
Monitoring Remotely Executing Shared Memory Programs in

Software DSMs ∗

Long Fei, Xing Fang, Y. Charlie Hu, and Samuel P. Midkiff

Purdue University, West Lafayette, IN 47907

{lfei, xfang, ychu, smidkiff}@purdue.edu

Abstract

Peer-to-Peer (P2P) cycle sharing over the Internet
has become increasingly popular as a way to share idle
cycles. A fundamental problem faced by P2P cycle
sharing systems is how to incrementally monitor and
verify, with low overhead, the execution of jobs submit-
ted to a remote untrusted hosting machine, or cluster
of machines. In this paper, we present the design and
implementation of GripCop DSM, a novel incremen-
tal execution monitoring and verification scheme for
software distributed shared memory (SDSM) programs
running on remote clusters. Our scheme maximally
leverages the shared memory abstraction provided by
the SDSM system by extending the shared memory ab-
straction to the monitoring process by replicating one
of the processes running on the host cluster to verify in-
termediate results at runtime. Our GripCop DSM em-
ploys two monitoring schemes: (i) a full-scale monitor-
ing scheme that completely replicates the computation
of a process running on the cluster, and (ii) a decoy
monitoring scheme that deceives the host cluster into
believing that full-scale monitoring is being performed
without it ever actually being done, thereby incurring
negligible overhead. Experiments show that the com-
bined use of full-scale and decoy monitoring ensures
faithful execution with low performance impact, even
over a wide area network.

1 Introduction

Cycle sharing over the Internet has recently made
large gains in popularity as a way to share idle cycles.
Large numbers of Internet connected computers can
join a peer-to-peer network and donate idle CPU cycles
to fulfill the computing needs of peer nodes. Nodes

∗The research reported here was supported, in part, by Na-
tional Science Foundation Grants 0325603-CCR and 0313033-
CCR.

can receive credit, or be charged, according to their
contributions to, or consumption of, resources [14, 5].
With individual hosts becoming more powerful, more
idle cycles are available, making P2P cycle sharing an
ideal mechanism to utilize the idle CPU resources.

Significant technical challenges must be overcome
to unleash the potential of the massive computational
resources that are going unused:

1. How are resources discovered, and how are providers of
these resources compensated (and cheaters punished)?

2. How is the host machine, i.e. the machine executing
the job, protected from hostile binaries?

3. How does the submitter machine, i.e. the machine sub-
mitting a job, know its job is being faithfully executed
as the job executes?

The first two of these items are the subject of re-
search by the authors of this paper and others [3, 4,
5, 7, 8, 10, 17]. These systems support one or more of
sandboxing applications for host safety, resource dis-
covery, and compensation.

In this paper, we focus on the third problem: how
can the submitter track the progress of a job, and re-
ceive assurances that the job is executing correctly? In
particular, we focus on how to remotely monitor the
progress of parallel applications targetting a software
distributed shared memory system (SDSM) running on
clusters of PCs or workstations.

An SDSM system provides the programmer with the
ease of programming a shared memory multiprocessor
system and the cost efficiency of utilizing existing net-
worked workstations. Moreover, by running an SDSM
on an Internet connected remote cluster, the SDSM
system can be made available for demanding compu-
tational tasks via a peer-to-peer Internet cycle sharing
system. In our context, we assume clusters accessed
via P2P networks are tightly coupled systems.

In this paper, we describe the design and implemen-
tation of the GripCop DSM, a novel runtime execution
monitoring and verification system for a remote SDSM
cluster, built on TreadMarks [1]. In the GripCop DSM,

IEEE IPDPS 2006

the submitting machine runs a replica of one process of
the application running on the remote cluster, and per-
forms online monitoring and verification. In the rest of
this paper, we refer to this monitoring scheme as full-
scale monitoring.

The objective of the GripCop DSM is to monitor
the progress of a remotely executing job by partially
duplicating the computation being done on the host
machine. The novelty of the GripCop DSM is in how
it leverages the shared memory abstraction provided
by the underlying SDSM system by extending the ab-
straction to include the remote monitoring process. In
doing so it greatly simplifies the tasks to be performed
by the monitored process and the monitoring process
in order to support runtime execution monitoring.

Full-scale monitoring, however, can incur a high
overhead on the execution of the SDSM program run-
ning on the host cluster. The high overhead comes
from the high cost of synchronization between the mon-
itoring process and the host processes, and the higher
round trip delay for the monitoring process to retrieve
application data, due to the much higher wide area
network latencies compared to local area network la-
tencies. To reduce the overall performance impact on
the program being monitored and the load on the moni-
toring machine, GripCop DSM only performs full-scale
monitoring on a small percentage of submitted jobs.
For the remaining jobs, GripCop DSM uses an ex-
tremely light-weight decoy monitoring scheme on the
submitter side. Decoy monitoring does not replicate
the computation of the target process, instead, it makes
the host cluster believe it is the subject of full-scale
monitoring. Whether to perform full-scale monitoring
or decoy monitoring can be decided at compile time (a
flag in the compiler commandline) or at runtime (by
a coin-toss according to a user-specified probability).
The submitted application running on the host ma-
chines notices no differences between these two moni-
toring modes, requiring the host cluster to always as-
sume it is being monitored.

Our system also provides support for intermediate
result verification and incremental payments. This al-
lows the risk of both parties to be limited by verifying
the intermediate results during the execution time, and
making partial payments as the job progresses.

This paper makes the following contributions:

• A novel method of monitoring the progress and cor-
rectness of software DSM applications running on a
remote host cluster;

• A dual-mode monitoring scheme that enables tunable
tradeoffs between monitoring overhead and confidence;

• The design and implementation of an extension to the
TreadMarks library that supports full-scale monitor-

ing and decoy monitoring. The extended library allows
remote monitoring with little change to the existing
application source code.

• Experimental results over a wide area network showing
the practicality of this novel technique.

2 Shared Memory Programming in

TreadMarks

TreadMarks is a state-of-the-art SDSM [13] which
provides the programmer with a virtual global shared
address space on distributed memory machines such
as a cluster of workstations. Its design focuses on
reducing the amount of communication necessary to
maintain memory consistency. The major implemen-
tation features of TreadMarks are lazy release consis-
tency [11] and the multiple-writer protocol [6]. Release
consistency (RC) [9] is a relaxed memory consistency
model that permits a processor to delay making its
local changes to shared data visible to other proces-
sors until certain synchronization accesses occur. This
delay allows RC to be implemented more efficiently
than conventional release consistency [12], which re-
quires modifications to shared memory be made visi-
ble to other processors immediately. The lazy release
consistency implementation of RC in TreadMarks fur-
ther reduces the number of messages and the amount
of data compared to earlier, eager implementations [11]
by delaying the propagation of modifications until nec-
essary. To reduce the communication due to false shar-
ing, TreadMarks implements a multiple-writer proto-
col, introduced in [6], which allows multiple processors
to simultaneously modify (different parts of) their local
copy of a shared page. The modifications are merged at
the next synchronization operation in accordance with
the definition of RC, thereby reducing the cost of false
sharing.

TreadMarks provides the following synchronization
APIs:

• Tmk barrier(): block the calling process until every
other process arrives at the barrier;

• Tmk lock acquire(): block the calling process until it
acquires the specified lock;

• Tmk lock release(): release the specified lock.

These synchronization APIs serve dual purposes.
First, they are synchronization points in parallel pro-
grams. Second, in the lazy release consistency model
and multiple-writer protocol, the exchange of consis-
tency meta data (vector timestamps and write notices)
is delayed until these synchronization points.

3 Threat Model

The goal of verification for our system is to ensure
that cheaters cannot always cheat undetected. Three
assumptions are made in our system. First, we assume
the existence of a credit system (such as described in
[5]) that awards credits to host machines that faithfully
execute remotely submitted jobs and imposes a penalty
on hosts that perform fraudulently. How to calculate
credits accurately is beyond the scope of this paper.
Second, we assume the owners of the host machines
do not go so far as to sniff and decode network traffic.
Third, and just as important, we assume participants
of a cycle-sharing community are rational. A host ma-
chine will cheat only if the expected profit is greater
than the expectated cost. That is, let p be the prob-
ability of cheating and being caught, R be the profit
of cheating (e.g. gaining credits by false execution), Q
be the penalty if caught (e.g. being kicked out of the
community), then a host machine will cheat only if:

(1 − p) × R > p × Q (1)

Inequality (1) implies that if p > 0, the credit system
can deter rational cheaters by having a large (Q/R)
value. In other words, if the host machine is not sure
that it can cheat without being caught, it will not cheat
in the face of a sufficiently large penalty.

4 GripCop DSM Overview

4.1 Architecture Overview

Our monitoring and verification scheme is based on
duplicating, on a trusted machine, part of the computa-
tion performed by the TreadMarks application on the
remote cluster, and then comparing the intermediate
results obtained on both machines. For efficiency, the
monitoring machine only duplicates the computation
done on one of the cluster nodes.

In a cycle-sharing community, a submitter (submit-
ter node) can submit the binary of a program writ-
ten with the TreadMarks library to a remote cluster
(host cluster). When the execution starts on the host
cluster, a replica of one of the processes is created on
the submitter or a monitoring machine trusted by the
submitter. The monitoring machine must be binary-
compatible with the host cluster. We call the pro-
cess being replicated the target process, and the replica
process the monitoring process. Correspondingly, the
machine running the target process is the target node,
and the machine running the monitoring process is the
monitoring node. The submitter is typically the moni-
toring node. The monitoring node can also be a remote

submit binary

make

register vars

source code source code written for TreadMarks

specify memory objects used for monitoring

make with original Makefile

submit binary to remote host cluster,
specifying monitoring machine

Figure 1. Steps of using GripCop DSM

trusted node or a trusted node in the host cluster (e.g. a
certified machine) to achieve minimum latency.

We embed support for monitoring into the original
TreadMarks library, preserving all important features,
e.g., lazy release consistency and the multiple-writer
protocol. In our monitoring scheme, the monitoring
process synchronizes with the target process at each
synchronization point (locks and barriers) to obtain
up-to-date metadata, i.e., vector timestamps and write
notices. However, the monitoring process obtains the
actual consistency data (diff messages) directly from
the nodes that produced the diffs. This design max-
imizes the parallelism between the monitoring process
and other processes while preserving the semantics of
lazy release consistency.

It requires little effort to monitor an exist-
ing TreadMarks program using GridCop DSM. Fig-
ure 1 shows the steps. The user can reg-
ister a few memory objects to monitor by in-
serting a call to Tmk mon register object(void*

start addr, int obj size) for each memory object,
where start addr is the starting address and obj size

is the size of the object in bytes. These calls need to
be inserted at the beginning of main() in the source
code. The generated binary is then submitted to the
host cluster for execution, and the submitter can spec-
ify a monitoring machine to use. When the program
begins executing on the host cluster, a replica process
is created on the specified monitoring node to remotely
monitor the execution of the TreadMarks program.

4.2 Two Monitoring Modes

The monitoring processor can operate in one of
two modes: a full-scale monitoring mode or a de-
coy monitoring mode. In the full-scale monitoring
mode, the monitoring process replicates all the com-
putation done by the target process, and synchro-
nizes with the target process at each synchronization
point (Tmk lock acquire(), Tmk lock release(),
Tmk barrier()). Intermediate values of the registered
memory objects on the target process are compared
with the corresponding objects on the monitoring pro-
cess at each synchronization point. The full-scale mon-

itoring mode can significantly increase the execution
time of the application for three reasons. First, when
there is a high latency between the monitoring node
and the host cluster over the wide area network, the
round-trip latency, which incurs overhead at each syn-
chronization point, can significantly slow down the exe-
cution. Second, additional diff messages between the
monitoring process and the computation processes over
the wide area network add to the communication over-
head of the program. Finally, the additional waiting
time due to different speeds at the monitoring node
and cluster nodes can slow down execution if the mon-
itoring machine is slower, since frequent synchroniza-
tions between the computation processes now need to
be extended to include the monitoring process.

In the decoy monitoring mode, the monitoring pro-
cess continues to send ACK messages to the target pro-
cess as if it is responding to the synchronization mes-
sages sent by the target process. In addition, the moni-
toring process properly responds to other requests (e.g.
connection requests, distribute messages) as if it is
doing full-scale monitoring. To avoid the round trip
latency for each synchronization incurred in the full
monitoring, the monitoring process actually sends re-
dundant dummy reply messages before each synchro-
nization request message arrives. These reply messages
are effectively buffered in the socket buffer of the tar-
get process so that its next synchronization request
is “satisfied” immediately. On the monitoring side,
the monitoring process can perform a reduced level
of tracking of the progress of the target process exe-
cution by traversing a Finite State Automaton (FSA)
in which each synchronization request message from
the target process corresponds to a state. In this way,
the monitoring process can check if a sequence of syn-
chronization messages corresponds to legal transitions
in the FSA [20]. Because the remote host cluster has
no knowledge of the operating mode of the monitoring
host, it cannot take advantage of the decoy monitoring
mode without the risk of being caught cheating.

4.3 Verifying Execution Results

In the full-scale monitoring mode, the faithfulness of
execution is verified by comparing the values of mem-
ory objects in the target and monitoring processes at
each synchronization point. For efficiency reasons, not
all shared objects are monitored. The user can specify
up to K (a configurable parameter whose default is 10)
objects to monitor. At each synchronization point, a
32-bit hash code is computed based on the values of the
objects being monitored. The hash code is included in
the first synchronization message sent from the target
process to the monitoring process. If the hash code is

different from the hash code computed by the monitor-
ing process, a fraud alert is issued.

4.4 How Fast Can We Detect Fraud?

Fraud can be detected while the host cluster cheats
when the monitoring process is running in full-scale
monitoring mode. Let pfull be the probability of us-
ing the full-scale monitoring mode. If the cheater is
caught on its Nth cheat, then N is a random vari-
able with the geometric probability mass function:
P (N = n|pfull) = (1 − pfull)

n−1pfull. This random
variable has expectation:

E{N} = 1/pfull

that is, on average, a cheating host cluster will be
caught on its (1

pfull
)th cheat. Suppose we need con-

fidence δ of catching cheating on or before the host
node’s nδ cheat. Solving

n∑

i=1

pfull(1 − pfull)
i−1 = δ

we get nδ = ln(1 − δ)/ln(1 − pfull). In particular,
n0.95 = ln 0.05/ln(1 − pfull). That is, we have 0.95
probability to catch the cheater in its n0.95 cheats. For
example, if pfull = 0.05, n0.95 ≃ 58. On average, we
can catch the cheater on its 20th (1/pfull) cheat.

A smarter cheater, however, will not always cheat.
Suppose we have a hosting cluster that cheats only
when there is sufficient profit (expected credit gain)
to outweigh its fear of being caught. Without loss of
generality, let us assume the credit gain (random vari-
able C) has a normal distribution N(µ, σ), and the
hosting cluster cheats only when C ≥ c. The prob-
ability of cheating in this model is pcheat = Pr{C ≥
c} = 1 − Φ(c−µ

σ
). Then the probability of detecting

fraud in a certain execution (including cheating and
non-cheating cases) is:

pdetect = pcheat × pfull = (1 − Φ(
c − µ

σ
))pfull

where Φ(z) = 1√
2π

∫ z

−∞
exp(−x2

2)dx is the cumulative

distribution function of the standard normal distribu-
tion. Similarly, we have

E{N̂} = 1/pdetect

where N̂ means the smart cheater is caught on its N̂ -th
service (including cheating and non-cheating services)
and

n̂0.95 = ln 0.05/ln(1 − pdetect)

These formulae give the average time the cheater can
proceed undetected in the community and the time to
detect the cheater with 0.95 probability. For example,

message body
(variable length)

monitored objects hash code

monitoring message typereal from
monitoring message sequence #

idtypefrom
sequence #

0 31

Figure 2. Monitoring message format

if the host machine cheats only when the credit gain
is above average, then pdetect = 1

2pfull (here Pr{C ≥
c} = 1

2). If pfull = 0.05, we have n̂0.95 ≃ 118. On
average, a cheater will be caught on its 40th (1/pdetect)
service.

5 Runtime System Extension

In order to minimize modifications to the user pro-
gram, support for remote monitoring is implemented
by extending the TreadMarks runtime system.

5.1 Extensions for Full Monitoring

The extended library for supporting full monitoring
performs four new functions: (1) replicating one of the
processes on the monitoring machine, (2) synchroniz-
ing the monitoring process with the target process, (3)
handling diff requests from the monitoring machine,
and (4) verifying intermediate results at runtime.

Monitoring message format: Messages between
the target process and the monitoring process use
an extended header (Figure 2). The first 8 bytes
are the same as the original TreadMarks message
header to maintain compatibility. Immediately fol-
lowing is the real from field, which is used in diff

handling to distinguish diff requests from the tar-
get process and the monitoring process (and to re-
ply to the actual requesting node). The contents of
real from fields are the same as the contents of from
fields in messages sent by computation nodes; real from
is set to Tmk nprocs in messages sent by the mon-
itoring process. The monitoring message type field
is used to specify the type of monitoring message.
The type can be MON MSG READY NOTICE (ready no-
tice), MON MSG DATA (forwarded synchronization data),
or MON MSG ACK (ACK). The monitoring message carries
its own sequence number (starting from 1). The se-
quence number is used to eliminate duplicate messages
in the case of retransmission. The last field in the
header is the 32-bit hash code of monitored objects
described in section 4.3.

Tmk startup(): In the original TreadMarks,
Tmk startup() initiates multiple processes on the

nodes in a cluster and initializes the TreadMarks run-
time system, e.g., the shared virtual memory, on all
nodes. In our extended TreadMarks, Tmk startup()

initiates an additional process on the specified mon-
itoring machine, which has the same Tmk proc id as
the target process – the process being monitored. This
allows the monitoring process to replicate the computa-
tion performed by the target process. The monitoring
process performs all the initialization tasks required
by TreadMarks. There are two ways to specify which
monitoring mode to use in the monitoring process: ac-
cording to a user specified probability i.e., a random
coin toss, or a mode flag in the compilation comman-
dline. The monitoring process performs synchroniza-
tion with the target process at synchronization points
(barriers or locks) as described below, until the tar-
get process calls Tmk exit(), at which point the target
process sends an exit notice to the monitoring process
regardless of which monitoring mode is used, and the
monitoring process exits.

Tmk distribute(): In the original TreadMarks,
Tmk distribute() sends the association of a shared
memory address with a variable, due to a malloc()

in the shared memory, to other processes and waits
for their ACKs. In our extended TreadMarks, the mon-
itoring process receives distribute requests directly
from processes on the host cluster. If the process call-
ing Tmk distribute() is the target process, it sends
distribute requests to all other processes except the
monitoring process. The monitoring process does not
send out any distribute requests.

Tmk barrier(): Figure 3(a) shows the synchroniza-
tion between the target and monitoring processes at
a Tmk barrier() when the target process is the bar-
rier manager. The target process waits until all other
processes of the cluster arrive at the barrier, and then
updates the monitoring process with the latest vector
timestamp. The target process sends out a barrier de-
parture notice (containing the latest vector timestamp)
after it receives ACK from the monitoring process.

Figure 3(b) shows the synchronization between the
target and monitoring processes at Tmk barrier()

when the target process is a barrier slave. The tar-
get process waits until the monitoring process arrives
at the barrier. Then it sends a barrier arrival notice to
the barrier manager. The target process forwards the
barrier departure notice (containing the vector times-
tamp) to the monitoring process before it leaves the
barrier.

Tmk lock acquire(): Figure 4(a) shows the synchro-
nization between target and monitoring processes when
the target process is not the current lock holder or the

(a) target process is barrier manager (b) target process is barrier slave

Figure 3. Synchronization at Tmk barrier()

last releaser. The target process sends out a lock ac-
quire request to the lock manager, which forwards the
lock acquire request to the lock tail. When the target
process receives the lock release notice, it forwards the
lock release notice to the monitoring process before it
actually acquires the lock.

If the target process is the current lock holder
or the last releaser, it can directly acquire the lock.
In order to synchronize with the monitoring pro-
cess, it waits until the monitoring process arrives at
Tmk lock acquire() before it proceeds. The target
process blocks lock acquire messages from other pro-
cesses during this period.

Tmk lock release(): Figure 4(b) shows the syn-
chronization between target and monitoring processes
when the target process releases a lock. The tar-
get process waits for the monitoring process to reach
Tmk lock release(), and then the lock is released (if
there is an immediate acquirer). To avoid unneces-
sary interval creation when a lock release is followed
immediately by a lock acquire by the same process,
the original TreadMarks delays an interval creation
from a lock release until the next lock acquire re-
quest arrives at the target process and is handled by
Tmk lock sigio handler(). To avoid the complex-
ity of making Tmk lock sigio handler() synchronize
with the monitoring process, i.e., via forwarding the
lock acquire request to the monitoring process and
waiting for the corresponding ACK, in the modified
TreadMarks an interval is created immediately after
the lock is released, i.e., at every Tmk lock release(),
and a lock acquire request is not forwarded to the moni-
toring process, as the monitoring process does not need
to know to whom the lock is released. This eager in-
terval creation also avoids an extra round-trip delay to
the lock acquiring process.

Vector timestamp: The monitoring process must
maintain a correct vector timestamp in order to per-
form proper page invalidation. The target process also
needs to know the monitoring process’ current vector

timestamp in order to generate proper write notices
for the monitoring process when it is the barrier man-
ager. In our extended library, the target process keeps
a shadow copy of the monitoring process’ vector times-
tamp. This vector timestamp is updated properly af-
ter each synchronization point to reflect the up-to-date
vector timestamp of the monitoring process. In par-
ticular, as discussed above, we use eager interval cre-
ation in Tmk lock release() to keep the consistency
between the shadow vector timestamp and the moni-
toring process vector timestamp for lock synchroniza-
tions.

Handling diff: When the monitoring process encoun-
ters a page fault, it obtains diffs directly from the
host cluster nodes (without going through the target
process). The monitoring process will not receive diff
requests directly from other nodes. Since the monitor-
ing process does not receive diff requests from compu-
tation nodes, it generates fewer write notices than the
target process. This does not affect the correctness of
the computation performed by the monitoring process
since pages written by other computation processes are
properly invalidated at each synchronization point.

Monitoring: Our extended library supplies a new
API Tmk mon register object(void* start addr,

int obj size) which allows the user to manually reg-
ister up to K (a configurable parameter whose de-
fault is 10) memory objects for monitoring at runtime.
start addr is the starting address of the memory ob-
ject; obj size is the size of the object. A hash code is
computed based on these K monitored objects at each
synchronization point. The hash code is sent along
with the first synchronization message sent from the
target process to the monitoring process. An alert is
issued if the hash code is different from the hash code
computed by the monitoring process.

5.2 Extensions for Decoy Monitoring

In decoy monitoring, the monitoring process can
perform a reduced level of monitoring of the progress

(a) target process is not the current lock holder or last
releaser

(b) target process is the current lock holder or last re-
leaser

Figure 4. Synchronization at Tmk lock acquire() and Tmk lock release()

of the target process by tracking the synchronization
points that have been encountered by the target pro-
cess. These synchronization points signify the current
execution location of the target process. To track the
progress of the target process execution, an FSA is
automatically created by the compiler in which each
state corresponds to a synchronization message in the
code executed by the target process. To monitor the
progress, the monitoring process checks the validity of
the progress by traversing the FSA. The details of the
FSA scheme can be found in [20].

To deceive the host cluster into believing that full
monitoring is being performed, the monitoring process
continues to react to synchronization messages received
from the target process by sending ACK messages to the
target process. Each ACK message has an empty mes-
sage body with the monitoring message type field in
the message header set to MON MSG ACK, and the mon-
itoring sequence number set to a special value 0. In
addition, the monitoring process properly responds to
other requests (e.g. connection requests, distribute
messages) as if it were doing full-scale monitoring.

To keep the ACK traffic volume extremely low and
still produce enough ACKs to eliminate waiting at the
target process, the monitoring process sends 5 ACKs
(100 bytes of traffic) for each synchronization messages
it receives from the target process. The extra ACKs will
stay in the target process’ receiving socket buffer and
is picked up immediately at its next request. With-
out sniffing and decoding the network traffic, the host
cluster or the TreadMarks application running on the
host cluster cannot tell which monitoring mode is be-
ing used. The decoy monitoring mode eliminates the
computational overhead on the monitoring process; it
also avoids the three factors contributing to the com-
munication overhead mentioned in Section 4.2.

6 Experiments

6.1 Experimental Settings

Our experimental testbed consists of a host cluster
located at Purdue University and a remote monitoring

node located at the University of Illinois at Urbana-
Champaign (UIUC). The host cluster consists of nine
nodes connected through a gigabit switch. TreadMarks
applications always run on eight of the nodes. The
ninth node is used as the monitoring node in one of
the three experiments. Each node in the cluster has an
Intel P4 3.0GHz CPU with 1G memory, and runs Red
Hat Enterprise Linux WS release 3. The UIUC moni-
toring node has 4 Intel Xeon 3.06GHz CPUs (only one
CPU is actually used in monitoring) with 2G memory,
and runs Red Hat Linux release 9.

We measure the performance impact of monitoring
and the corresponding traffic statistics under three sce-
narios: (1) FLM (Full-scale Local Monitoring) – when
the host cluster and the monitoring machine are con-
nected to the same switch, performing full-scale mon-
itoring; (2) FRM (Full-scale Remote Monitoring) –
when the monitoring machine and the host cluster are
connected via the Internet, performing full-scale mon-
itoring; and (3) DRM (Decoy Remote Monitoring) –
when the monitoring machine and the host cluster are
connected via the Internet, performing decoy monitor-
ing. Scenario FLM reveals the lower bound of moni-
toring overhead when the network latency is minimal.
It represents the real world scenario where there is a
certified machine within the host cluster’s LAN. Sce-
narios FRM and DRM are real world scenarios when
the monitoring node and the host cluster are geograph-
ically far apart. Because our extended runtime library
uses eager interval creation in Tmk lock release(), we
also take measurements using the original TreadMarks
runtime library with eager interval creation at lock re-
lease (Tmk EIC) in order to isolate the effect of eager
interval creation at lock release. Each experiment is
run 5 times. The average numbers are reported.

We use 4 benchmarks: Water-Spatial, MG,
Barnes-Hut, tsp. The input problem sizes and com-
mandline parameters are shown in Table 1. All the
benchmarks run with 8 computation nodes. Monitor-
ing versions use an extra machine (local or remote)
as the monitoring node. Because the algorithm used
in TSP is non-deterministic, its total running time can
vary based on the workload assigned to the different

Benchmark Size/Iterations Arg. Synchs
Water-Spatial 262144 molecules, -X1 barriers + locks

32768 boxes
MG 256x256x256, 20 -X1 barriers only

multi-grid iterations
Barnes Hut c 65536 iterations – barriers + locks

TSP 19 cities – barriers + locks

Table 1. Input problem sizes, arguments of applica-
tions, and their synchronization characteristics. “-
X1” is used when needed to enlarge the shared mem-
ory by doubling the page size.

Benchmark Tmk EIC FLM FRM DRM

Water-Spatial 0.57% -2.34% 189.32% -1.04%
MG 0.04% 4.74% 242.26% 0.55%

Barnes-Hut -0.40% 4.54% 300.90% 0.16%
TSP -4.27% -6.51% 157.83% -6.19%

Average -1.01% 0.11% 222.58% -1.63%

Table 3. Execution overhead under the 4 versions
relative to under the original TreadMarks

machines.

6.2 Experimental Results

Table 2 shows the statistics of benchmark applica-
tions using the original TreadMarks running on the
cluster using 8 nodes. This is the baseline of our anal-
yses below. Note that the execution time reported by
TreadMarks benchmarks excludes initialization and re-
port generation, which typically also involve lock and
barrier primitives. An average lock acquire time of 0
indicates there are no contending locks in execution
path. Without loss of generality, we set process 1 to be
the target process in the experiments with monitoring.

6.2.1 Runtime Overhead

Table 3 shows the runtime overhead using eager inter-
val creation at lock release and with the three moni-
toring scenarios. Negative overhead means the version
linked with the modified runtime library runs faster
than the version linked with the original TreadMarks.

Eager interval creation in Tmk lock release()

alone, with no monitoring involved, has little effect on
the running time of the benchmarks. The exception
is TSP, whose time to completion could vary with the
order and time that the better paths are found.

In FLM, we use a ninth machine in the cluster of
the monitoring machine. On average, this yields an in-
creased execution time of 1.12% on top of the EIC re-
sults. This can be viewed as a lower bound on full-scale
monitoring when the connection between host cluster
and monitoring machine has minimum latency. We
consider TSP an exception due to its nondeterministic
nature.

In FRM, we use the UIUC machine as the mon-
itoring node. This scenario represents a real world
full-scale monitoring case where the monitoring ma-
chine and the host cluster are geographically seperated.
This scenario yields an average monitoring overhead of
222.58%. The significantly higher monitoring overhead
is a consequence of the retransmission of synchroniza-
tion and diff messages (discussed in Section 6.2.2).

In DRM, we use the same setting as with the second
scenario except that the monitoring process performs
decoy monitoring. This scenario represents a real world
decoy monitoring case. The change in execution time
in this scenario is insignificant compared to EIC, except
for TSP, whose execution time fluctuates by nature.

The other aspect of monitoring overhead is the
CPU overhead on the monitoring node. In the full-
scale monitoring, since the monitoring process mirrors
the computation performed on the target process, the
CPU overhead on the monitoring node is application-
dependent. In addition, our experiments show that
computing the hash has negligible overhead compared
to the average lock acquire time and barrier time.
Hashing of 100KB of data, which far exceeds the need
of any realistic application, incurs an overhead of only
0.12ms. In decoy monitoring, we observe no notice-
able CPU overhead (almost 0.0% CPU usage) on the
monitoring node.

6.2.2 Runtime Statistics
To analyze the overall execution overhead shown in
Table 3, we measured the runtime statistics of the
4 benchmark applications under 5 different settings:
original TreadMarks, Tmk EIC, FLM, FRM, and
DRM. For ease of comparison, we normalized the data
(except retransmission statistics where the baseline is
0 for some applications) under Tmk EIC, FLM, FRM,
and DRM with respect to the data under the original
TreadMarks, i.e., each number reported below is the ra-
tio of the datum to the corresponding datum obtained
using the original TreadMarks.

Lock acquire time and barrier manager time:
We first measured the average lock acquire time and
barrier manager time (from when the barrier manager
enters Tmk barrier() to when it leaves) of the compu-
tation processes. Table 4 shows the normalized aver-
age lock acquire time and barrier manager time. The
average lock acquire time of MG and Barnes Hut are
omitted because there are no contended locks. We ob-
served a significant increase in lock acquire time and
barrier manager time when performing the full-scale
remote monitoring (FRM). The difference between the
speeds of the monitoring and target processes leads to
retransmissions of synchronization messages and diff

Benchmark Running # lock Avg. lock # barrier Avg. barrier # msgs Traffic # diffs
time (s) acquires acq time (s) arrivals time (s) volume (MB)

Water-Spatial 37.45 96 0.0059 14 0.0781 117583 354.88 42843
MG 71.08 10 0 804 0.0423 339080 1426.46 121222

Barnes-Hut 16.05 12 0 19 0.9835 899816 324.35 100899
TSP 6.14 698 0.0551 3 0.0031 18273 5.41 3813

Table 2. Runtime statistics using the original TreadMarks on 8 nodes

Benchmark Average lock acquire time Average barrier manager time
Tmk EIC FLM FRM DRM Tmk EIC FLM FRM DRM

Water-Spatial 1.02 0.97 265.14 1.11 1.34 0.74 32.60 0.76
MG – – – – 1.00 1.08 5.99 1.01

Barnes-Hut – – – – 0.99 1.07 5.79 0.99
TSP 0.95 0.93 2.77 0.93 1.25 1.08 4.44 2.71

Average 0.98 0.95 133.96 1.02 1.14 0.99 12.20 1.37

Table 4. Normalized average lock acquire time and barrier manager time

Benchmark Synchronization messages diff requests
Orig. Tmk Tmk EIC FLM FRM DRM Orig. Tmk Tmk EIC FLM FRM DRM

Water-Spatial 1 1 1 379 12 0 0 0 148 0
MG 0 0 0 669 3 0 0 0 0 0

Barnes-Hut 48 47 52 322 48 0 0 0 367 0
TSP 0 0 0 0 8 0 0 0 0 0

Table 5. Retransmission of synchronization messages and diff requests

request among the computation nodes in some appli-
cations (Table 5), due to request-reply timeouts.

Table 4 also shows that FLM and DRM have only a
slight impact on lock acquire time and barrier manager
time compared to the original TreadMarks and Tmk
EIC. The increased barrier manager time in FLM for
Barnes Hut and in DRM for TSP is also due to an in-
creased number of retransmissions of synchronization
messages as shown in Table 5.

Traffic: When measuring traffic statistics, we count
only received messages. This is consistent with how
the original TreadMarks counts its runtime statistics.
In TreadMarks, each node maintains two sockets for
each of the other nodes. One of the sockets (request
socket) is used to send requests to the other node and
then wait for its reply. The other socket (reply socket)
is used to listen for requests from the other node and
then send the corresponding replies. The interrupt ser-
vice function (sigio handler()) polls (using select)
only the reply sockets for incoming requests. In DRM,
the periodic dummy ACK message is sent to the request
socket of the target process, therefore it does not trig-
ger a recv() operation (and thus is not counted as a
received message) unless the target process is expect-
ing an ACK (when it is counted as received message).
Table 6 presents the normalized number of messages
received by the computation nodes and the total size
of received messages. On average, performing full-scale
monitoring (FLM or FRM) increases the number of
messages by 6% and increases the traffic volume by

Benchmark # of msgs received Size of received msgs
FLM FRM DRM FLM FRM DRM

Water-Spatial 0.06 0.06 0.0008 0.12 0.12 0.0002
MG 0.04 0.04 0.0049 0.10 0.10 0.0002

Barnes-Hut 0.04 0.04 0.0001 0.08 0.08 0.0001
TSP 0.06 0.06 0.0096 0.13 0.13 0.0060

Average 0.05 0.05 0.0038 0.11 0.11 0.0016

Table 7. Normalized number of messages and their
total size received by the monitoring node

1%. In contrast, performing decoy monitoring (DRM)
increases the number of messages and total traffic vol-
ume slightly (less than 1% on average).

Table 7 presents the number of messages received by
the monitoring node (FLM and FRM) and the total
size of the received messages, normalized to the cor-
responding numbers of the original Treadmarks. We
can see that the monitoring node receives about 5% of
the messages and about 11% of the traffic (compared
to the total in the original Tmk). These numbers are
reduced to 0.38% and 0.16% in DRM.

7 Related Work

The untrusted nature of the P2P environment re-
sults in ensuring fairness in charging for the service and
verifying the execution results to be essential problems
in P2P cycle sharing. On one hand, the client may
cheat by not paying the computing server for its work;
on the other hand, the server can cheat the client by
charging for non-existent or false computation. While
the former can be discouraged by maintaining a rep-

Benchmark # of messages received Total size of received messages
Tmk EIC FLM FRM DRM Tmk EIC FLM FRM DRM

Water-Spatial 1.00 1.06 1.07 1.00 1.00 1.00 1.00 1.00
MG 1.00 1.06 1.06 1.01 1.00 1.00 1.00 1.00

Barnes-Hut 1.00 1.05 1.05 1.00 1.00 1.01 1.01 1.01
TSP 1.00 1.07 1.07 1.01 1.00 1.02 1.02 1.01

Average 1.00 1.06 1.06 1.00 1.00 1.01 1.01 1.00

Table 6. Normalized number of messages and their total size received by the computation nodes

utation system in the P2P network [2], the latter is
much harder to detect and defeat. Existing schemes
are based on code encryption (in special cases) [18],
trusted hardware [21], a combination of hardware and
encryption [15], dummy objects [16], or a quiz-scheme
[14]. Recent work has addressed the problem of moni-
toring the progress of submitted jobs and verifying the
correctness of remote execution. Ali et al. [5] propose
a progress monitoring scheme for Java programs based
on finite state machines. Yang et al. [19] propose a
monitoring scheme for Java using a location-beacon-
based finite state machine and partial replay of the
computation to support monitoring for progress and
correctness. Our monitoring differs from all of these
schemes in that we exploit the design of TreadMarks
to replicate the computation performed at one of the
host nodes to ensure the faithful execution of submit-
ted program.

8 Conclusions

Verifying the faithful execution of a program on a
remote node is an important problem in peer-to-peer
cycle sharing. In this paper, we present the design
and implementation of GripCop DSM, a novel incre-
mental monitoring and verification scheme for Tread-
Marks programs submitted to a remote cycle-sharing
host cluster. GripCop DSM replicates the computation
on one of the host cluster nodes on a trusted monitor-
ing machine, and employs either a full-scale monitor-
ing mode or a decoy monitoring mode. The full-scale
monitoring mode performs replicated computation and
hence rigid monitoring of execution progress and cor-
rectness. The decoy monitoring mode does not perform
replicated computation, but deceives the host cluster
into thinking it is performing the replicated compu-
tation. Hence it is light-weight when the monitoring
machine connects to host cluster via the Internet. A
combination of these two monitoring modes provides
a remote execution monitoring scheme that guarantees
overall efficiency and is capable of detecting fraudulent
nodes quickly.

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-
mony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared mem-
ory computing on networks of workstations. IEEE Computer,
29(2):18–28, Feb. 1996.

[2] N. Andrade, F. Brasileiro, and W. Cime. Discouraging free
riding in a peer-to-peer cpu-sharing grid. In HPDC ’04, 2004.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In SOSP ’03, October 2003.

[4] A. R. Butt, S. Adabala, N. H. Kapadia, R. J. Figueiredo, and
J. A. B. Fortes. Grid-computing Portals and Security Issues.
Journal of Parallel and Distributed Computing, 63(10), Oc-
tober 2003.

[5] A. R. Butt, X. Fang, Y. C. Hu, and S. Midkiff. Java, Peer-
to-Peer, and Accountability: Building Blocks for Distributed
Cycle Sharing. In USENIX VM ’04, May 2004.

[6] J. Carter, J. Bennett, and W. Zwaenepoel. Implementation
and performance of Munin. In SOSP ’91, Oct. 1991.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Overlay
Testbed for Broad-Coverage Services. ACM Computer Com-
munications Review, 33(3), 2003.

[8] A. P. David. BOINC:A System for Public-Resource Computing
and Storage. In Proc. 5th IEEE/ACM International Work-
shop on Grid Computing, November 2004.

[9] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In ISCA
’90, May 1990.

[10] X. Jiang and D. Xu. Collapsar: A VM-Based Architecture for
Network Attack Detention Center. In USENIX Security ’04,
August 2004.

[11] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release con-
sistency for software distributed shared memory. In ISCA ’92,
May 1992.

[12] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions
on Computers, C-28(9):690–691, Sept. 1979.

[13] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321–359, Nov. 1989.

[14] V. Lo, D. Zhou, D. Zappala, Y. Liu, and S. Zhao. Cluster com-
puting on the fly: P2p scheduling of idle cycles in the internet.
In 3rd IPTPS, 2004.

[15] S. Loureiro, L. Bussard, and Y. Roudier. Extending tamper-
proof hardware security to untrusted execution environments.
In Proceedings of the Fifth Smart Card Research and Ad-
vanced Application Conference, 2002.

[16] C. Meadows. Detecting attacks on mobile agents. In Founda-
tions for Secure Mobile Code Workshop, pages 64–65, 1997.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems.
In Proc. IFIP/ACM Middleware, November 2001.

[18] T. Sander and C. F. Tschudin. Towards mobile cryptography.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, Oakland, CA, USA, 1998.

[19] S. Yang, A. R. Butt, Y. C. Hu, and S. Midkiff. Trust and
Verify: Monitoring remotely executing programs for progress
and correctness. In PPoPP ’05, 2005.

[20] S. Yang, A. R. Butt, Y. C. Hu, and S. P. Midkiff. Lightweight
monitoring of the progress of remotely executing computations.
In LCPC ’05, 2005.

[21] B. Yee. Using secure coprocessors. PhD thesis, Carnegie Mel-
lon University, May 1994.

