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Abstract 
 

This paper addresses the problem of fine-grained 
data replication in large distributed systems, such as 
the Internet, so as to minimize the user access delays. 
With fine-grained data replication, certain data 
objects, as opposed to a complete site, are duplicated 
at multiple servers. In this paper, we abstract the 
distributed system as an agent-based model wherein 
mobile agents on behalf of their nodes continuously 
compete for allocation and reallocation of data 
objects. However, since these agents do not have a 
global view of the system, the optimization process 
becomes highly local. This localization may encourage 
these selfish agents to alter the output of the resource 
allocation mechanism in their favor by misreporting 
critical data such as the objects’ popularity. This 
paper proposes a game theoretical resource allocation 
mechanism involving selfish agents. The mechanism 
ensures that the agents do not misreport, always follow 
the rules, and that a global optima is achieved. The 
mechanism is extensively evaluated against some well-
known algorithms, such as: greedy, branch and bound, 
game theoretical auctions and genetic algorithms. The 
experimental results reveal that the mechanism 
provides excellent solution quality, while maintaining 
fast execution time. 
 
 
1. Introduction 

 
Data replication across a read intensive network can 

potentially reduce the network traffic, which, in turn, 
can lower the response times experienced by end-
users. On the other hand, with rapid updates, 
maintaining a large number of replicas can incur a 
prohibitively high overhead [14]. Therefore, efficient 
and effective replication schemas strongly depend on 
how many replicas to be placed in the system, and 
more importantly where. 

We abstract the distributed computing system 
(Internet) as an agent-based model wherein mobile 
agents continuously compete for allocation and 
reallocation of the system resources (data objects in 
our case). An agent is a computational entity that is 
capable of autonomous behaviour in the sense of being 
aware of the options available to it when faced with a 
decision making task related to its domain of interest 
[2]. Numerous applications exist for such agents often 
in various fields of electronic commerce, network 
management, intelligent user interfaces, etc. In agent-
based distributed computing systems, an agent is seen 
as part of a community of similar though 
heterogeneous agents that are designed to compete for 
scarce resources. Motivated by their self interests and 
the fact that the agents do not have a global view of the 
distributed system, they optimize their individual 
interests, such as, minimize communication costs, 
latencies, etc. In such systems there is no motivation 
for cooperation and the agents may manipulate the 
outcome of the resource allocation mechanism by 
misreporting their capabilities leading to severe 
performance degradation. To cope with these selfish 
agents, new resource allocation mechanisms are to be 
conceived. The goal of a mechanism should be to force 
the agents not to misreport and always follow the rules. 

In this paper, we will use game theoretical 
techniques to identify a mechanism that encapsulates 
the selfishness of the agents, while having a 
controlling hand over them. This work is inspired from 
the work reported in [17] and [20]. In essence, game 
theory is the study of what happens when independent 
agents act selfishly. A mechanism asks how one can 
design systems so that agents’ selfish behavior results 
in the desired system-wide goals. 

The major results of this paper are as follows: 
1. We derive a generalized resource allocation 
mechanism. This mechanism allows selfish agents to 
compete in a non-cooperative environment. 
2. We investigate this mechanism in detail by 
identifying some useful properties and the necessary 



conditions of optimality.  
3. As an application we employ the derived 
mechanism to the fine-grained data replication 
problem (DRP). We perform extensive experimental 
comparisons against some well-known techniques, 
such as: greedy, branch and bound, genetic and game 
theoretical auctions. 

The remainder of this paper is organized as follows. 
Section 2 describes the resource allocation mechanism. 
Section 3 formulates the DRP. Section 4 concentrates 
on modeling the resource allocation mechanism for the 
DRP. The experimental results, related work and 
concluding remarks are provided in Sections 5, 6 and 
7, respectively. 
 
2. The Resource Allocation Mechanism  

 
We describe the resource allocation mechanism as: 

The Environment: The environment can be described 
as a triplet (M,Ω,Θ). The first element of the triplet M 
is the list of agents (or potential participating agents) in 
the mechanism. The second element Ω, is the set of 
possible outcomes over which the agents and the 
mechanism have preferences. The third element is a 
highly abstract one: Θ = Θ1×…×ΘM is the set of type 
profiles t = (t1,…,tM), which includes a type for each 
agent. Agent i’s type ti indexes the agent’s preferences. 
The type profile and the outcome combine to 
determine individual payoffs: ui: Ω×Θ→R. Thus, 
ui(Ф,t) denotes the payoff that agent i gets when the 
outcome is Ф∈Ω and the type profile is t. It is 
sometimes convenient to write a type profile as t = (ti,t-

i), where t-i lists the types of the agents other than i, 
i.e., t-i = (t1,…ti-1,ti+1,…,tM).  
The Setup: Let there be M agents. Let X denote the set 
of possible decisions with typical element x. An 
outcome is a pair (x,p) describing a decision x and a 
vector of positive or negative payments p = (p1,…pM) 
by the agents.  For instance, in auctions, the decision is 
a vector where xi = 1 if agent i gets the object and 0 
otherwise. The associated vector of payments is p, 
where pi = bidi if i bids bidi and wins, and in that case 
pj = 0 for the other agents. 
Utility: Each agent i values outcome (utility) according 
to ui((x,p),t) = vi(x,ti) - pi, that is, i’s payoff 
corresponding to outcome (x,p) is i’s value vi(x,ti) of 
the decision x, which depends only on i’s own type ti, 
minus the payment that i must make in order to acquire 
the object. 
Performance: The performance of any mechanism 
can be described in two parts [20]: a) the decision 
performance maps types t into decisions x, whereas b) 

the transfer performance maps types t into payments p. 
When the decision x allocates objects, we call this x, 
the allocation performance. The mechanism attempts 
to achieve efficient performance subject to the 
constraint that payments add up to zero. Given the 
assumptions described above, a decision x is efficient 
if it maximizes the total value ∑i∈Mvi(x,ti). For instance, 
a final allocation is efficient if it awards the object to 
the agent who values it most. In our proposed 
mechanism, by construction, net payments always add 
up to zero, because the mechanism receives any sums 
that the agents pay.  
Incentive Compatibility: This means that a) S = Θ 
and that b) the strategy profile (σi(ti) = ti), i∈M is an 
equilibrium, where S is the strategy set and σi is any 
strategy based on the type profile of agent i. In simple 
words, the first condition means that each agent is 
required to report a type to the mechanism. In literature 
the direct mechanism is usually referred as being pairs 
(x,p), leaving the strategy set implicit. The second 
condition, incentive compatibility means that reporting 
ones’ type truthfully is equilibrium according to 
whatever solution concept is chosen. In this paper, we 
focus on dominant strategy implementation, so the 
relevant solution concept is that each agent plays a 
dominant strategy.  
Objective: The mechanism uses the reported types to 
compute the maximum total value V(X,M,t) and a 
corresponding total value maximizing decision 
ô(X,M,t) as follows: 
 ( , , ) max ( , )i i

x X i MV X M t v x t∈ ∈= ∑ , (1) 
 ˆ( , , ) arg max ( , )i i

x X i Mo X M t v x t∈ ∈= ∑ . (2) 
One might think that such a direct approach would be 
doomed to failure, because each agent seems to have 
an incentive to misrepresent its preferences to 
influence the decision in its favor. However, the 
agent’s incentives depend not only on the decision but 
also on the payments, which is the clever and 
surprising part of this mechanism.  
Misreporting and Payments: The mechanism 
eliminates incentives for misreporting by imposing on 
each agent the cost of any distortion it causes. The 
payment for agent i is set so that i’s report cannot 
effect the total payoff to the set of other agents 
(excluding agent i), M-i. With this principle in mind, 
let us derive a formula for the payments. To capture 
the effect of i’s report on the outcome, we introduce a 
hypothetical null report, which corresponds to agent i 
reporting that it is indifferent among the possible 
decisions and cares only about payments. When i 
makes the null report, the mechanism optimally 
chooses the decision ô(X,M-i,t-i). The resulting total 



value of the decision for the set of agents M-i would be 
V(X,M-i,t-i), and the mechanism might also collect a 
payment hi(t-i) from agent i. Thus, if i makes a null 
report, the total payoff to the agents in set M-i is 
V(X,M-i,t-i) - hi(t-i). 

Discussion__ The mechanism is constructed so that this 
(V(X,M-i,t-i) - hi(t-i)) same amount is the total payoff to 
those agents regardless of i’s report. Thus, suppose 
that when the reported type is t, i’s payment is 
pi(X,M,t) + hi(t-i), so that pi(X,M,t) is i’s additional 
payment over what i would pay if it made the null 
report. The decision ô(X,M,t) generally depends on i’s 
report, and the total payoff to members of M-i is then 
∑i∈M-ivi(ô(X,M,t)),ti) + pi(X,M,t) + hi(t-i). We equate this 
total value with the corresponding total value when i 
makes the null report:  

( )( ) ( ) ( )
( ) ( )

ˆ , , , , ,

, ,

i i i i i
i M i

i i i

v o X M t t p X M t h t

h t V X M i t

−
∈ −

− −

+ +

= + −

∑
. (3) 

Using Eq. 1, we solve for the extra payment as: 
( ) ( ) ( )( )ˆ, , , , , , ,i i i i

i M ip X M t V X M i t v o X M t t−
∈ −= − −∑ , (4) 

( )( ) ( )( )ˆ ˆ, , , , , ,i i i i
i M i i M iv o X M i t t v o X M t t∈ − ∈ −= − −∑ ∑ . (5) 

According to Eq. 4, if agent i’s report leads to a 
change in the decision x, then i’s extra payment 
pi(X,M,t) is specified to compensate the members of 
M-i for the total losses they suffer on the account. 

Thus, we arrive at the formal definition of 
mechanism, and we state: 
Definition 1: The mechanism (Θ,(ô,p+h))  
1. is a direct mechanism in which ô satisfies Eq. 2, p 
satisfies Eq. 4 (for all M,X,t and i∈M), and payments 
are determined by pi(X,M,t) + hi(t-i). 
2.  An agent is pivotal if ô(X,M,t) ≠ ô(X,M-i,t-i).  
3. The pivot mechanism is the resource allocation 
mechanism in which hi = 0 for all i∈M. 
Mechanism Optimality: The derived mechanism 
ensures that it is always optimal for the agents to report 
truthfully, regardless of the reports made by others. We 
also demonstrate that reporting truthfully is a 
dominating strategy, that is, it is the only strategy that 
is always optimal. Let ti’ represent a type which agent i 
assumes that it can bring more incentive then reporting 
ti. We formulize these claims using the following 
definition.  
Definition 2: Truthful reporting is always an optimal 
strategy if condition i) below holds, and it is a 
dominant strategy if, in addition, condition ii) holds: 
i) ti ∈ argmaxti{vi(ô(X,M,ti’,t-i),t-i) - pi(X,M, ti’,t-i)}. 
ii) if t-i ≠ ti, then for some t-i, t-i ∉  
argmaxti’{vi(ô(X,M,ti’,t-i),ti) - pi(X,M,ti’,t-i)}. 

The above optimality conditions still have loop 

holes. For instance, it does not cater for the condition 
that all reports should be potentially pivotal. Thus, we 
insert the following condition:  
Condition iii): For all i∈M, ti, ti’∈Θi, there exists t-

i∈Θi, such that ∑i∈Mvi(x(X,M,ti’,t-i),t-i) < V(X,M,t). 
We now arrive at our main result, which we state as 
follows: 
Theorem 1: 1) Truthful reporting is always an optimal 
strategy. 2) If all reports are potentially pivotal, then 
truthful reporting is a dominant strategy. 
Proof: To show that truthful reporting is always 
optimal, fix profile t of actual types. When agent i 
reports ti’, the decision chosen is x(X,M,ti’,t-i). so, 
given the formula for i’s payment, its payoff is ui((x,p), 
ti’) = vi(ô(X,M,ti’,t-i),ti) - pi(X,M,ti’,t-i) - hi(t-i). Using 
Equation 4, the gain that i enjoys from the deviation is 
therefore: 

( )( ) ( )( ), , ' , ,i i i iu x p t u x p t−  

( )( ) ( ) ( )
( )( ) ( ) ( )

ˆ , , ', , , , ',

ˆ , , , , ,

i i i i i i i i i

i i i i i

v o X M t t t p X M t t h t

v o X M t t p X M t h t

− − −

−

 = − − −  
 − − 

 

( )( ) ( )( )ˆ ˆ, , ', , , , ,i i i i i i
i M i Mv o X M t t t v o X M t t−
∈ ∈= −∑ ∑  

( )( ) ( )ˆ , , ', , , , 0i i i i
i M v o X M t t t V X M t−
∈= − ≤∑ . 

This proves that truthful reporting is always optimal. 
By the assumption that all reports are potentially 
pivotal, for all ti’ ≠ ti, there exists t-i such that: ui((x,p), 
ti’) - ui((x,p), ti) = ∑i∈M vi(ô(X,M,ti’,t-i),ti) - V(X,M,t) ≤ 
0. Hence, by definition, truthful reporting is a 
dominant strategy. ■ 

Discussion__ The derived resource allocation is in its 
most general form. A careful observation would reveal 
that its special cases include every possible payment 
procedure. The most famous of them all is the Vickrey 
payment. We will reveal how our mechanism’s 
payment schema is equivalent to Vickrey payments. 
An agent’s value for any decision depends only on the 
objects that the agent acquires, and not on the objects 
acquired by other agents: vi(x,ti) = vi(xi,ti), where xi = 1 
if the agent acquires the object and xi = 0 otherwise. 
The value of not acquiring the object is normalized to 
zero: vi(0,ti) = 0. Since the loosing bidders are not 
pivotal (because their presence does not affect the 
allocation x), they pay zero in our mechanism. For 
simplicity let us write vi for vi(1,ti). According to Eq. 4, 
the price a winning agent pays in the (derived) 
mechanism is equal to the difference between the two 
numbers. The first number is the maximum total value 
to the other agents, when i does not participate in the 
allocation process, which is maxj≠ivi. The second 
number is the total value to the other agents when i 



wins, which is zero. Thus, when i wins, it pays 
maxj≠ivi, which is equal to the second highest 
valuation. This is exactly the Vickrey payment. To 
keep things simple, we will focus on applying the 
mechanism using Vickrey payments. 
 
3. Data Replication Problem 

 
Consider a distributed system comprising M sites, 

with each site having its own processing power, 
memory (primary storage) and media (secondary 
storage). Let Si and si be the name and the total storage 
capacity (in simple data units e.g. blocks), respectively, 
of site i where 1 ≤ i ≤ M. The M sites of the system are 
connected by a communication network. A link 
between two sites Si and Sj (if it exists) has a positive 
integer c(i,j) associated with it, giving the 
communication cost for transferring a data unit 
between sites Si and Sj. If the two sites are not directly 
connected by a communication link then the above 
cost is given by the sum of the costs of all the links in a 
chosen path from site Si to the site Sj. Without the loss 
of generality we assume that c(i,j) = c(j,i). This is a 
common assumption (e.g. see [10], [14], [18], etc.).  
Let there be N objects, each identifiable by a unique 
name Ok and size in simple data unites ok where 1 ≤ k 
≤ N. Let rk

i and wk
i be the total number of reads and 

writes, respectively, initiated from Si for Ok. 
Our replication policy assumes the existence of 

one primary copy for each object in the network. Let 
Pk, be the site which holds the primary copy of Ok, i.e., 
the only copy in the network that cannot be de-
allocated, hence referred to as primary site of the k-th 
object. Each primary site Pk, contains information 
about the whole replication scheme Rk of Ok. This can 
be done by maintaining a list of the sites where the k-th 
object is replicated at, called from now on the 
replicators of Ok. Moreover, every site Si stores a two-
field record for each object. The first field is its 
primary site Pk and the second the nearest 
neighborhood site NNk

i of site Si which holds a replica 
of object k. In other words, NNk

i is the site for which 
the reads from Si for Ok, if served there, would incur 
the minimum possible communication cost. It is 
possible that NNk

i = Si, if Si is a replicator or the 
primary site of Ok. Another possibility is that NNk

i = Pk, 
if the primary site is the closest one holding a replica 
of Ok. When a site Si reads an object, it does so by 
addressing the request to the corresponding NNk

i. For 
the updates we assume that every site can update every 
object. Updates of an object Ok are performed by 
sending the updated version to its primary site Pk, 
which afterwards broadcasts it to every site in its 

replication scheme Rk.  
For the DRP under consideration, we are 

interested in minimizing the total network transfer cost 
due to object movement, i.e. the Object Transfer Cost 
(OTC). The communication cost of the control 
messages has minor impact to the overall performance 
of the system, therefore, we do not consider it in the 
transfer cost model, but it is to be noted that 
incorporation of such a cost would be a trivial exercise. 
There are two components affecting OTC. The first 
component of OTC is due to the read requests.  Let Rk

i 
denote the total OTC, due to Sis’ reading requests for 
object Ok, addressed to the nearest site NNk

i. This cost 
is given by the following equation:  
 ( ),i i i

k k k kR r o c i NN= , (6) 

where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second 

component of OTC is the cost arising due to the writes. 
Let Wk

i be the total OTC, due to Sis’ writing requests 
for object Ok, addressed to the primary site Pk. This 
cost is given by the following equation:  

 ( ) ( )
,

, ,i i i
k k k k k

j R j ik
W w o c i P c NN j

∀∈ ≠

 
 
 
 

= + ∑  (7) 

Here, we made the indirect assumption that in 
order to perform a write we need to ship the whole 
updated version of the object. This of course is not 
always the case, as we can move only the updated parts 
of it (modeling such policies can also be done using 
our framework). The cumulative OTC, denoted as 
Coverall, due to reads and writes is given by:  
 ( )1 1

M N i i
overall k ki kC R W= == +∑ ∑ . (8) 

Let Xik=1 if Si holds a replica of object Ok, and 0 
otherwise. Xiks define an M×N replication matrix, 
named X, with boolean elements. Equation 3 is now 
refined to: 

( ) ( ){ }
( ) ( ) ( )1

1 1

1 min , | 1

, ,

i
ik k k jk

Mi x
k k k ik k k kx

M N
i k

X r o c i j X

w o c i P X w o c i P
X

=

= =

 − = 
 

+ +  

=
∑

∑ ∑  (9) 

Sites which are not the replicators of object Ok 
create OTC equal to the communication cost of their 
reads from the nearest replicator, plus that of sending 
their writes to the primary site of Ok . Sites belonging 
to the replication scheme of Ok, are associated with the 
cost of sending/receiving all the updated versions of it. 
Using the above formulation, DRP can be defined as:  

Find the assignment of 0, 1 values in the X matrix 
that minimizes Coverall, subject to the storage capacity 
constraint: 1 (1 )N i

ik kk X o s i M
=

≤ ∀ ≤ ≤∑ , and subject to the 

primary copies policy: 1    (1 )P kk
X k N= ∀ ≤ ≤ . 

In the generalized case, the DRP has been proven 
to be NP-complete [14].  



4. Mechanism Applied to the DRP 
 
We follow the same pattern as in Section 2. 

The Setup: The distributed system described in 
Section 3 is considered, where each site is represented 
by an agent, i.e., the mechanism contains M agents. In 
the context of the DRP, an agent holds two key 
elements of data: a) the available site capacity bi, and 
b) the replication cost (RCk

i = Rk
i+Wk

i) of an object k to 
the agent’s site i. There are three possible cases: 

1. DRP [π]: where each agent i holds the replication 
cost RCk

i = ti associated with each object k as private 
information, where as the available site capacity and 
everything else is public knowledge. 
2. DRP [∂]: where each agent i holds the available 
site capacity bi = ti as private information, where as 
RCk

i and everything else is public knowledge. 
3. DRP [π,∂]: where each agent i holds both the cost 
to replicate and the site capacity {RCk

i,bi} = ti as 
private information, where as everything else is public 
knowledge. 

Intuitively, if agents know the available site 
capacities of other agents, that gives them no 
advantage whatsoever. However, if they come about to 
know their replication cost then they can modify their 
valuations and alter the algorithmic output. It is to be 
noted that an agent can only calculate the replication 
cost via the frequencies of reads and writes. 
Everything else such as the network topology, latency 
on communication lines, and even the site capacities 
can be public knowledge. Therefore, DRP[π] is the 
only natural choice. 
Valuation: The agents in the mechanism value an 
object k for its benefit that it brings to the agent’s site i. 
This benefit is equivalent to the savings that the object 
k brings in the total object transfer cost (OTC) if the 
object k is replicated at site i. This benefit is given 
as: 1

( , )Mi i x

k k k k kx
B RC w o c i P

=
= − ∑ . 

Communications: The agents calculate the benefit of 
every potential object and relay to the mechanism their 
best possible response, i.e., the object that has the most 
benefit to them, i.e., ti = argmaxk∈N Bk

i.  
Payments: Each agent after acquiring the right to 
replicate an object onto its site makes a Vickery 
payment. This right is granted by the mechanism to the 
agent who projects the highest true type. The 
mechanism then informs the agent to make a payment 
equivalent to the second highest benefit projected by 
an agent in the set M-i. This form of payment was 
discussed at the end of Section 2, and is termed as 
Vickrey payments. 

Description of Algorithm: We maintain a list Li at 
each server. This list contains all the objects that can 
be replicated by agent i onto site Si. We can obtain this 
list by examining the two constraints of the DRP. List 
Li would contain all the objects that have their size less 
then the total available space bi. Moreover, if site Si is 
the primary host of some object k’, then k’ should not 
be in Li. We also maintain a list LS containing all sites 
that can replicate an object, i.e., Si∈LS if Li≠NULL. 
The algorithm works iteratively. In each step the 
mechanism asks all the agents to send their preferences 
(first PARFOR loop). Each agent i recursively 
calculates the true data of every object in list Li. Each 
agent then reports the dominant true data (line 08) to 
the mechanism. The mechanism receives all the 
corresponding entries, and then chooses the best 
dominant true data. This is broadcasted to all the 
agents, so that they can update their nearest neighbor 
table NNk

i, which is shown in Line 21 (NNi
OMAX). The 

object is replicated and payments made to the agent. 
The mechanism progresses forward till there are no 
more agents interested in acquiring any data for 
replication.     

The Mechanism 
Initialize: 
LS, Li, Tk

i, M, MT 
01 WHILE LS ≠ NULL DO 
02     OMAX = NULL; MT = NULL; Pi = NULL; 
03            PARFOR each Si∈LS DO 
04                           FOR each Ok∈ Li DO 
05                                     Tk

i = compute (Bk
i);  /*valuation*/ 

06                           ENDFOR 
07                    ti = argmaxk(Tk

i);  
08                    SEND ti to M; RECEIVE at M ti in MT; 
09             ENDPARFOR 
10   OMAX = argmaxk(MT);    /*Choose the global dominate valuation*/ 
11   DELETE k from MT;  
12   Pi = argmaxk(MT);               /*Calculate the payment*/ 
13   BROADCAST OMAX;  
14   SEND Pi to Si; RECEIVE at Si  /*The winning agent pays this amount*/
15   SEND Pi to M; RECEIVE at M       /*Send the payment*/ 
16   Replicate OOMAX;  
17   bi=bi - ok;                           /*Update capacity*/ 
18   Li = Li - Ok;                    /*Update the list*/ 
19   IF Li = NULL THEN SEND info to M to update LS = LS - Si;         
20           PARFOR each Si∈LS DO  
21                  Update NNi

OMAX                 
22           ENDPARFOR                  /*Get ready for the next round*/ 
23 ENDWHILE 

Figure 1: The Mechanism. 

Theorem 2: The mechanism takes O(MN2) time. 
Proof: The worst case scenario is when each site has 
sufficient capacity to store all objects. In that case, the 
while loop (Line 02) performs MN iterations. The time 
complexity for each iteration is governed by the two 
PARFOR loops (Lines 04 and 20). The first loop uses 
at most N iterations, while the send loop performs the 
update in constant time. Hence, we conclude that the 
worst case running time of the mechanism is O(MN2).■ 



5. Experiments and Discussion of Results 
 
We performed experiments on a 440MHz Ultra 10 

machine with 512MB memory. The experimental 
evaluations were targeted to benchmark the placement 
policies. The resource allocation mechanism was 
implemented using IBM Pthreads.  

Table 1: Parameter interval variance. 
Topology Mathematical Representation Parameter Interval Variance 
SGRG [10] 
(12 topologies) 

Randomized layout with node degree 
(d*) and Euclidian distance (d) 
between nodes as parameters. 

D={5,10,15,20},  
d*={10,15,20}. 

GT-ITM PR [4] 
(5 topologies) 

Randomized layout with edges added 
between the randomly located vertices 
with a probability (p). 

p={0.4,0.5,0.6,0.7,0.8}. 

GT-ITM W [4] 
(9 topologies) 

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25},  
β={0.2,0.3,0.4}. 

SGFCGUD [10] 
(5 topologies) 

Fully connected graph with uniform 
link distances (d). 

d1=[1,10],d2=[1,20],d3=[1,50], 
d4=[10,20], d5=[20,50]. 

SGFCGRD [10] 
(5 topologies) 

Fully connected graph with random 
link distances (d). 

d1=[1,10],d2=[1,20],d3=[1,50], 
d4=[10,20], d5=[20,50]. 

SGRGLND [10] 
(9 topologies) 

Random layout with link distance 
having a lognormal distribution [7]. 

Μ={8.455,9.345,9.564}, 
σ={1.278,1.305,1.378}. 

To establish diversity in our experimental setups, 
the network connectively was changed considerably. 
In this paper, we only present the results that were 
obtained using a maximum of 500 sites (nodes). We 
used existing topology generator toolkits and also self 
generated networks. In all the topologies the distance 
of the link between nodes was equivalent to the 
communication cost. Table 1 summarizes the various 
techniques used to gather forty-five various topologies 
for networks with 100 nodes. It is to be noted that the 
parameters vary for networks with lesser/larger 
number of nodes. To evaluate the chosen replica 
placement techniques on realistic traffic patterns, we 
used the access logs collected at the Soccer World Cup 
1998 website [3]. Each experimental setup was 
evaluated thirteen times, i.e., the Friday (24 hours) logs 
from May 1, 1998 to July 24, 1998. Thus, each 
experimental setup in fact represents an average of the 
585 (13×45) data set points. To process the logs, we 
wrote a script that returned: only those objects which 
were present in all the logs (2000 in our case), the total 
number of requests from a particular client for an 
object, the average and the variance of the object size. 
From this log we chose the top five hundred clients 
(maximum experimental setup). A random mapping 
was then performed of the clients to the nodes of the 
topologies. Note that this mapping is not 1-1, rather 1-
M. This gave us enough skewed workload to mimic 
real world scenarios. It is also worthwhile to mention 
that the total amount of requests entertained for each 
problem instance was in the range of 1-2 million. The 
primary replicas’ original site was mimicked by 
choosing random locations. The capacities of the sites 
C% were generated randomly with range from Total 
Primary Object Sizes/2 to 1.5×Total Primary Object 

Sizes. The variance in the object size collected from 
the access logs helped to install enough diversity to 
benchmark object updates. The updates were randomly 
pushed onto different sites, and the total system update 
load was measured in terms of the percentage update 
requests U% compared that to the initial network with 
no updates. 

For comparison, we selected five various types of 
replica placement techniques. To provide a fair 
comparison, the assumptions and system parameters 
were kept the same in all the approaches. We select 
from [18] the greedy approach (Greedy) for 
comparison because it is shown to be the best 
compared with four other approaches (including the 
proposed technique in [13]); thus, we indirectly 
compare with four additional approaches as well. 
Algorithms reported in [10] (branch and bound (Aε-
Star)), [11] (Dutch (DA) and English auctions (EA)) 
and [14] (Genetic based algorithm (GRA)) are also 
among the chosen techniques for comparisons. Due to 
space limitations we will only give a brief overview of 
the comparative techniques. Details for a specific 
technique can be obtained from the referenced papers. 
Performance metric: The solution quality is 
measured in terms of network communication cost 
(OTC percentage) that is saved under the replication 
scheme found by the algorithms, compared to the 
initial one, i.e., when only primary copies exists.  
1. Aε-Star: In [10] the authors proposed a 1+ε 
admissible A-Star based technique called Aε-Star. This 
technique uses two lists: OPEN and FOCAL. The 
FOCAL list is the sub-list of OPEN, and only contains 
those nodes that do not deviate from the lowest cost 
node by a factor greater than 1+ε. The technique works 
similar to A-Star, with the exception that the node 
selection is done not from the OPEN but from the 
FOCAL list. It is easy to see that this approach will 
never run into the problem of memory overflow, 
moreover, the FOCAL list always ensures that only the 
candidate solutions within a bound of 1+ε of the A-
Star are expanded.  
2. Greedy based technique: We modify the greedy 
approach reported in [18], to fit our problem 
formulation. The greedy algorithm works in an 
iterative fashion. In the first iteration, all the M sites 
are investigated to find the replica location(s) of the 
first among a total of N objects. Consider that we 
choose an object i for replication. The algorithm 
recursively makes calculations based on the 
assumption that all the users in the system request for 
object i. Thus, we have to pick a site that yields the 
lowest cost of replication for the object i. In the second 
iteration, the location for the second site is considered. 



Based on the choice of object i, the algorithm now 
would identify the second site for replication, which, in 
conjunction with the site already picked, yields the 
lowest replication cost. Observe here that this 
assignment may or may not be for the same object i. 
The algorithm progresses forward till either one of the 
DRP constraints are violated. 
3. Dutch auction: The auctioneer begins with a high 
asking price which is lowered until some agent is 
willing to accept the auctioneer's price. That agent 
pays the last announced price. This type of auction is 
convenient when it is important to auction objects 
quickly, since a sale never requires more than one bid. 
In no case does the auctioneer reveal any of the bids 
submitted to him, and no information is shared 
between the agents. It is shown that for an agent to 
have a probabilistically superior bid than n-1 other 
bids, the agent’s valuation should be divided by n [11]. 
4. English auction: In this type of auction, the agents 
bid openly against one another, with each bid being 
higher than the previous bid. The auction ends when 
no agent is willing to bid further. During the auction 
when an auctioneer receives a bid higher than the 
currently submitted bids, he announces the bid value 
so that other agents (if needed) can revise their 
currently submitted bids. In [11] the discussion on EA 
reveals that the optimal strategy for a bidder i is to bid 
a value which is directly derived from his valuation. 
5. GRA: In [14], the authors proposed a genetic 
algorithm based heuristic called GRA. GRA provides 
good solution quality, but suffers from slow 
termination time. This algorithm was selected since it 
realistically addressed the fine-grained data replication 
using the same problem formulation as undertaken in 
this article. 
 
5.1. Comparative Analysis 

 
We study the behavior of the placement techniques 

when the number of sites increases (Figure 2), by 
setting the number of objects to 2000, while in Figure 
3, we study the behavior when the number of objects 
increase, by setting the number of sites to 500. We 
should note here that the space limitations restricted us 
to include various other scenarios with varying 
capacity and update ratio. The plot trends were similar 
to the ones reported in this article. For the first 
experiment we fixed C=20% and U=75%. We 
intentionally chose a high workload so as to see if the 
techniques studied successfully handled the extreme 
cases. The first observation is that the derived resource 
allocation mechanism (MECH) and EA outperformed 
other techniques by considerable amounts. Second, DA 

converged to a better solution quality under certain 
problem instances. Some interesting observations were 
also recorded, such as; all but GRA showed initial loss 
in OTC savings with the initial number of site increase 
in the system, as much as 7% loss was recorded in case 
of Greedy with only a 40 site increase. GRA showed 
an initial gain since with the increase in the number of 
sites, the population permutations increase 
exponentially, but with the further increase in the 
number of sites this phenomenon is not so observable 
as all the essential objects are already replicated. The 
top performing techniques (DA, EA, Aε-Star and 
MECH) showed an almost constant performance 
increase (after the initial loss in OTC savings). This is 
because by adding a site (server) in the network, we 
introduce additional traffic (local requests), together 
with more storage capacity available for replication. 
All four equally cater for the two diverse effects. GRA 
also showed a similar trend but maintained lower OTC 
savings. This was in line with the claims presented in 
[10] and [14]. 

To observe the effect of increase in the number of 
objects in the system, we chose a softer workload with 
C=20% and U=25%. The intention was to observe the 
trends for all the algorithms under various workloads. 
The increase in the number of objects has diverse 
effects on the system as new read/write patterns (users 
are offered more choices) emerge, and also the 
increase in the strain on the overall capacity of the 
system (increase in the number of replicas). An 
effective algorithm should incorporate both the 
opposing trends. From the plot, the most surprising 
result came from GRA. It dropped its savings from 
58% to 13%. This was contradictory to what was 
reported in [14]. But there the authors had used a 
uniformly distributed link cost topology, and their 
traffic was based on the Zipf distribution [21], while 
the traffic access logs of the World Cup 1998 are more 
or less double-Pareto in nature. The plot also shows a 
near identical performance by Aε-Star, DA and 
Greedy. The relative difference among the three 
techniques is less than 2%. However, Aε-Star did 
maintain its domination. From the plots the supremacy 
of EA and MECH is observable. Both the techniques 
showed high performance, with a slight edge in favor 
of MECH. 

 Next, we observe the effects of system capacity 
increase. An increase in the storage capacity means 
that a large number of objects can be replicated. 
Replicating an object that is already extensively 
replicated, is unlikely to result in significant traffic 
savings as only a small portion of the servers will be 
affected overall. Moreover, since objects are not 
equally read intensive, increase in the storage capacity
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Figure 2: OTC savings versus number of sites.  Figure 3: OTC savings versus number of objects. 
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Figure 4: OTC savings versus site capacity.  Figure 5: OTC savings versus reads. 

   
would have a great impact at the beginning (initial 
increase in capacity), but has little effect after a certain 
point, where the most beneficial ones are already 
replicated. This is observable in Figure 4, which shows 
the performance of the algorithms. GRA once again 
performed the worst. The gap between all other 
approaches was reduced to within 7% of each other. 
DA and MECH showed an immediate initial increase 
(the point after which further replicating objects is 
inefficient) in its OTC savings, but afterward showed a 
near constant performance. GRA although performed 
the worst, but observably gained the most OTC 
savings (35%) followed by Greedy with 29%. Further 
experiments with various update ratios (5%, 10%, and 
20%) showed similar plot trends. It is also noteworthy 
(plots not shown in this paper due to space restrictions) 
that the increase in capacity from 10% to 17%, resulted 
in four times more replicas for all the algorithms.  

Now, we observe the effects of increase in the read 
and update (write) frequencies. Since these two 
parameters are complementary to each other, we 
describe them together. In both the setups the number 
of sites and objects were kept constant. Increase in the 
number of reads in the system would mean that there is 
a need to replicate as many object as possible (closer to 

the users). However, the increase in the number of 
updates in the system requires the replicas be placed as 
close as to the primary site as possible (to reduce the 
update broadcast). This phenomenon is also 
interrelated with the system capacity, as the update 
ratio sets an upper bound on the possible traffic 
reduction through replication. The plots in Figures 5 
and 6 show the results of read and update frequencies, 
respectively. A clear classification can be made 
between the algorithms. Aε-Star, DA, EA, Greedy and 
MECH incorporate the increase in the number of reads 
by replicating more objects and thus savings increase 
up to 88%. GRA gained the least of the OTC savings 
of up to 67%. To understand why there is such a gap in 
the performance between the algorithms, we should 
recall that GRA specifically depend on the initial 
population (for details see [14]). Moreover, GRA 
maintains a localized network perception. Increase in 
updates result in objects having decreased local 
significance (unless the vicinity is in close proximity to 
the primary location). On the other hand, Aε-Star, DA, 
EA, Greedy and MECH never tend to deviate from 
their global view of the problem domain.  

Next, we compare the termination time of the 
algorithms. Various problem instances were recorded
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 Table 2: Running time (sec.) [C=45%, U=15%]. 
Problem Size Greedy GRA Aε-Star DA EA MECH

M=300, N=1400 206.26 326.82 279.45 95.64 178.90 126.32 
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 134.65 
M=300, N=1500 258.45 409.17 333.03 127.10 191.24 157.46 
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 171.21 
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 194.29 
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 220.06 
M=400, N=1450 366.38 541.12 396.96 192.41 221.10 236.35 
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 238.63 
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 241.93 
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 253.21 
M=500, N=1400 478.10 689.44 511.69 257.96 301.72 279.42 
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 293.24 
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 310.55 
M=500, N=1550 525.33 753.50 645.26 289.64 331.57 325.32 
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 334.90  

Figure 6: OTC savings versus updates.   

Table 3: Running time (sec.) [C=20%, U=45%]. 
Problem Size Greedy GRA Aε-Star DA EA MECH

M=20, N=50 70.11 92.66 97.18 25.16 39.36 30.86 
M=20, N=100 76.59 96.40 102.97 27.71 41.21 36.12 
M=20, N=150 78.26 101.01 113.85 32.44 54.57 43.21 
M=30, N=50 95.24 126.92 140.78 38.45 59.25 49.01 
M=30, N=100 109.17 125.04 148.83 39.21 63.14 54.33 
M=30, N=150 135.21 148.59 179.74 45.96 68.20 59.15 
M=40, N=50 126.40 154.13 198.77 42.66 76.27 63.39 
M=40, N=100 134.65 168.48 236.67 43.62 77.16 73.56 

 Table 4: Average OTC (%) savings. 
Problem Size Greedy GRA Aε-Star DA EA MECH

N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 70.15 73.15 74.73 
N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 72.66 77.41 78.16 
N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 70.22 71.23 73.45 

N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 70.21 71.12 72.04 
N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 69.29 70.61 72.19 
N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 70.16 71.29 71.95 
N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 72.77 72.61 73.35 
N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 68.63 69.24 73.28  

     
with C=20%, 45% and U=45%, 15%. Each problem 
instance represents the average recorded time over all 
the 45 topologies and 13 various access logs. The 
entries in bold represent the fastest time recorded over 
the problem instance.  It is observable that DA and 
MECH terminated faster than all the other techniques, 
followed by EA, Greedy, Aε-Star and GRA. MECH 
with the maximum problem setup terminated 
approximately in 334.90 seconds (Table 2 last entry). 
Tables 2 and 3 summarize the results. 

Lastly, Table 4 shows the quality of the solution in 
terms of OTC percentage for eight problem instances 
(randomly chosen), each being a combination of 
various numbers of sites and objects, with varying 
storage capacity and update ratio. For each row, the 
best result is indicated in bold. The proposed MECH 
algorithm steals the show in the context of solution 
quality, but Aε-Star, EA and DA do indeed give a 
good competition, with a savings within a range of 
5%-10% of MECH. 
 
6. Related Work 

 
Myriad theoretical approaches are proposed that we 

classify into the following six categories: 
1. Facility Location: In [8], the authors employed 
several techniques to address the Internet data 
replication problem similar to that of the classical 
facility location problem. The techniques reported are 
very tedious and have superfluous assumptions. Thus, 

the problem definition in [8] does not fully capture the 
concept of replicating a single object/site over a fixed 
number of hosts [15].   
2. File Allocation: File allocation has been a popular 
line of research in: distributed computing, distributed 
databases, multimedia databases, paging algorithms, 
and video server systems [1], [12], [16]. All the above 
referenced articles incorporate data replication onto a 
set of distributed locations (distributed system), which 
can easily be modified to its equivalent problem in the 
context of Internet. Under the assumption of unlimited 
server memory the authors in [12], provided a 
guaranteed optimal result for Internet data replication, 
but has little practical use [15], since the replica 
placements are based on the belief that the access 
patterns remain unchanged. 
3. Minimum k-Median: The celebrated NP-complete 
minimum k-median problem captures the coarse-
grained replication well, as it can tackle with the 
problem of distributing a single replica over a fixed 
number of hosts. In [13] the authors studied the 
problem of placing M proxies at N nodes when the 
topology of the network is a tree and proposed an 
O(N3M2) algorithm. A more generalized solution was 
presented in [18]. There the authors proposed a greedy 
algorithm that outperformed other techniques 
including the work reported in [13].  
4. Capacity-constrained Optimization: In [9], the 
authors use the capacity-constrained version of the 
minimum k-median problem, and guarantee a stable 



performance. However, such results are possible only 
with very conservative assumptions as addressed in 
[8]; therefore, they can not handle the dynamics of the 
system [15]. 
5. Bin Packing: The bin packing based problem 
formulation is commonly used to model load balancing 
problems. The problem of distributing documents in a 
cluster of web servers in order to perform load 
balancing was reported in [16]. However, the goodness 
of the results only holds when the network under 
consideration was small. A more extensive evaluation 
using bin packing techniques is performed in [10]. 
6. Knapsack: To achieve better load balancing partial 
replication can be employed. The idea of partial 
replication is analogous to the classical 0-1 knapsack 
problem [15]. Some of the significance work in this 
line of pursuit is reported in [5] and [14].  

A number of bibliographies and reading materials 
for web content replication are also available online, 
e.g., [6]. A brief overview of replication and its 
challenges are provided in [15] and [19]. 

 
7. Conclusion 

 
This paper proposed a game theoretical resource 

allocation mechanism that effectively addressed the 
fine-grained data replication problem with selfish 
players. The experimental results which were recorded 
against some well-known techniques, such as: branch 
and bound, greedy, game theoretical auctions, and 
genetic algorithms revealed that the proposed 
mechanism exhibited 5%-10% improvement in the 
solution quality and incurred fast execution time. 
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