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Abstract 

 
Most recent developments of computer sciences, such 

as web services, Grid, peer-to-peer, and mobile 
computing, are network-based computing. Their 
applicability depends on the availability of the underlying 
network bandwidth. However, network resources are 
shared and the available network bandwidth varies with 
time. There is no satisfactory solution available for 
network performance predictions. This lack of prediction 
limits the applicability of network-based computing, 
especially for Grid computing where concurrent remote 
processing is essential. In this study, we propose an 
Artificial Neural Network (ANN) based approach for 
network performance prediction. The ANN mechanism 
has been tested on classical trace files and compared with 
the well-known system NWS (Network Weather Service) 
for performance. Experimental results show the ANN 
approach always provides an improved prediction over 
that of NWS. ANN has a real potential in network 
computing. 
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1. Introduction 
 

The concept of available bandwidth has been the 
center of attraction throughout the history of packet 
networks. For many data media applications, such as file 
transfers or multimedia streaming, and network 
technologies like content distribution networks, end-to-
end admission control and video/audio streaming, the 
bandwidth available to the application directly impacts 
application performance. Peer-to-peer applications form 
their dynamic user level networks based on available 
bandwidth between peers. Overlay networks can 
configure their routing tables based on the bandwidth of 

overlay links. Though in Grid environments, computing 
resource can be reserved through the ‘Service-Level 
Agreement’, network bandwidth is not a subject of 
reserve at this time. The availability of network 
bandwidth is an important factor in choosing web service 
[1]. 

In addition, accurate and timely bandwidth 
measurement and prediction are useful for mobile 
computing. The mobile computers frequently have more 
than one network interface with varying bandwidths. The 
mobile hosts will have the flexibility to choose the highest 
bandwidth interface if the future available bandwidth is 
known [2]. Finally, at the network level, we could also 
use bandwidth information to build multicast routing trees 
more efficiently and dynamically. Ideally, multicast 
routing trees would be built so that packets travel along a 
tree that minimizes duplicate packets and latency while 
maximizing bandwidth [2]. 

Two throughput metrics that are commonly 
associated with a network path are end-to-end capacity C  
and available bandwidth . In a shared environment, the 
available bandwidth varies with time. We need to 
measure and predict the available bandwidth in a timely 
fashion. 

A

 
2. Background and Related Work 
 

Performance monitoring and forecasting is an active 
area of research. We can classify the bandwidth 
measurement and prediction methodologies in several 
ways like active or passive, end-to-end or hop-by-hop,  
Simple Network Management Protocol (SNMP) gathered 
versus actively probed [4], network intrusive versus 
network friendly [5] and so on. There are Variable Packet 
Size (VPS) probing methodology that measures the hop-
by-hop metrics, and Packet Train Dispersion (PTD) 
probing methodology that measures the end-to-end 
metrics. The two famous tools in this category are 



Pathrate [6] and Pathload [7] used for estimating capacity 
and available bandwidth respectively [8]. 

All these methodologies provide only the 
measurement part of the available bandwidth, and they 
are not concerned with the prediction of the available 
bandwidth, which serves as useful information in routing 
decisions and provides guideline in task scheduling. 
Unfortunately, due to the heterogeneity and the constantly 
varying nature of the network traffic, there are only a few 
works available to provide prediction of network 
performance in terms of available bandwidth and latency 
in a heterogeneous environment, such as Grid computing. 
The Network Weather Service (NWS) [9, 10] is a well-
used network performance measurement and prediction 
system in Grid computing. It periodically uses active 
network probes to collect the end-to-end network 
performance data and dynamically forecasts the 
performance of the various networks. However, its simple 
prediction methods (mean-based, median-based, 
autoregressive) cannot satisfactorily capture the 
complicated short and long-range temporal dependence 
characteristic of heterogeneous network traffic. While 
NWS has made its contributions, new prediction methods 
for network traffic need to be explored for better 
solutions. 

In this work, we investigate the Artificial Neural 
Network (ANN) prediction approach, via machine 
learning algorithms that learns the model of the system 
from the system itself. The ANN approach can develop a 
model specific to each network system and provides a 
good approximation of the underlying real system.  

Several works of using neural network for online-
prediction can be found in the literature, including 
financial forecasting in the stock market, electric load 
forecasting in power networks, fault prediction in process 
control, call admission control, link capacity allocation in 
ATM networks and prediction of network congestion [11-
14]. Some efforts have also been made in prediction of a 
specific application’s network traffic with the neural 
network. A multiresolution learning neural network has 
been constructed to predict VBR video traffic for dynamic 
bandwidth control using real-world VBR video traffic 
traces [15]. Yousefi [16] used neural network to model 
bursty teletraffic pattern in terms of packet number. His 
work was tested on artificially generated traffic by chaotic 
maps. Different from other’s work, we use the neural 
network to predict the available bandwidth of any 
application by analyzing the network traffic, instead of 
specific applications. Our work has been tested on long-
term real-world network traffic traces.  

There has been some other work in using the linear 
system representation structures like ARMA, ARX and 
ARMAX [17] for bandwidth predictions. However, they 

lack the potential of accurately describing the behavior of 
extremely complex systems. Neural network scheme is a 
non-linear representation of the system alleviating the 
problems of the linear models.    

The rest of the paper is organized as follows. Section 
3 presents our proposed predictive mechanism for 
predicting the available bandwidth using ANN; Section 4 
presents experimental results and analyzes them; Section 
5 discusses the run time prediction; and finally Section 6 
gives a summary and discusses future research. 

 
3. Neural Network Based Bandwidth 
Prediction 
 

Today, there are various forecasting models 
prevalent, employed for various types of applications, 
such as experience-based deterministic models, statistical 
models, probabilistic and stochastic models, AI and 
machine learning models, and genetic algorithm based 
approaches. Each model has its own pros and cons, and 
today researchers are striving hard to use these models 
individually or in combination to achieve accurate 
forecast results. NWS is based on statistical modeling. 
Our previous work is based on probability and stochastic 
modeling [18, 19]. In this study we investigate the 
solution using artificial neural networks. 

We describe the network traffic prediction problem 
as follows: Given the observed traffic data at time unit i, 

, where i=1…t, the prediction is to generate an 
estimate of 

)(iT

)( siT + , where s is the prediction horizon or 
the future time unit. The network traffic data is highly 
non-linear and varies with time. It changes abruptly when 
entering or leaving a congestion hour. Therefore, to 
predict the dynamic nature of the traffic data we need to 
devise an accurate prediction model. We use neural 
networks, with their remarkable ability to learn from 
examples and derive meaning from complicated or 
imprecise data, to extract patterns and detect trends of 
available bandwidth.   

An ANN is a non-linear classifier of machine-
learning algorithms. We use the Weka machine learning 
software [20] in Java in our study. Weka is a collection of 
machine learning algorithms for solving real-world data 
mining problems.  The strengths of ANN are its 
outstanding learning abilities, robustness to noise, and 
little a priori knowledge needed. An ANN builds itself 
through the process of learning from “experience”. This 
process is called ANN training. By online learning, ANN 
model can take into account the changes in the 
environmental conditions and adapt itself to the changes. 
These characteristics of the ANN have made it a potential 
solution for the prediction of network traffic, which 



presents complicated short and long-range temporal 
dependence. 

An ANN is constructed with many computing cells, 
called perceptrons, as shown in Figure 1. Each perceptron 
unit calculates the output by applying a non-linear 
continuous function over the sum of the product of its 
input and the corresponding weights [21]. 

 
 

Figure 1. Perceptron of neural network 
 
In our study, we use the squashing function as the 

non-linear function. The squashing function shown below 
has the derivative that can be represented in terms of its 
output, thus simplifying the computation. 
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A simple perceptron is one in which the weight 
changes by an amount proportional to the difference 
between the desired and the actual output, and the 
network adapts accordingly. At some point, when the 
difference between the actual and the desired output is 
almost 0 for all patterns, the weight ceases to adapt 
indicating that the network has finished learning. 

A multi-layer perceptron (MLP), is one in which 
weights are changed by an amount proportional to the 
error at that unit times the output of the unit feeding into 
the weight. Learning in MLP networks is effectively 
learning the weights in the network and is performed by 
the back propagation algorithm. According to this 
algorithm, the error in the output is used to update the 
weights in the network. Depending on the learning rate, 
the effect of the error is propagated back throughout the 
network. This leaning process is repeated epoch-by-epoch 
until the difference between the neural network predicted 
output and the actual value reaches a predefined 
threshold. The principal advantages, such as simplicity, 
reasonable speed, and ability to acquire arbitrarily 
complex nonlinear mappings, support us to incorporate 
the back-propagation algorithm in the multi-layer 
perceptron network for our prediction model.  

3.1 Network traffic data statistics 
 

Collecting wide-area network traffic data is a 
challenging task due to dynamics of network traffic, 
difficulties to access production network, and sensitivities 
of data privacy. Thus, instead of collecting network traffic 
on our own, we use trace files, from WAND, ITA [22], 
and MOAT [23] to verify the effectiveness of the ANN 
mechanism. Trace files are the network traffic, bi-
directional packet data, i.e. packet traces with accurate 
timestamps. These NSF-funded projects collect network 
traffic data from real production systems. These data are 
more representative for wide-area traffic than that of our 
local network environments. 
 
3.2 Algorithm: Statistics of Network Traffic Data 
 

The network traffic data provided by WAND, ITA 
and MOAT are collected using passive measurement 
methodologies that use the trace history of existing data 
transmission. This methodology is potentially very 
efficient and accurate. The trace files represent different 
types of network traffic, and hence, experimenting on 
them verifies the accuracy and correctness of the 
proposed prediction scheme. However, the raw trace file 
needs to be pre-processed before an application like 
neural network can consume it.  

Each trace contains packet arrivals, with IP header 
and TCP header. Each individual packet contains some 
specific properties of the packet, such as time stamp, 
packet length, source and destination IP addresses, which 
could be obtained from the IP Header. Compared with the 
individual packet information, we believe that the number 
of packets in each second and the number of bits in each 
second are sufficient to produce estimates of the 
consumed bandwidth over time. Thus to collect the 
information about number of packets in each second and 
the number of bits in each second from the raw trace file, 
we present the following algorithm.  

1) Parse the entire trace file.  
2) Parse the timestamp and right shift by 32 bits to 

get only the data in seconds discarding the 
nanoseconds.  

3) For each unique timestamp, the corresponding 
entries for the number of packets and the number 
of bits are added. 

4) Finally a table with the following columns is 
obtained. Time, number of packets in one 
second, number of bits in one second. 

5) From this table the average number of bits per 
second gives the link utilization.  



The available bandwidth of link i  can be calculated as 
follows: , where  is the link utilization 
and  is the link capacity. 
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3.3 Bandwidth prediction using neural network 
 

The resultant network traffic data obtained from the 
raw traces must be assigned to specific bins in order to 
serve as input to the predictive system. The network 
traffic packets are binned into non-overlapping bins of a 
specific size called the bin size. According to user’s 
prediction requirement, different bin sizes are chosen in 
generating training data for neural network. For example, 
when the prediction of available bandwidth in the next 5-
minute is required, the bin size is set as 300 seconds. We 
often call this a one-step prediction. For each bin size, 
using the measured network traffic data up to the  bin, 

the bandwidth of , , …,  bins 

are predicted respectively. Prediction of the 
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using the measured bandwidth data up to the  bin is 
referred to as the n-step prediction. 

thi

One problem in the construction of neural network 
model is the tradeoff between prediction accuracy and 
cost. The cost includes training cost and prediction cost, 
which are related to the number of input parameters. In 
general, with more input parameters, the prediction 
accuracy is better. However, the increase of input 
parameters will lead to higher cost, which is a set back for 
real-time prediction. Instead of using all possible input 
parameters, we need to identify a small set of necessary 
data. In our experiments, we initially generate and use as 
the network traffic parameters for each bin size: 
timestamp, minimum packet rate, maximum packet rate, 
average packet rate, minimum bit rate, maximum bit rate, 
average bit rate, average bit rate in the past n minutes, 
average bit rate in the past  minutes, average bit 
rate in the past  minutes and so on till average bit 
rate in the past  minutes.  Here, packet rate 
denotes the number of packets in one second, bit rate 
denotes the number of bits in one second, n is the initial 
value, m is the successive difference between each past 
interval, and i denote the number of past data required for 
training the neural network.  

mn +
mn 2+

min ∗+

After exhaustively examining all combinations of the 
above defined input parameters based on trace files from 
WAND, ITA, and MOAT, we have chosen the following 
parameters as they are useful information for bandwidth 
prediction: timestamp, average packet rate, average bit 
rate, and their past information. The maximum and the 
minimum packets/bits rates in that bin size are irrelevant 

attributes. The relevant attributes will form the training 
input to the neural network. We also observed if the 
traffic exhibits a high variability in the number of bits 
transferred, the values of m, and n should be set small and 
the value of i should be set large, as more training would 
be required to make accurate predictions. 

Selecting an appropriate training size for network 
bandwidth prediction is another problem in ANN 
construction. In our experiment, we tested short-term and 
long-term trace files. We found that, the performance of 
the ANN prediction is not satisfactory for short-term trace 
file containing traffic data for a couple of hours or less 
than 1 day. This is caused by inadequate training data. For 
long-term trace files containing traffic data more than 3 
week or a month, we observed network traffic data in 7-
10 days is enough for neural network training. A longer 
training phase doesn’t improve the prediction accuracy. 

We present the prediction mechanism below. 
Different bin sizes we choose for our experimentation are 
10, 60, 100, 300, 600, 900 and 1800 seconds. We choose 
the prediction steps from one-step to five-step. The 
training input data for the neural network for each bin size 
contains all the relevant attributes mentioned above. 
1) Choosing appropriate parameters in the neural network 
model building 

a. Learning rate: The learning rate controls the level of 
change applied to the weights after each training 
period. With a high learning rate the neural network 
will react fast to abrupt changes, which is not 
favorable. Therefore, we set the learning rate to 0.01 
so that the overall bandwidth pattern will be learned. 

b. Maximum number of epochs: The number of times a 
data set is trained on is the number of epochs of 
training. Training termination is determined either by 
setting a maximum number of epochs or if the neural 
network’s output error becomes less than some preset 
threshold. For the best prediction results, we set the 
epoch number to 700. 

c. Number of layers and the number of perceptron units 
used in each layer: 
i. Input Layer: The input layer adds one perceptron 

unit for each of the defined training input 
parameter: timestamp, average packet rate, 
average bit rate, and its past information.  

ii. Hidden Layer: The neural network contains more 
than one hidden layer in order to improve the 
accuracy of the prediction. The input of each 
neuron of the next layer is connected with the 
outputs of all neurons of the previous layer. 
Analyzed data are treated as neuron excitation 
parameters and are fed to inputs of the first layer. 
These excitations of lower layer neurons are 
propagated to the next layer neurons, being 
amplified or weakened according to weights 



ascribed. The number of such hidden layers and 
the number of nodes to be used in each layer are 
important parameters. We set the number of 
hidden layers as 3 and the number of perceptron 
units in each hidden layer as 3 for accurate 
prediction results. Our experiments indicate a 
neural network model with more than 3 hidden 
layers does not improve the prediction accuracy. 

iii. Output Layer: This layer contains the perceptron 
unit for the final output attribute of the neural 
network. In our case, the output is the available 
bandwidth. 

2) Using constructed neural network to predict network 
bandwidth 

The output of the neural network is the bandwidth 
data predicted at the next n, ,  and so 
on up to  minutes. The values of n, m and i 
depend again on whether the traffic exhibits a high 
variability or not. If the variability is high the values 
of n, m and i are small; otherwise they are large. 

mn + mn 2+
min ∗+

A neural network as described above is constructed and 
experiments are carried on using the different types of 
network trace files. The experiments and the results are 
described in the next section. 
 
4. Experimental results 
 

The AUCKLAND trace files [24] have been chosen 
for the entire analysis. AUCKLAND IV is a continuous 6 
1/2 week trace between February and April 2001 at the 
University of Auckland uplink, and AUCKLAND II is a 
collection of 1-day trace between December 1999 and 
June 2000 at the University of Auckland uplink. Neural 
networks need training data. We choose AUCKLAND 
traces since they are long-term traces. Auckland's traffic 
reaches the Internet via a single ATM link; all packets (in 
both directions) can be seen. The connection has a packet 
peak rate of 2 MBits/sec set in each direction (4MBits/sec 
when the two trace files are aggregated). 

Delay measurements in general require accurate 
high-resolution timestamps. NTP is not good enough for 
this purpose, since it only provides millisecond accuracy. 
All interfaces involved in measuring delay must be 
synchronized. In order to satisfy this requirement, the 
WAND group has developed the DAG cards: Ethernet 
(10/100 Mbps) and ATM (OC3, OC12, OC48), AAL5 
and PoS. Packet traces at Auckland are collected using 
two DAG cards in a Pentium based PC. The DAG cards 
connect to the Auckland ATM link via optical splitters 
[25, 26]. 

To verify the efficiency of our Neural Network based 
prediction approach, comparison is made with that of 
Network Weather Services (NWS), a widely used model 

for prediction. Experiments were conducted to test the 
performance of the predictive model presented here that 
uses ANN.  

The primary metric we have used for evaluation is 
the relative prediction error, 

eActualValu
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where err is the relative prediction error, PredictedValue 
is the bandwidth predicted for the next n seconds and 
ActualValue is the bandwidth measured for the next n 
seconds where n is chosen by the user. Mean error which 
we use for our computations is calculated by averaging all 
of the relative errors.  

Figure 2-5 show the performance of bandwidth 
prediction using the ANN mechanism and NWS on 
various bin sizes and various time periods of the 
AUCKLAND II and IV traces. One step, 2 step, …, 5 step 
predictions are performed for each bin size. The charts 
show that the predictability is good for the one-step and 
the two-step predictions. With subsequent step 
predictions, the prediction error gradually increases. This 
is mainly because, as the step number increases, the 
prediction moves from short term to long term and the 
accuracy slope down. Thus the ANN mechanism and 
NWS are both more accurate for short-term predictions. 
For the AUCKLAND IV traces, it could be observed from 
the graphs that the best prediction is obtained at the bin 
size of 60 seconds for one-step prediction in both the 
ANN mechanism and NWS. For the AUCKLAND II 
traces, we can infer from the graph that the best prediction 
is got at a bin size of 300 for one-step prediction. The 
variation is very low in the prediction errors between the 
chosen bin sizes for each step prediction with the ANN 
mechanism. Thus, bin size is not a determining factor of 
the success of the ANN based prediction approach. 

 
4.1 Performance comparisons of the ANN 
mechanism and NWS 
 

The performance comparisons of the ANN approach 
and NWS are made for varying bin sizes for one step and 
two-step prediction of AUCKLAND II and IV traces.  

Figure 6-7 shows the performance comparisons of the 
ANN and NWS for varying bin sizes for one and two-step 
prediction of AUCKLAND IV and II traces. Fig (a) and 
Fig (b) show the one-step and the two-step predictions, 
respectively. From the graph we can see that the 
prediction results of ANN supercede those that of NWS 
for each bin size, illustrating that the performance of the 
ANN mechanism is noticeably better than that of NWS. 
The best results at the bin size of 60 for the AUCKLAND 
IV trace file have been found to be 10.54% mean error 
using the ANN and 12.74% mean error with NWS with 



the one-step prediction. In the case of AUCKLAND II 
traces, the results are best at a bin size of 60 seconds with 
13.72% mean error using the ANN approach and at a bin 
size of 300 seconds with 15.80% error using NWS with 
the one-step prediction. 

 
Figure 2. AUCKLAND IV: ANN 

 

 
Figure 3. AUCKLAND IV: NWS 

 

 
Figure 4. AUCKLAND II: ANN 

 

 
Figure 5. AUCKLAND II: NWS 

 
(a) One-step Prediction 

 

 
(b) Two-step Prediction 

 
Figure 6.  AUCKLAND IV 

 

 
(a) One-step Prediction 

 

 
(b) Two-step Prediction 

 
Figure  7.  AUCKLAND II 



Network traffic is usually formed by different 
applications. Each application may have its own network 
communication pattern. The strength of ANN is its 
outstanding learning abilities to capture the existing 
pattern from training data, if a pattern exists. If we build a 
neural network for each different application individually, 
the prediction should be more accurate for each 
application, and then, with an appropriate integration, the 
combined prediction should result in a better overall 
traffic prediction as well. Instigated by this thought, we 
examined the network traffic composition in the trace 
files. We found the network traffic in AUCKLAND trace 
file is composed of different types of application traffic 
like TCP, UDP, ICMP and others. The application traffics 
statistics indicate that each type of traffic data presents a 
different traffic pattern. Using one neural network to 
characterize the overall traffic pattern may hide the 
heterogeneity of the network traffic. Instead of training 
one neural network to learn different patterns, we 
constructed an individual neural network model for each 
of them. For each bin size, we isolated TCP, UDP, ICMP 
and other traffic data and used them to build neural 
networks separately. Then we combined the individual 
prediction results into the overall traffic prediction. 
Experiment results show the bandwidth prediction 
accuracy is improved in this way. For example, the ANN 
prediction error is reduced from 13.60% to 12.31% at bin 
size of 600 for AUCKLAND IV trace file. In the 
experiment, we observed that the prediction accuracy of 
UDP and ICMP traffic is significantly lower than that of 
TCP. This is because around 95% of network traffic in 
AUCKLAND trace files is TCP data. The limited UDP 
and ICMP traffic data prevents ANN from learning their 
traffic patterns sufficiently. As a result, they are 
considered as noise and eliminated. We then use the ANN 
model constructed from TCP traffic to predict the overall 
network bandwidth. After noise reduction, we obtained 
the predictions at different bin sizes for one-step with 
AUCKLAND IV and II traces using the ANN and 
compared with NWS.  

Figure 8 (a) and (b) illustrate that the prediction 
results of the ANN mechanism are further improved 
compared with results in Figure 6 (a) and Figure 7 (a). 
The experimental results indicate that the ANN prediction 
approach has a potential to present a better performance 
than NWS in any situation.  

Table 1 summarizes the experimental results of the 
original traffic prediction, the prediction after analyzing 
the network traffic composition (before noise reduction) 
and the prediction after removing the negligible 
constituents of the network traffic (after noise reduction) 
for one-step. From the table we see that, constructing 
individual neural networks for each type of traffic and 
integrating to obtain the overall prediction reduce the 

error percentage. By noise reduction, the error percentage 
is further reduced. Compared with the prediction error of 
NWS (before noise reduction), the performance gain is 
26.1% for AUCKLAND IV and 34.4% for AUCKLAND 
II. Table 1 also shows that noise reduction does not 
benefit NWS. This is probably due to the internal 
limitation of NWS in learning complex application 
patterns. 

 

 
(a) AUCKLAND IV 

 

 
(b) AUCKLAND II 

 
Figure 8. Performance comparison of ANN and NWS 

after noise reduction 
 

Table 1. Performance comparison after and before 
noise reduction 

 
Prediction analyzing the 

traffic composition 
Prediction
Model 

AUC
KLAN
D  

Original 
Prediction 

Before 
noise 

reduction 

After 
noise 

reduction 
IV 12.16% 11.33% 10.74 % ANN 

II 15.63% 14.65% 13.48% 
IV 13.55% 13.66% 13.88% NWS 
II 18.12% 18.33% 18.48% 

 
In the above experiments, we consider UDP and 

ICMP data as noise because the TCP is the dominant 
constituent of the network traffic, around 95% in 
AUCKLAND trace files. When UDP and ICMP 



contribute nontrivial constituents of the overall traffic, 
individual neural networks need to be built and combined 
into the overall traffic prediction.  Please notice that we 
use the prediction of TCP to predict AUCKLAND. If the 
trace file is based on one application, the prediction can 
be even more accurate. This demonstrates the learning 
ability of the ANN. 

 
4.2 Traffic prediction example 
 
 As described earlier, predictors are trained using 
the first half of the trace data, while predictions are made 
on the second half. Figure 9 shows the traffic prediction 
on AUCKLAND IV trace. The curve shown in pink is the 
training data and the one in yellow is the ANN prediction. 
We can see that the ANN prediction does capture the 
communication pattern well.    
  
4.3 The cost of the ANN approach 
 

The cost of a predictive system is very important for 
its delivery in practice. Because the ANN approach builds 
a non-linear model for network traffic prediction, its cost 
in general is greater than those prediction systems that use 
linear prediction models. Is the cost of the ANN approach 
reasonable? To answer this question, we tested the ANN 
cost in both training phase and prediction phase. In 
general, the neural network requires a large training input 
data for better performance. We have examined the 
performance of neural networks for the prediction of 
available bandwidth with respect to the time complexity 
on the training process. The experiments were conducted 
using the different training input size to measure the ANN 
prediction and training cost on a Pentium IV, 2.6GHz, 
512 MB RAM on Windows XP. In general, the size of 
traffic data binned at lower bin size is larger. Table 2 
presents the time taken for training the neural network for 
various bin sized network traffic data files for the 
AUCKLAND IV traces. We can see that the training time 
is linear with respect to the training sample size. When 
the sample size is 32921, the training time is 3 minutes. 
The cost is reasonable because the training frequency is 
far lower than prediction frequency. In our experiment, 
the training only happened once. At run time the training 
process of a larger sample space could be done in parallel 
to network performance prediction so that a longer 
training process would not affect the timeliness of 
performance prediction. The neural network prediction is 
much faster. It takes 1.5 milliseconds to make a 
prediction.  
 

 

 
(a) ANN with a bin size of 60 seconds 

 

 

 
(b) ANN with a bin size of 300 seconds 

 
Figure 9. Comparison with trace data 



Table 2. ANN Cost 
 
Bin Size (s) 60 100 300 600 900 1800 
Training 
Sample Size  32921 19752 6582 3290 2192 1095 

Training 
time (s) 185 110 37 20 12 8 

 
5. Run-time Prediction 
 

Using pre-measured trace files, we have 
demonstrated the potential of the ANN approach for 
network bandwidth prediction. The next question is how 
to extend the ANN approach so that it can provide run-
time performance prediction. Trace information can be 
collected at run-time. For instance, at each router in the 
end-to-end path, the DAG card can be fitted to measure 
the network traffic and the bandwidth data file can be 
created using the statistics of network traffic data 
algorithm described in Section 3. Then, the ANN 
prediction approach can be applied. This trace-based 
passive measurement approach uses actual observed 
traffic data without perturbing the network, but requires 
the access to the routers. The ANN based prediction is not 
limited to passive measurements. It can use active probe 
to collect its training data. We have used the input data of 
NWS to compare the performance of the ANN 
mechanism and NWS. We consider the traffic data 
measured between different source and destination pairs 
at the University of California at Santa Barbara for our 
experimentation [27]. We perform one-step predictions 
with the bin size of 60 seconds. Table 3 provides the 
comparison results. It is evident that the ANN approach 
provides better accuracy. The ANN mechanism can be 
used with the NWS monitor subsystem or be incorporated 
into the NWS system as alternative prediction 
functionality to provide improved performance prediction 
at run-time. 

 
Table 3. Run time Comparison of the ANN with NWS 

 
 blind.cs.ucsb.edu to 

cartman.cs.ucsb.edu 
blondie.cs.ucsb.edu to 
joplin.cs.ucsb.edu 

ANN 14.48% 10.15% 
NWS 20.08% 15.45% 

  
6. Conclusion and Future Work 
  

In this paper, we have proposed an Artificial Neural 
Network (ANN) predictive mechanism for network 
bandwidth availability estimation. The proposed ANN 
prediction approach has been tested on long-term real-

world network traffic traces and with NWS performance 
monitoring data.  To verify the efficiency of the proposed 
prediction system, experiments are then conducted to 
compare the prediction errors of the proposed ANN 
approach with that of the well-known network prediction 
system NWS on the AUCKLAND II and IV traces. We 
made predictions by building individual neural networks 
for each type of network traffic and integrating to obtain 
the overall predictions. We also categorized the noise and 
performed predictions after noise reduction. Finally, we 
investigated the feasibility of the ANN method in 
providing runtime prediction and compared the 
performance of the ANN approach and NWS with 
monitoring data collected by NWS itself. Experimental 
results indicate that the ANN approach can accurately 
capture complicated network traffic pattern efficiently. It 
exhibits a noticeably improved performance over that of 
NWS. In addition, the ANN prediction mechanism can 
learn a communication pattern, if one exists, and can 
provide an even better performance results, as illustrated 
with different network applications. That demonstrates 
the potential of ANN in supporting application-level 
performance predictions. The ANN prediction only takes 
1.5 milliseconds in our experiments. When the number of 
training samples is 3000, the training cost is less than 20 
second. The proposed ANN prediction mechanism is 
feasible and practical. It can use the NWS monitoring 
system for network bandwidth prediction or be 
incorporated into NWS or other performance systems for 
an improved/alternative network prediction. Our current 
work mainly focuses on predicting network performance 
with the ANN mechanism.  

Consider a user requesting a file from some servers. 
The file has to be transferred to the user following the 
transport protocols like TCP. TCP attempts to 
dynamically and adaptively search for the maximum 
possible rate using techniques such as slow start or 
congestion avoidance, which often lead to network 
underutilization and low application throughput. Our 
proposed neural network model avoids these problems, 
thus enabling the transport protocol and applications to 
achieve higher throughput and react faster to changing 
network conditions. In the future, we plan to develop an 
ANN based bandwidth predictive system and integrate the 
predictive system with new performance measurement 
approaches [3, 8] to provide real-time on-line network 
performance prediction.  

The ANN mechanism is a complement of the 
computing model proposed in [18] and will be used in 
GHS [19] for performance prediction and task scheduling.  
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