
A Powerful Direct Mechanism for Optimal WWW Content Replication

Samee Ullah Khan and Ishfaq Ahmad
Department of Computer Science and Engineering

University of Texas at Arlington, Arlington, TX-76019, U.S.A.
{sakhan, iahmad}@cse.uta.edu

Abstract

This paper addresses the problem of fine-grained
data replication in large distributed systems, such as
the Internet, so as to minimize the user access delays.
With fine-grained data replication, certain data
objects, as opposed to a complete site, are duplicated
at multiple servers. In this paper, we abstract the
distributed system as an agent-based model wherein
mobile agents on behalf of their nodes continuously
compete for allocation and reallocation of data
objects. However, since these agents do not have a
global view of the system, the optimization process
becomes highly local. This localization may encourage
these selfish agents to alter the output of the resource
allocation mechanism in their favor by misreporting
critical data such as the objects’ popularity. This
paper proposes a game theoretical resource allocation
mechanism involving selfish agents. The mechanism
ensures that the agents do not misreport, always follow
the rules, and that a global optima is achieved. The
mechanism is extensively evaluated against some well-
known algorithms, such as: greedy, branch and bound,
game theoretical auctions and genetic algorithms. The
experimental results reveal that the mechanism
provides excellent solution quality, while maintaining
fast execution time.

1. Introduction

Data replication across a read intensive network can

potentially reduce the network traffic, which, in turn,
can lower the response times experienced by end-
users. On the other hand, with rapid updates,
maintaining a large number of replicas can incur a
prohibitively high overhead [14]. Therefore, efficient
and effective replication schemas strongly depend on
how many replicas to be placed in the system, and
more importantly where.

We abstract the distributed computing system
(Internet) as an agent-based model wherein mobile
agents continuously compete for allocation and
reallocation of the system resources (data objects in
our case). An agent is a computational entity that is
capable of autonomous behaviour in the sense of being
aware of the options available to it when faced with a
decision making task related to its domain of interest
[2]. Numerous applications exist for such agents often
in various fields of electronic commerce, network
management, intelligent user interfaces, etc. In agent-
based distributed computing systems, an agent is seen
as part of a community of similar though
heterogeneous agents that are designed to compete for
scarce resources. Motivated by their self interests and
the fact that the agents do not have a global view of the
distributed system, they optimize their individual
interests, such as, minimize communication costs,
latencies, etc. In such systems there is no motivation
for cooperation and the agents may manipulate the
outcome of the resource allocation mechanism by
misreporting their capabilities leading to severe
performance degradation. To cope with these selfish
agents, new resource allocation mechanisms are to be
conceived. The goal of a mechanism should be to force
the agents not to misreport and always follow the rules.

In this paper, we will use game theoretical
techniques to identify a mechanism that encapsulates
the selfishness of the agents, while having a
controlling hand over them. This work is inspired from
the work reported in [17] and [20]. In essence, game
theory is the study of what happens when independent
agents act selfishly. A mechanism asks how one can
design systems so that agents’ selfish behavior results
in the desired system-wide goals.

The major results of this paper are as follows:
1. We derive a generalized resource allocation
mechanism. This mechanism allows selfish agents to
compete in a non-cooperative environment.
2. We investigate this mechanism in detail by
identifying some useful properties and the necessary

conditions of optimality.
3. As an application we employ the derived
mechanism to the fine-grained data replication
problem (DRP). We perform extensive experimental
comparisons against some well-known techniques,
such as: greedy, branch and bound, genetic and game
theoretical auctions.

The remainder of this paper is organized as follows.
Section 2 describes the resource allocation mechanism.
Section 3 formulates the DRP. Section 4 concentrates
on modeling the resource allocation mechanism for the
DRP. The experimental results, related work and
concluding remarks are provided in Sections 5, 6 and
7, respectively.

2. The Resource Allocation Mechanism

We describe the resource allocation mechanism as:

The Environment: The environment can be described
as a triplet (M,Ω,Θ). The first element of the triplet M
is the list of agents (or potential participating agents) in
the mechanism. The second element Ω, is the set of
possible outcomes over which the agents and the
mechanism have preferences. The third element is a
highly abstract one: Θ = Θ1×…×ΘM is the set of type
profiles t = (t1,…,tM), which includes a type for each
agent. Agent i’s type ti indexes the agent’s preferences.
The type profile and the outcome combine to
determine individual payoffs: ui: Ω×Θ→R. Thus,
ui(Ф,t) denotes the payoff that agent i gets when the
outcome is Ф∈Ω and the type profile is t. It is
sometimes convenient to write a type profile as t = (ti,t-

i), where t-i lists the types of the agents other than i,
i.e., t-i = (t1,…ti-1,ti+1,…,tM).
The Setup: Let there be M agents. Let X denote the set
of possible decisions with typical element x. An
outcome is a pair (x,p) describing a decision x and a
vector of positive or negative payments p = (p1,…pM)
by the agents. For instance, in auctions, the decision is
a vector where xi = 1 if agent i gets the object and 0
otherwise. The associated vector of payments is p,
where pi = bidi if i bids bidi and wins, and in that case
pj = 0 for the other agents.
Utility: Each agent i values outcome (utility) according
to ui((x,p),t) = vi(x,ti) - pi, that is, i’s payoff
corresponding to outcome (x,p) is i’s value vi(x,ti) of
the decision x, which depends only on i’s own type ti,
minus the payment that i must make in order to acquire
the object.
Performance: The performance of any mechanism
can be described in two parts [20]: a) the decision
performance maps types t into decisions x, whereas b)

the transfer performance maps types t into payments p.
When the decision x allocates objects, we call this x,
the allocation performance. The mechanism attempts
to achieve efficient performance subject to the
constraint that payments add up to zero. Given the
assumptions described above, a decision x is efficient
if it maximizes the total value ∑i∈Mvi(x,ti). For instance,
a final allocation is efficient if it awards the object to
the agent who values it most. In our proposed
mechanism, by construction, net payments always add
up to zero, because the mechanism receives any sums
that the agents pay.
Incentive Compatibility: This means that a) S = Θ
and that b) the strategy profile (σi(ti) = ti), i∈M is an
equilibrium, where S is the strategy set and σi is any
strategy based on the type profile of agent i. In simple
words, the first condition means that each agent is
required to report a type to the mechanism. In literature
the direct mechanism is usually referred as being pairs
(x,p), leaving the strategy set implicit. The second
condition, incentive compatibility means that reporting
ones’ type truthfully is equilibrium according to
whatever solution concept is chosen. In this paper, we
focus on dominant strategy implementation, so the
relevant solution concept is that each agent plays a
dominant strategy.
Objective: The mechanism uses the reported types to
compute the maximum total value V(X,M,t) and a
corresponding total value maximizing decision
ô(X,M,t) as follows:
 (, ,) max (,)i i

x X i MV X M t v x t∈ ∈= ∑ , (1)
 ˆ(, ,) arg max (,)i i

x X i Mo X M t v x t∈ ∈= ∑ . (2)
One might think that such a direct approach would be
doomed to failure, because each agent seems to have
an incentive to misrepresent its preferences to
influence the decision in its favor. However, the
agent’s incentives depend not only on the decision but
also on the payments, which is the clever and
surprising part of this mechanism.
Misreporting and Payments: The mechanism
eliminates incentives for misreporting by imposing on
each agent the cost of any distortion it causes. The
payment for agent i is set so that i’s report cannot
effect the total payoff to the set of other agents
(excluding agent i), M-i. With this principle in mind,
let us derive a formula for the payments. To capture
the effect of i’s report on the outcome, we introduce a
hypothetical null report, which corresponds to agent i
reporting that it is indifferent among the possible
decisions and cares only about payments. When i
makes the null report, the mechanism optimally
chooses the decision ô(X,M-i,t-i). The resulting total

value of the decision for the set of agents M-i would be
V(X,M-i,t-i), and the mechanism might also collect a
payment hi(t-i) from agent i. Thus, if i makes a null
report, the total payoff to the agents in set M-i is
V(X,M-i,t-i) - hi(t-i).

Discussion__ The mechanism is constructed so that this
(V(X,M-i,t-i) - hi(t-i)) same amount is the total payoff to
those agents regardless of i’s report. Thus, suppose
that when the reported type is t, i’s payment is
pi(X,M,t) + hi(t-i), so that pi(X,M,t) is i’s additional
payment over what i would pay if it made the null
report. The decision ô(X,M,t) generally depends on i’s
report, and the total payoff to members of M-i is then
∑i∈M-ivi(ô(X,M,t)),ti) + pi(X,M,t) + hi(t-i). We equate this
total value with the corresponding total value when i
makes the null report:

()() () ()
() ()

ˆ , , , , ,

, ,

i i i i i
i M i

i i i

v o X M t t p X M t h t

h t V X M i t

−
∈ −

− −

+ +

= + −

∑
. (3)

Using Eq. 1, we solve for the extra payment as:
() () ()()ˆ, , , , , , ,i i i i

i M ip X M t V X M i t v o X M t t−
∈ −= − −∑ , (4)

()() ()()ˆ ˆ, , , , , ,i i i i
i M i i M iv o X M i t t v o X M t t∈ − ∈ −= − −∑ ∑ . (5)

According to Eq. 4, if agent i’s report leads to a
change in the decision x, then i’s extra payment
pi(X,M,t) is specified to compensate the members of
M-i for the total losses they suffer on the account.

Thus, we arrive at the formal definition of
mechanism, and we state:
Definition 1: The mechanism (Θ,(ô,p+h))
1. is a direct mechanism in which ô satisfies Eq. 2, p
satisfies Eq. 4 (for all M,X,t and i∈M), and payments
are determined by pi(X,M,t) + hi(t-i).
2. An agent is pivotal if ô(X,M,t) ≠ ô(X,M-i,t-i).
3. The pivot mechanism is the resource allocation
mechanism in which hi = 0 for all i∈M.
Mechanism Optimality: The derived mechanism
ensures that it is always optimal for the agents to report
truthfully, regardless of the reports made by others. We
also demonstrate that reporting truthfully is a
dominating strategy, that is, it is the only strategy that
is always optimal. Let ti’ represent a type which agent i
assumes that it can bring more incentive then reporting
ti. We formulize these claims using the following
definition.
Definition 2: Truthful reporting is always an optimal
strategy if condition i) below holds, and it is a
dominant strategy if, in addition, condition ii) holds:
i) ti ∈ argmaxti{vi(ô(X,M,ti’,t-i),t-i) - pi(X,M, ti’,t-i)}.
ii) if t-i ≠ ti, then for some t-i, t-i ∉
argmaxti’{vi(ô(X,M,ti’,t-i),ti) - pi(X,M,ti’,t-i)}.

The above optimality conditions still have loop

holes. For instance, it does not cater for the condition
that all reports should be potentially pivotal. Thus, we
insert the following condition:
Condition iii): For all i∈M, ti, ti’∈Θi, there exists t-

i∈Θi, such that ∑i∈Mvi(x(X,M,ti’,t-i),t-i) < V(X,M,t).
We now arrive at our main result, which we state as
follows:
Theorem 1: 1) Truthful reporting is always an optimal
strategy. 2) If all reports are potentially pivotal, then
truthful reporting is a dominant strategy.
Proof: To show that truthful reporting is always
optimal, fix profile t of actual types. When agent i
reports ti’, the decision chosen is x(X,M,ti’,t-i). so,
given the formula for i’s payment, its payoff is ui((x,p),
ti’) = vi(ô(X,M,ti’,t-i),ti) - pi(X,M,ti’,t-i) - hi(t-i). Using
Equation 4, the gain that i enjoys from the deviation is
therefore:

()() ()(), , ' , ,i i i iu x p t u x p t−

()() () ()
()() () ()

ˆ , , ', , , , ',

ˆ , , , , ,

i i i i i i i i i

i i i i i

v o X M t t t p X M t t h t

v o X M t t p X M t h t

− − −

−

 = − − −
 − −

()() ()()ˆ ˆ, , ', , , , ,i i i i i i
i M i Mv o X M t t t v o X M t t−
∈ ∈= −∑ ∑

()() ()ˆ , , ', , , , 0i i i i
i M v o X M t t t V X M t−
∈= − ≤∑ .

This proves that truthful reporting is always optimal.
By the assumption that all reports are potentially
pivotal, for all ti’ ≠ ti, there exists t-i such that: ui((x,p),
ti’) - ui((x,p), ti) = ∑i∈M vi(ô(X,M,ti’,t-i),ti) - V(X,M,t) ≤
0. Hence, by definition, truthful reporting is a
dominant strategy. ■

Discussion__ The derived resource allocation is in its
most general form. A careful observation would reveal
that its special cases include every possible payment
procedure. The most famous of them all is the Vickrey
payment. We will reveal how our mechanism’s
payment schema is equivalent to Vickrey payments.
An agent’s value for any decision depends only on the
objects that the agent acquires, and not on the objects
acquired by other agents: vi(x,ti) = vi(xi,ti), where xi = 1
if the agent acquires the object and xi = 0 otherwise.
The value of not acquiring the object is normalized to
zero: vi(0,ti) = 0. Since the loosing bidders are not
pivotal (because their presence does not affect the
allocation x), they pay zero in our mechanism. For
simplicity let us write vi for vi(1,ti). According to Eq. 4,
the price a winning agent pays in the (derived)
mechanism is equal to the difference between the two
numbers. The first number is the maximum total value
to the other agents, when i does not participate in the
allocation process, which is maxj≠ivi. The second
number is the total value to the other agents when i

wins, which is zero. Thus, when i wins, it pays
maxj≠ivi, which is equal to the second highest
valuation. This is exactly the Vickrey payment. To
keep things simple, we will focus on applying the
mechanism using Vickrey payments.

3. Data Replication Problem

Consider a distributed system comprising M sites,

with each site having its own processing power,
memory (primary storage) and media (secondary
storage). Let Si and si be the name and the total storage
capacity (in simple data units e.g. blocks), respectively,
of site i where 1 ≤ i ≤ M. The M sites of the system are
connected by a communication network. A link
between two sites Si and Sj (if it exists) has a positive
integer c(i,j) associated with it, giving the
communication cost for transferring a data unit
between sites Si and Sj. If the two sites are not directly
connected by a communication link then the above
cost is given by the sum of the costs of all the links in a
chosen path from site Si to the site Sj. Without the loss
of generality we assume that c(i,j) = c(j,i). This is a
common assumption (e.g. see [10], [14], [18], etc.).
Let there be N objects, each identifiable by a unique
name Ok and size in simple data unites ok where 1 ≤ k
≤ N. Let rk

i and wk
i be the total number of reads and

writes, respectively, initiated from Si for Ok.
Our replication policy assumes the existence of

one primary copy for each object in the network. Let
Pk, be the site which holds the primary copy of Ok, i.e.,
the only copy in the network that cannot be de-
allocated, hence referred to as primary site of the k-th
object. Each primary site Pk, contains information
about the whole replication scheme Rk of Ok. This can
be done by maintaining a list of the sites where the k-th
object is replicated at, called from now on the
replicators of Ok. Moreover, every site Si stores a two-
field record for each object. The first field is its
primary site Pk and the second the nearest
neighborhood site NNk

i of site Si which holds a replica
of object k. In other words, NNk

i is the site for which
the reads from Si for Ok, if served there, would incur
the minimum possible communication cost. It is
possible that NNk

i = Si, if Si is a replicator or the
primary site of Ok. Another possibility is that NNk

i = Pk,
if the primary site is the closest one holding a replica
of Ok. When a site Si reads an object, it does so by
addressing the request to the corresponding NNk

i. For
the updates we assume that every site can update every
object. Updates of an object Ok are performed by
sending the updated version to its primary site Pk,
which afterwards broadcasts it to every site in its

replication scheme Rk.
For the DRP under consideration, we are

interested in minimizing the total network transfer cost
due to object movement, i.e. the Object Transfer Cost
(OTC). The communication cost of the control
messages has minor impact to the overall performance
of the system, therefore, we do not consider it in the
transfer cost model, but it is to be noted that
incorporation of such a cost would be a trivial exercise.
There are two components affecting OTC. The first
component of OTC is due to the read requests. Let Rk

i
denote the total OTC, due to Sis’ reading requests for
object Ok, addressed to the nearest site NNk

i. This cost
is given by the following equation:
 (),i i i

k k k kR r o c i NN= , (6)

where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second

component of OTC is the cost arising due to the writes.
Let Wk

i be the total OTC, due to Sis’ writing requests
for object Ok, addressed to the primary site Pk. This
cost is given by the following equation:

 () ()
,

, ,i i i
k k k k k

j R j ik
W w o c i P c NN j

∀∈ ≠

= + ∑ (7)

Here, we made the indirect assumption that in
order to perform a write we need to ship the whole
updated version of the object. This of course is not
always the case, as we can move only the updated parts
of it (modeling such policies can also be done using
our framework). The cumulative OTC, denoted as
Coverall, due to reads and writes is given by:
 ()1 1

M N i i
overall k ki kC R W= == +∑ ∑ . (8)

Let Xik=1 if Si holds a replica of object Ok, and 0
otherwise. Xiks define an M×N replication matrix,
named X, with boolean elements. Equation 3 is now
refined to:

() (){ }
() () ()1

1 1

1 min , | 1

, ,

i
ik k k jk

Mi x
k k k ik k k kx

M N
i k

X r o c i j X

w o c i P X w o c i P
X

=

= =

 − =

+ +

=
∑

∑ ∑ (9)

Sites which are not the replicators of object Ok
create OTC equal to the communication cost of their
reads from the nearest replicator, plus that of sending
their writes to the primary site of Ok . Sites belonging
to the replication scheme of Ok, are associated with the
cost of sending/receiving all the updated versions of it.
Using the above formulation, DRP can be defined as:

Find the assignment of 0, 1 values in the X matrix
that minimizes Coverall, subject to the storage capacity
constraint: 1 (1)N i

ik kk X o s i M
=

≤ ∀ ≤ ≤∑ , and subject to the

primary copies policy: 1 (1)P kk
X k N= ∀ ≤ ≤ .

In the generalized case, the DRP has been proven
to be NP-complete [14].

4. Mechanism Applied to the DRP

We follow the same pattern as in Section 2.

The Setup: The distributed system described in
Section 3 is considered, where each site is represented
by an agent, i.e., the mechanism contains M agents. In
the context of the DRP, an agent holds two key
elements of data: a) the available site capacity bi, and
b) the replication cost (RCk

i = Rk
i+Wk

i) of an object k to
the agent’s site i. There are three possible cases:

1. DRP [π]: where each agent i holds the replication
cost RCk

i = ti associated with each object k as private
information, where as the available site capacity and
everything else is public knowledge.
2. DRP [∂]: where each agent i holds the available
site capacity bi = ti as private information, where as
RCk

i and everything else is public knowledge.
3. DRP [π,∂]: where each agent i holds both the cost
to replicate and the site capacity {RCk

i,bi} = ti as
private information, where as everything else is public
knowledge.

Intuitively, if agents know the available site
capacities of other agents, that gives them no
advantage whatsoever. However, if they come about to
know their replication cost then they can modify their
valuations and alter the algorithmic output. It is to be
noted that an agent can only calculate the replication
cost via the frequencies of reads and writes.
Everything else such as the network topology, latency
on communication lines, and even the site capacities
can be public knowledge. Therefore, DRP[π] is the
only natural choice.
Valuation: The agents in the mechanism value an
object k for its benefit that it brings to the agent’s site i.
This benefit is equivalent to the savings that the object
k brings in the total object transfer cost (OTC) if the
object k is replicated at site i. This benefit is given
as: 1

(,)Mi i x

k k k k kx
B RC w o c i P

=
= − ∑ .

Communications: The agents calculate the benefit of
every potential object and relay to the mechanism their
best possible response, i.e., the object that has the most
benefit to them, i.e., ti = argmaxk∈N Bk

i.
Payments: Each agent after acquiring the right to
replicate an object onto its site makes a Vickery
payment. This right is granted by the mechanism to the
agent who projects the highest true type. The
mechanism then informs the agent to make a payment
equivalent to the second highest benefit projected by
an agent in the set M-i. This form of payment was
discussed at the end of Section 2, and is termed as
Vickrey payments.

Description of Algorithm: We maintain a list Li at
each server. This list contains all the objects that can
be replicated by agent i onto site Si. We can obtain this
list by examining the two constraints of the DRP. List
Li would contain all the objects that have their size less
then the total available space bi. Moreover, if site Si is
the primary host of some object k’, then k’ should not
be in Li. We also maintain a list LS containing all sites
that can replicate an object, i.e., Si∈LS if Li≠NULL.
The algorithm works iteratively. In each step the
mechanism asks all the agents to send their preferences
(first PARFOR loop). Each agent i recursively
calculates the true data of every object in list Li. Each
agent then reports the dominant true data (line 08) to
the mechanism. The mechanism receives all the
corresponding entries, and then chooses the best
dominant true data. This is broadcasted to all the
agents, so that they can update their nearest neighbor
table NNk

i, which is shown in Line 21 (NNi
OMAX). The

object is replicated and payments made to the agent.
The mechanism progresses forward till there are no
more agents interested in acquiring any data for
replication.

The Mechanism
Initialize:
LS, Li, Tk

i, M, MT
01 WHILE LS ≠ NULL DO
02 OMAX = NULL; MT = NULL; Pi = NULL;
03 PARFOR each Si∈LS DO
04 FOR each Ok∈ Li DO
05 Tk

i = compute (Bk
i); /*valuation*/

06 ENDFOR
07 ti = argmaxk(Tk

i);
08 SEND ti to M; RECEIVE at M ti in MT;
09 ENDPARFOR
10 OMAX = argmaxk(MT); /*Choose the global dominate valuation*/
11 DELETE k from MT;
12 Pi = argmaxk(MT); /*Calculate the payment*/
13 BROADCAST OMAX;
14 SEND Pi to Si; RECEIVE at Si /*The winning agent pays this amount*/
15 SEND Pi to M; RECEIVE at M /*Send the payment*/
16 Replicate OOMAX;
17 bi=bi - ok; /*Update capacity*/
18 Li = Li - Ok; /*Update the list*/
19 IF Li = NULL THEN SEND info to M to update LS = LS - Si;
20 PARFOR each Si∈LS DO
21 Update NNi

OMAX
22 ENDPARFOR /*Get ready for the next round*/
23 ENDWHILE

Figure 1: The Mechanism.

Theorem 2: The mechanism takes O(MN2) time.
Proof: The worst case scenario is when each site has
sufficient capacity to store all objects. In that case, the
while loop (Line 02) performs MN iterations. The time
complexity for each iteration is governed by the two
PARFOR loops (Lines 04 and 20). The first loop uses
at most N iterations, while the send loop performs the
update in constant time. Hence, we conclude that the
worst case running time of the mechanism is O(MN2).■

5. Experiments and Discussion of Results

We performed experiments on a 440MHz Ultra 10

machine with 512MB memory. The experimental
evaluations were targeted to benchmark the placement
policies. The resource allocation mechanism was
implemented using IBM Pthreads.

Table 1: Parameter interval variance.
Topology Mathematical Representation Parameter Interval Variance
SGRG [10]
(12 topologies)

Randomized layout with node degree
(d*) and Euclidian distance (d)
between nodes as parameters.

D={5,10,15,20},
d*={10,15,20}.

GT-ITM PR [4]
(5 topologies)

Randomized layout with edges added
between the randomly located vertices
with a probability (p).

p={0.4,0.5,0.6,0.7,0.8}.

GT-ITM W [4]
(9 topologies)

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25},
β={0.2,0.3,0.4}.

SGFCGUD [10]
(5 topologies)

Fully connected graph with uniform
link distances (d).

d1=[1,10],d2=[1,20],d3=[1,50],
d4=[10,20], d5=[20,50].

SGFCGRD [10]
(5 topologies)

Fully connected graph with random
link distances (d).

d1=[1,10],d2=[1,20],d3=[1,50],
d4=[10,20], d5=[20,50].

SGRGLND [10]
(9 topologies)

Random layout with link distance
having a lognormal distribution [7].

Μ={8.455,9.345,9.564},
σ={1.278,1.305,1.378}.

To establish diversity in our experimental setups,
the network connectively was changed considerably.
In this paper, we only present the results that were
obtained using a maximum of 500 sites (nodes). We
used existing topology generator toolkits and also self
generated networks. In all the topologies the distance
of the link between nodes was equivalent to the
communication cost. Table 1 summarizes the various
techniques used to gather forty-five various topologies
for networks with 100 nodes. It is to be noted that the
parameters vary for networks with lesser/larger
number of nodes. To evaluate the chosen replica
placement techniques on realistic traffic patterns, we
used the access logs collected at the Soccer World Cup
1998 website [3]. Each experimental setup was
evaluated thirteen times, i.e., the Friday (24 hours) logs
from May 1, 1998 to July 24, 1998. Thus, each
experimental setup in fact represents an average of the
585 (13×45) data set points. To process the logs, we
wrote a script that returned: only those objects which
were present in all the logs (2000 in our case), the total
number of requests from a particular client for an
object, the average and the variance of the object size.
From this log we chose the top five hundred clients
(maximum experimental setup). A random mapping
was then performed of the clients to the nodes of the
topologies. Note that this mapping is not 1-1, rather 1-
M. This gave us enough skewed workload to mimic
real world scenarios. It is also worthwhile to mention
that the total amount of requests entertained for each
problem instance was in the range of 1-2 million. The
primary replicas’ original site was mimicked by
choosing random locations. The capacities of the sites
C% were generated randomly with range from Total
Primary Object Sizes/2 to 1.5×Total Primary Object

Sizes. The variance in the object size collected from
the access logs helped to install enough diversity to
benchmark object updates. The updates were randomly
pushed onto different sites, and the total system update
load was measured in terms of the percentage update
requests U% compared that to the initial network with
no updates.

For comparison, we selected five various types of
replica placement techniques. To provide a fair
comparison, the assumptions and system parameters
were kept the same in all the approaches. We select
from [18] the greedy approach (Greedy) for
comparison because it is shown to be the best
compared with four other approaches (including the
proposed technique in [13]); thus, we indirectly
compare with four additional approaches as well.
Algorithms reported in [10] (branch and bound (Aε-
Star)), [11] (Dutch (DA) and English auctions (EA))
and [14] (Genetic based algorithm (GRA)) are also
among the chosen techniques for comparisons. Due to
space limitations we will only give a brief overview of
the comparative techniques. Details for a specific
technique can be obtained from the referenced papers.
Performance metric: The solution quality is
measured in terms of network communication cost
(OTC percentage) that is saved under the replication
scheme found by the algorithms, compared to the
initial one, i.e., when only primary copies exists.
1. Aε-Star: In [10] the authors proposed a 1+ε
admissible A-Star based technique called Aε-Star. This
technique uses two lists: OPEN and FOCAL. The
FOCAL list is the sub-list of OPEN, and only contains
those nodes that do not deviate from the lowest cost
node by a factor greater than 1+ε. The technique works
similar to A-Star, with the exception that the node
selection is done not from the OPEN but from the
FOCAL list. It is easy to see that this approach will
never run into the problem of memory overflow,
moreover, the FOCAL list always ensures that only the
candidate solutions within a bound of 1+ε of the A-
Star are expanded.
2. Greedy based technique: We modify the greedy
approach reported in [18], to fit our problem
formulation. The greedy algorithm works in an
iterative fashion. In the first iteration, all the M sites
are investigated to find the replica location(s) of the
first among a total of N objects. Consider that we
choose an object i for replication. The algorithm
recursively makes calculations based on the
assumption that all the users in the system request for
object i. Thus, we have to pick a site that yields the
lowest cost of replication for the object i. In the second
iteration, the location for the second site is considered.

Based on the choice of object i, the algorithm now
would identify the second site for replication, which, in
conjunction with the site already picked, yields the
lowest replication cost. Observe here that this
assignment may or may not be for the same object i.
The algorithm progresses forward till either one of the
DRP constraints are violated.
3. Dutch auction: The auctioneer begins with a high
asking price which is lowered until some agent is
willing to accept the auctioneer's price. That agent
pays the last announced price. This type of auction is
convenient when it is important to auction objects
quickly, since a sale never requires more than one bid.
In no case does the auctioneer reveal any of the bids
submitted to him, and no information is shared
between the agents. It is shown that for an agent to
have a probabilistically superior bid than n-1 other
bids, the agent’s valuation should be divided by n [11].
4. English auction: In this type of auction, the agents
bid openly against one another, with each bid being
higher than the previous bid. The auction ends when
no agent is willing to bid further. During the auction
when an auctioneer receives a bid higher than the
currently submitted bids, he announces the bid value
so that other agents (if needed) can revise their
currently submitted bids. In [11] the discussion on EA
reveals that the optimal strategy for a bidder i is to bid
a value which is directly derived from his valuation.
5. GRA: In [14], the authors proposed a genetic
algorithm based heuristic called GRA. GRA provides
good solution quality, but suffers from slow
termination time. This algorithm was selected since it
realistically addressed the fine-grained data replication
using the same problem formulation as undertaken in
this article.

5.1. Comparative Analysis

We study the behavior of the placement techniques

when the number of sites increases (Figure 2), by
setting the number of objects to 2000, while in Figure
3, we study the behavior when the number of objects
increase, by setting the number of sites to 500. We
should note here that the space limitations restricted us
to include various other scenarios with varying
capacity and update ratio. The plot trends were similar
to the ones reported in this article. For the first
experiment we fixed C=20% and U=75%. We
intentionally chose a high workload so as to see if the
techniques studied successfully handled the extreme
cases. The first observation is that the derived resource
allocation mechanism (MECH) and EA outperformed
other techniques by considerable amounts. Second, DA

converged to a better solution quality under certain
problem instances. Some interesting observations were
also recorded, such as; all but GRA showed initial loss
in OTC savings with the initial number of site increase
in the system, as much as 7% loss was recorded in case
of Greedy with only a 40 site increase. GRA showed
an initial gain since with the increase in the number of
sites, the population permutations increase
exponentially, but with the further increase in the
number of sites this phenomenon is not so observable
as all the essential objects are already replicated. The
top performing techniques (DA, EA, Aε-Star and
MECH) showed an almost constant performance
increase (after the initial loss in OTC savings). This is
because by adding a site (server) in the network, we
introduce additional traffic (local requests), together
with more storage capacity available for replication.
All four equally cater for the two diverse effects. GRA
also showed a similar trend but maintained lower OTC
savings. This was in line with the claims presented in
[10] and [14].

To observe the effect of increase in the number of
objects in the system, we chose a softer workload with
C=20% and U=25%. The intention was to observe the
trends for all the algorithms under various workloads.
The increase in the number of objects has diverse
effects on the system as new read/write patterns (users
are offered more choices) emerge, and also the
increase in the strain on the overall capacity of the
system (increase in the number of replicas). An
effective algorithm should incorporate both the
opposing trends. From the plot, the most surprising
result came from GRA. It dropped its savings from
58% to 13%. This was contradictory to what was
reported in [14]. But there the authors had used a
uniformly distributed link cost topology, and their
traffic was based on the Zipf distribution [21], while
the traffic access logs of the World Cup 1998 are more
or less double-Pareto in nature. The plot also shows a
near identical performance by Aε-Star, DA and
Greedy. The relative difference among the three
techniques is less than 2%. However, Aε-Star did
maintain its domination. From the plots the supremacy
of EA and MECH is observable. Both the techniques
showed high performance, with a slight edge in favor
of MECH.

 Next, we observe the effects of system capacity
increase. An increase in the storage capacity means
that a large number of objects can be replicated.
Replicating an object that is already extensively
replicated, is unlikely to result in significant traffic
savings as only a small portion of the servers will be
affected overall. Moreover, since objects are not
equally read intensive, increase in the storage capacity

 No. of Sites

O
TC

 S
av

es

Performance
N=2000, C=20%, U=75%

0 50 100 150 200 250 300 350 400 450 500
66%

68%

70%

72%

74%

76%

78%

80%

82%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

No. of Objects

O
TC

 S
av

es

Performance
M=500, C=20%, U=25%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
8%

16%

24%

32%

40%

48%

56%

64%

72%

80%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
8%

16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 2: OTC savings versus number of sites. Figure 3: OTC savings versus number of objects.

Capacity of Sites

O
TC

 S
av

es

Performance
N=2000, M =500, U=5%

9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 39% 42%
45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Reads

O
TC

 S
av

es

Performance
N=2000, M =500, C=45%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
36%

42%

48%

54%

60%

66%

72%

78%

84%

90%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 4: OTC savings versus site capacity. Figure 5: OTC savings versus reads.

would have a great impact at the beginning (initial
increase in capacity), but has little effect after a certain
point, where the most beneficial ones are already
replicated. This is observable in Figure 4, which shows
the performance of the algorithms. GRA once again
performed the worst. The gap between all other
approaches was reduced to within 7% of each other.
DA and MECH showed an immediate initial increase
(the point after which further replicating objects is
inefficient) in its OTC savings, but afterward showed a
near constant performance. GRA although performed
the worst, but observably gained the most OTC
savings (35%) followed by Greedy with 29%. Further
experiments with various update ratios (5%, 10%, and
20%) showed similar plot trends. It is also noteworthy
(plots not shown in this paper due to space restrictions)
that the increase in capacity from 10% to 17%, resulted
in four times more replicas for all the algorithms.

Now, we observe the effects of increase in the read
and update (write) frequencies. Since these two
parameters are complementary to each other, we
describe them together. In both the setups the number
of sites and objects were kept constant. Increase in the
number of reads in the system would mean that there is
a need to replicate as many object as possible (closer to

the users). However, the increase in the number of
updates in the system requires the replicas be placed as
close as to the primary site as possible (to reduce the
update broadcast). This phenomenon is also
interrelated with the system capacity, as the update
ratio sets an upper bound on the possible traffic
reduction through replication. The plots in Figures 5
and 6 show the results of read and update frequencies,
respectively. A clear classification can be made
between the algorithms. Aε-Star, DA, EA, Greedy and
MECH incorporate the increase in the number of reads
by replicating more objects and thus savings increase
up to 88%. GRA gained the least of the OTC savings
of up to 67%. To understand why there is such a gap in
the performance between the algorithms, we should
recall that GRA specifically depend on the initial
population (for details see [14]). Moreover, GRA
maintains a localized network perception. Increase in
updates result in objects having decreased local
significance (unless the vicinity is in close proximity to
the primary location). On the other hand, Aε-Star, DA,
EA, Greedy and MECH never tend to deviate from
their global view of the problem domain.

Next, we compare the termination time of the
algorithms. Various problem instances were recorded

 Updates

O
TC

 S
av

es

Performance
N=2000, M =500, C=60%

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

 Table 2: Running time (sec.) [C=45%, U=15%].
Problem Size Greedy GRA Aε-Star DA EA MECH

M=300, N=1400 206.26 326.82 279.45 95.64 178.90 126.32
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 134.65
M=300, N=1500 258.45 409.17 333.03 127.10 191.24 157.46
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 171.21
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 194.29
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 220.06
M=400, N=1450 366.38 541.12 396.96 192.41 221.10 236.35
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 238.63
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 241.93
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 253.21
M=500, N=1400 478.10 689.44 511.69 257.96 301.72 279.42
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 293.24
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 310.55
M=500, N=1550 525.33 753.50 645.26 289.64 331.57 325.32
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 334.90

Figure 6: OTC savings versus updates.

Table 3: Running time (sec.) [C=20%, U=45%].
Problem Size Greedy GRA Aε-Star DA EA MECH

M=20, N=50 70.11 92.66 97.18 25.16 39.36 30.86
M=20, N=100 76.59 96.40 102.97 27.71 41.21 36.12
M=20, N=150 78.26 101.01 113.85 32.44 54.57 43.21
M=30, N=50 95.24 126.92 140.78 38.45 59.25 49.01
M=30, N=100 109.17 125.04 148.83 39.21 63.14 54.33
M=30, N=150 135.21 148.59 179.74 45.96 68.20 59.15
M=40, N=50 126.40 154.13 198.77 42.66 76.27 63.39
M=40, N=100 134.65 168.48 236.67 43.62 77.16 73.56

 Table 4: Average OTC (%) savings.
Problem Size Greedy GRA Aε-Star DA EA MECH

N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 70.15 73.15 74.73
N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 72.66 77.41 78.16
N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 70.22 71.23 73.45

N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 70.21 71.12 72.04
N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 69.29 70.61 72.19
N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 70.16 71.29 71.95
N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 72.77 72.61 73.35
N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 68.63 69.24 73.28

with C=20%, 45% and U=45%, 15%. Each problem
instance represents the average recorded time over all
the 45 topologies and 13 various access logs. The
entries in bold represent the fastest time recorded over
the problem instance. It is observable that DA and
MECH terminated faster than all the other techniques,
followed by EA, Greedy, Aε-Star and GRA. MECH
with the maximum problem setup terminated
approximately in 334.90 seconds (Table 2 last entry).
Tables 2 and 3 summarize the results.

Lastly, Table 4 shows the quality of the solution in
terms of OTC percentage for eight problem instances
(randomly chosen), each being a combination of
various numbers of sites and objects, with varying
storage capacity and update ratio. For each row, the
best result is indicated in bold. The proposed MECH
algorithm steals the show in the context of solution
quality, but Aε-Star, EA and DA do indeed give a
good competition, with a savings within a range of
5%-10% of MECH.

6. Related Work

Myriad theoretical approaches are proposed that we

classify into the following six categories:
1. Facility Location: In [8], the authors employed
several techniques to address the Internet data
replication problem similar to that of the classical
facility location problem. The techniques reported are
very tedious and have superfluous assumptions. Thus,

the problem definition in [8] does not fully capture the
concept of replicating a single object/site over a fixed
number of hosts [15].
2. File Allocation: File allocation has been a popular
line of research in: distributed computing, distributed
databases, multimedia databases, paging algorithms,
and video server systems [1], [12], [16]. All the above
referenced articles incorporate data replication onto a
set of distributed locations (distributed system), which
can easily be modified to its equivalent problem in the
context of Internet. Under the assumption of unlimited
server memory the authors in [12], provided a
guaranteed optimal result for Internet data replication,
but has little practical use [15], since the replica
placements are based on the belief that the access
patterns remain unchanged.
3. Minimum k-Median: The celebrated NP-complete
minimum k-median problem captures the coarse-
grained replication well, as it can tackle with the
problem of distributing a single replica over a fixed
number of hosts. In [13] the authors studied the
problem of placing M proxies at N nodes when the
topology of the network is a tree and proposed an
O(N3M2) algorithm. A more generalized solution was
presented in [18]. There the authors proposed a greedy
algorithm that outperformed other techniques
including the work reported in [13].
4. Capacity-constrained Optimization: In [9], the
authors use the capacity-constrained version of the
minimum k-median problem, and guarantee a stable

performance. However, such results are possible only
with very conservative assumptions as addressed in
[8]; therefore, they can not handle the dynamics of the
system [15].
5. Bin Packing: The bin packing based problem
formulation is commonly used to model load balancing
problems. The problem of distributing documents in a
cluster of web servers in order to perform load
balancing was reported in [16]. However, the goodness
of the results only holds when the network under
consideration was small. A more extensive evaluation
using bin packing techniques is performed in [10].
6. Knapsack: To achieve better load balancing partial
replication can be employed. The idea of partial
replication is analogous to the classical 0-1 knapsack
problem [15]. Some of the significance work in this
line of pursuit is reported in [5] and [14].

A number of bibliographies and reading materials
for web content replication are also available online,
e.g., [6]. A brief overview of replication and its
challenges are provided in [15] and [19].

7. Conclusion

This paper proposed a game theoretical resource

allocation mechanism that effectively addressed the
fine-grained data replication problem with selfish
players. The experimental results which were recorded
against some well-known techniques, such as: branch
and bound, greedy, game theoretical auctions, and
genetic algorithms revealed that the proposed
mechanism exhibited 5%-10% improvement in the
solution quality and incurred fast execution time.

References

[1] P. Apers, “Data Allocation in Distributed
Database Systems,” ACM Trans. Database Systems,
13(3), pp. 263-304, 1988.
[2] D. Appleby, and S. Steward, “Mobile Software
Agents for Control in Telecommunications Networks,”
BT Technology Journal, 12(2), pp. 104-113, 1994.
[3] M. Arlitt and T. Jin, “Workload characterization
of the 1998 World Cup Web Site,” Tech. report, HP
Lab, Palo Alto, HPL-1999-35(R.1), 1999.
[4] K. Calvert, M. Doar, E. Zegura, “Modeling
Internet Topology,” IEEE Communications, 35(6), pp.
160-163, 1997.
[5] C. Ceri, G. Pelagatti, and G. Martella, “Optimal
File Allocation in a Computer Network: A Solution
based on Knapsack Problem,” Computer Networks,
vol. 6, pp. 345-357, 1982.

[6] B. Davison, “A Survey of Proxy Cache Evaluation
Techniques,” in Proc. of the 4th International Web
Caching Workshop, 1999, pp. 67-77.
[7] S. Floyd and V. Paxson, “Difficulties in Simulating
the Internet,” IEEE/ACM Trans. Networking, 9(4), pp.
253-285, 2001.
[8] S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt,
“Constrained Mirror Placement on the Internet,” in
Proc. of the IEEE INFOCOM, 2001, pp. 31-40.
[9] J. Kangasharju, J. Roberts and K. Ross, “Object
Replication Strategies in Content Distribution
Networks,” in Proc. of Web Caching and Content
Distribution Workshop, 2001, pp. 455-466.
[10] S. Khan and I. Ahmad, “Heuristic-based
Replication Schemas for Fast Information Retrevial
over the Internet,” in Proc. of 17th International
Conference on Parallel and Distributed Computing
Systems, San Fransisco, U.S.A., 2004.
[11] S. Khan and I. Ahmad, “Internet Content
Replication: A Solution from Game Theory,” Tech.
report, CSE-2004-05, 2004.
[12] Y. Kwok, K. Karlapalem, I. Ahmad and N. Pun,
“Design and Evaluation of Data Allocation Algorithms
for Distributed Database Systems,” IEEE Journal on
Selected areas in Communication, 14(7), pp. 1332-
1348, 1996.
[13] B. Li, M. Golin, G. Italiano and X. Deng, “On the
Optimal Placement of Web Proxies in the Internet,” in
Proc. of the IEEE INFOCOM, 2000, pp. 1282-1290.
[14] T. Loukopoulos, and I. Ahmad, “Static and
Adaptive Distributed Data Replication using Genetic
Algorithms,” Journal of Parallel and Distributed
Computing, 64(11), pp. 1270-1285, 2004.
[15] T. Loukopoulos, I. Ahmad, and D. Papadias, “An
Overview of Data Replication on the Internet,” in
Proc. of ISPAN, 2002, pp. 31-36.
[16] S. March and S. Rho, “Allocating Data and
Operations to Nodes in Distributed Database Design,”
IEEE Trans. Knowledge and Data Engineering, 7(2),
pp.305-317, 1995.
[17] N. Nisan and A. Ronen, “Algorithimic Mechanism
Design,” in Proc. of ACM STOC, 1999, pp. 129-140.
[18] L. Qiu, V. Padmanabhan and G. Voelker, “On the
Placement of Web Server Replicas,” in Proc. of the
IEEE INFOCOM, 2001, pp. 1587-1596.
[19] M. Rabinovich, “Issues in Web Content
Replication,” Data Engineering Bulletin, 21(4), pp.
21-29, 1998.
[20] W. Vickrey, “Counterspeculation, Auctions and
Competitive Sealed Tenders,” Journal of Finance, pp.
8-37, 1961.
[21] G. Zipf, Human Behavior and the Principle of
Least-Effort, Addison-Wesley, 1949.

