the
new connections, and restoring them after the dynamic
connections are no longer used.

As briefly described above, the flushing or establishing
of new connections may be requested by the NICs (as a re-
sult of commands inserted in the code by the compiler). Al-
ternatively, a separate logic may be added to the scheduler
(the component labeled “Predictor” in Figure 1 to observe
the status of the request queues in the NICs and the state
of the network as determined by the configuration registers.
That component may then make decisions about the multi-
plexing degree to be used, about which connection to keep
after the request for that connection is dropped and which
connection to evict from the current configuration registers.
We are currently designing and evaluating the effectiveness
of different types of predictors.

5. System evaluation

In order to validate our theory, we developed a multi-
processor system using hardware design methodologies in-
cluding synthesis and cycle-accurate simulation. We de-
signed all of the hardware components in VHDL, and syn-
thesized them into FPGA gates to validate our hardware de-
sign and to guide our simulations. We then used these quan-
tities to determine the clock frequency that we expected to
achieve in an ASIC by conservatively assuming 5x perfor-
mance improvement over the FPGA.

For our simulations, we created a multi-processor model
that contains a single crossbar for communications and a
single scheduler for arbitration. Other interconnection fab-
rics are possible but this represents a baseline topology.
We have simulated a 128 processor system that supports
wormhole routing, circuit switching, and multiplexing of
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(a) Scatter
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(b) Random mesh
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(c) Two phases
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(d) Ordered mesh

Figure 4. Performance results for scatter, random mesh, ordered mesh, and two phases. The Preload
and Dynamic TDM utilize a multiplexing degree of four. Ordered and random mesh represents near-
est neighbor communications for a 2D mesh.

the communication pattern with dynamic scheduling and
preloading a set of communication patterns. Predictive com-
munications utilize the ability to preload the communica-
tion pattern into the network. When prediction is not pos-
sible, or in cases of misprediction, dynamic scheduling can
be employed.

Each of the 128 processors is modeled as a packet gen-
erator/receiver and contains a command file that defines the
type and sequence of communications that occur. The net-
work interface card/controller (NIC) was designed using
synthesizable VHDL and requires a single-cycle delay of
10 ns to send or receive data. This performance is highly
optimized but represents real hardware that has been syn-
thesized. The wires in the network assume 10 foot cables
using high-speed serial links operating at 6.4 Gb/s. The la-
tency is modeled as a 30 ns delay for parallel-to-serial con-
version, 20 ns for propagation delay down a ten foot wire
and 30 ns for serial-to-parallel conversion.

For all networks, a 128x128 crossbar fabric is used. For
the wormhole routed switch, the crossbar is digital but for
the other networks, the crossbar is a Low-Voltage Differen-
tial Signal (LVDS) or optical switch. The propagation de-
lay through the digital switch is modeled as 10 ns while the
propagation delay through the LVDS/optical switch is ne-
glected as it requires less than 2 ns (equivalent to a 1 foot ca-
ble) [23]. Additionally, the overhead of converting between
serial and parallel signals at the switch is not required. A 80
ns scheduler is used for all network types, as described in
Section 4.

For a wormhole message, the delay through the switch
includes the time required to schedule the first flit of the
message, which is 80 ns. All subsequent flits in the same
worms are routed in 10 ns. In order to ensure fairness within
the network, worm sizes are limited and in our simulation
we set this limit to 128 bytes. The flit size is 8 bytes. It
should be noted that if a message is broken up into two



worms, the cable delay is only seen once as the second
worm is buffered within the crossbar switch.

For circuit switching, however, the delay to schedule a
message includes the cable delay of 80 ns to send the re-
quest, 80 ns to schedule the request, and another 80 ns to
send the grant back to the NIC. After that, the point-to-point
delay is 30+20+20+30 ns.

We ran four test patterns using message sizes from 8 to
2048 bytes: Scatter, Random Mesh, Ordered Mesh, Two
Phase, and Hybrid. These patterns were selected based on
a study of the NAS benchmarks that contain many stati-
cally known communication operations that do not require
run-time prediction. The remaining communication opera-
tions in the NAS benchmarks can be easily predicted by
simple hardware predictors.

The Scatter test sends a unique message from a single
processor to all 128 processors. Random Mesh represents
nearest neighbor communications in a 2D mesh but with-
out any predictability while Ordered Mesh represents an or-
dered nearest neighbor communication pattern. The Two
Phase test represents those programs that contain global
communication and local communication. In this test, there
is one 128-processor all-to-all communication followed by
16 random nearest neighbor communications.

The simulation results are shown in Figure 4. For the
Scatter test pattern, there is a notable increase in bandwidth
utilization between 32 and 64 bytes. This is due to the fixed
duration of each of the communication cycles. Each cycle
is fixed at 100 ns or 80 bytes. Messages between 8 and 64
bytes can be transmitted in a single cycle. Messages over
80 bytes are fragmented into multiple cycles and must re-
main idle when its communication cycle is not active. This
is why the efficiency flattens out form 64 to 2048 bytes.

For Preload versus Dynamic TDM, it can be seen that
the Scatter performance is very similar. For Random Mesh,
both Preload and Dynamic TDM outperform Wormhole and
Circuit switching by 10 to 25% but are within 10% of each
other. The performance of Circuit switching improves when
the message size is large. The Ordered Mesh pattern repre-
sents communications that are highly predictable. In our ex-
periments, 4 destinations were used and thus, there was still
a relatively high hit-rate for dynamic scheduling of TDM.
The Ordered Mesh, as one would expect does very well with
Preload. The regularity of the pattern also shows good effi-
ciency for TDM but is not exploited for Wormhole or Cir-
cuit switching. For a larger number of destinations, the ef-
ficiency of dynamically scheduling TDM is expected to de-
crease.

For the Two Phased communication test, Preload does
better than the rest and the performance of dynamically
scheduled TDM drops below Wormhole. This is due to the
fairly small set of destinations in the Random Mesh phase
and due to the highly structured nature of the All-to-All
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Figure 5. Combining preload of communi-
cation patterns with dynamic scheduling. A
multiplexing degree of three was used, with k
slots preloaded. k is varied from 0 to 2.

phase. For the Random Mesh phase, we have shown that
both Preload and Dynamic TDM do well but the All-to-All
pattern is only exploited by preloading.

We also simulated the capability of the switch to deal
with dynamic communications while preloading the stati-
cally known communication patterns. For this experiment,
a percentage of the communications are to specific proces-
sors and the remaining are randomly sent to any proces-
sor. We select a multiplexing degree and we use k slots
to preload the static patterns, while the other 3-k slots are
use to schedule dynamic communication. We changed k be-
tween 0 and 2, and the results are shown in Figure 5. The
1-preload/2-dynamic outperforms the pure dynamic scheme
even for low determinism (50%). For 85% or greater deter-
minism, the 2-preload/1-dynamic scheme performed over
10% better than the 1-preload/2-dynamic. This supports the
notion of predictive communications as a hit-rate of 85% or
better shows dramatic improvement in efficiency.

6. Conclusions

We have presented a design for a flexible multiprocessor
switching system that supports dynamic circuit establish-
ment, compiler directed communication and a hybrid mode
which allows the compiler or the user to provide useful hints
to the connection scheduler. The design relies on an adap-
tive time division multiplexing scheme to allow the inter-
connection network to support the communication working
set of an application at any given time during execution.
The design also allows for different prediction mechanisms
for eliminating unused connections from the communica-
tion working set and for pre-loading connections into the
working set before they are actually needed. Finally, the de-



sign efficiently supports dynamic communications that are
not regular and/or cannot be predicted.

We presented the design for a crossbar switching fab-
ric and compared the performance of the connection-based
switching design against a wormhole routing system. The
advantages of our approach are expected to be amplified
when multi-hop networks are considered since it avoids
buffering at intermediate switches. This may be particularly
efficient if we use LVDS-based switching where signals
are not converted from the differential domain to the dig-
ital domain at the switches [23]. Moreover, the connection-
oriented approach may be the only switching alternative in
systems where buffering signals at intermediate switches is
not an option, such as in all-optical switching systems [24]

We showed the viability of using multiplexed switching
to support both dynamic communication as well as com-
piled communication. We are currently designing and eval-
uating predictive schemes and scheduling algorithms to re-
duce the circuit establishment overhead while keeping the
multiplexing degree to a minimum. We are also working on
extending the design to switching fabrics other than cross-
bars. Finally, we are evaluating the tightly coupled collabo-
rations between the compiler, the communication predictor,
and the dynamic connection scheduler.
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