
Skewed Allocation of Non-Uniform Data
for Broadcasting over Multiple Channels

A.A. Bertossi1, C.M. Pinotti2

1University of Bologna 2University of Perugia
Dept. of Computer Science Dept. of Math. & Computer Science

Mura Anteo Zamboni 7, 40127 Bologna Via Vanvitelli 1, 06123 Perugia
bertossi@cs.unibo.it pinotti@unipg.it

Abstract

The problem of data broadcasting over multiple
channels consists in partitioning data among chan-
nels, depending on data popularities, and then cycli-
cally transmitting them over each channel so that the
average waiting time of the clients is minimized. Such
a problem is known to be polynomially time solvable for
uniform length data items, while it is computationally
intractable for non-uniform length data items. In this
paper, two new heuristics are proposed which exploit a
novel characterization of optimal solutions for the spe-
cial case of two channels and data items of uniform
lengths. Sub-optimal solutions for the most general
case of an arbitrary number of channels and data items
of non-uniform lengths are provided. The first heuris-
tic, called Greedy+, combines the novel characteriza-
tion with the known greedy approach, while the second
heuristic, called Dlinear, combines the same character-
ization with the dynamic programming technique. Such
heuristics have been tested on benchmarks whose pop-
ularities are characterized by Zipf distributions. The
experimental tests reveal that Dlinear finds optimal so-
lutions almost always, requiring good running times,
while Greedy+ is faster and scales well when changes
occur on the input parameters, but provides worse so-
lutions than Dlinear.

Keywords: Wireless communication, data broad-
casting, multiple channels, heuristics, flat scheduling,
average waiting time, dynamic programming.

1 Introduction

Broadcasting is an efficient way of simultaneously
disseminating data to a large number of clients. It
is especially effective in an asymmetric wireless envi-
ronment, where a server at a base-station repeatedly
transmits data items from a given set over multiple
wireless channels, while clients wait for their desired
item on the proper channel [1, 2, 7, 8]. A careful allo-
cation strategy has to be pursued to assign data items
to channels so as to reduce the waiting time of the
clients. Typically, items are partitioned in a skewed
manner among channels according to their populari-
ties so that the most requested items appear in a chan-
nel with shorter broadcast period [4, 10]. Moreover,
for each single channel, the server follows a schedule
to decide which item to broadcast at any time instant.
Usually, a flat schedule is adopted which fixes an arbi-
trary order among the data items allocated to the same
channel and transmits the items once at a time, in a
round-robin fashion.

The problem of data broadcasting over multiple
channels, with the objective of minimizing the aver-
age waiting time of the clients, under the assumptions
of skewed allocation to channels and flat scheduling per
channel, has been introduced in [10] and expanded in
[4]. The problem has been shown to be polynomial
time solvable for uniform length data items [10], and
it has been proved to be computationally intractable
(NP -hard) for non-uniform length data items [4]. In
these papers, several algorithms have been proposed,
all of which assume that a sorting preprocessing step
has been done on the data items.

In the uniform case, the fastest known algorithm
producing an optimal solution requires O(NK log N)
time [4], where N is the number of items and K is

1-4244-0054-6/06/$20.00 ©2006 IEEE

the number of channels. Such an optimal algorithm is
based on dynamic programming and solves NK prob-
lem instances, for 1 ≤ n ≤ N and 1 ≤ k ≤ K. In the
non-uniform case, the problem can be optimally solved
in pseudo-polynomial time when K = 2, by a reduction
to a knapsack problem, and in exponential time for ar-
bitrary K [4]. In this latter case, a heuristic, called
Greedy, has been proposed in [10]. Fixed N , Greedy
starts with all data items assigned to one channel, and
then proceeds by splitting the items of one channel be-
tween two channels, thus adding a new channel, until
K channels are reached. In practice, Greedy is very
fast, scales with the number of channels, and provides
fair sub-optimal solutions for the K instances of the
problem, where N is fixed and 1 ≤ k ≤ K.

This paper presents two new heuristics which pro-
vide sub-optimal solutions for the data broadcasting
problem with non-uniform data item lengths and an
arbitrary number of channels. As for Greedy, both
heuristics assume that the items are sorted by decreas-
ing popularities per length unit. As opposed to Greedy,
they pretend that a novel characterization of the op-
timal solution of the problem for K = 2 and uni-
form lengths holds also for the general case of arbi-
trary K and non-uniform lengths. The first heuristic,
called Greedy+, follows the same strategy as Greedy.
To solve K instances with N fixed and 1 ≤ k ≤ K,
it requires O(N(K + log N)) time in the worst case.
The second heuristic, called Dlinear, follows the dy-
namic programming relation proposed in [10] and re-
quires O(N(K + log N)) time for solving all the NK
instances, for 1 ≤ n ≤ N and 1 ≤ k ≤ K. The
proposed heuristics are experimentally tested on some
benchmarks, whose popularities follow a Zipf distribu-
tion. Such a distribution has been shown to charac-
terize the popularity of one element among a set of
similar data, like a web page in a web site [5]. The ex-
perimental tests reveal that the quality of the solution
provided by Dlinear is much better than that produced
by the other heuristics. Indeed, Dlinear finds optimal
solutions almost always, requiring reasonable running
times. Although Greedy remains the fastest heuristic,
it gives the worst sub-optimal solutions. Both the run-
ning times and the quality of the solutions of Greedy+
are intermediate between those of Dlinear and Greedy.
Like Greedy, Greedy+ scales well with respect to all
parameters changes.

The rest of this paper is so organized. Section 2 gives
notations, definitions and the problem statement. In
particular, Subsection 2.1 proves the novel characteri-
zation of the optimal solution, for the special case with
K = 2 and uniform lengths, that motivates the new
heuristics. Section 3 presents the O(N(K + log N))

time Greedy+ and Dlinear heuristics. Moreover, it
is also shown that the Greedy+ algorithm, when re-
stricted to uniform length data, can be implemented
so as to take O((N + K) log N) time in the worst case.
Section 4 reports the experimental tests of the heuris-
tics, performed on randomly generated instances. Fi-
nally, conclusions are offered in Section 5.

2 Preliminaries

Consider a set of K identical channels, and a set
D = {d1, d2, . . . , dN} of N data items. Each item di is
characterized by a popularity pi and a length zi, with
1 ≤ i ≤ N . The popularity pi represents how fre-
quently item di is requested by the clients, and it does
not vary along the time. Popularities can be either ar-
bitrary positive integers, or real numbers normalized in
the range (0, 1] such that

∑N
i=1 pi = 1. The length zi is

an integer number, counting how many time units (or,
ticks) are required to transmit item di on any chan-
nel. When all data lengths are the same, i.e. zi = z
for 1 ≤ i ≤ N , the lengths are called uniform and are
assumed to be unit, i.e. z = 1. When the data lengths
are not the same, the lengths are said non-uniform.

The items have to be partitioned into K groups
G1, . . . , GK . Group Gj collects the data items assigned
to channel j, with 1 ≤ j ≤ K. The cardinality of Gj is
denoted by Nj , the sum of its item lengths is denoted
by Zj , i.e. Zj =

∑
di∈Gj

zi, and the sum of its pop-
ularities is denoted by Pj , i.e. Pj =

∑
di∈Gj

pi. Note
that since the items in Gj are cyclically broadcast ac-
cording to a flat schedule, Zj is the schedule period on
channel j. Clearly, in the uniform case Zj = Nj , for
1 ≤ j ≤ K. If item di is assigned to channel j, and
assuming that clients can start to listen at any instant
of time with the same probability, the client expected
delay for receiving item di is half of the period, namely
Zj

2 . Assuming, as in [10], that indexing allows clients
to know in advance the content of the channels, the
average expected delay (AED) over all channels is

AED =
1
2

K∑
j=1

ZjPj (1)

Given K channels, a set D of N items, where each
data item di comes along with its popularity pi and
its integer length zi, the data broadcasting problem
consists in partitioning D into K groups G1, . . . , GK ,
so as to minimize the objective function AED given in
Equation 1. In the special case of equal lengths, the
corresponding objective function is derived replacing
Zj with Nj in Equation 1.

Some known results, proposed in [10, 4], that will
be used in the next sections, are now briefly recalled.

Lemma 1. [10] Let Gh and Gj be two groups in an
optimal solution for a problem instance with uniform
lengths. Let di and dk be items with di ∈ Gh and dk ∈
Gj. If Nh < Nj, then pi ≥ pk. Similarly, if pi > pk,
then Nh ≤ Nj.

In other words, the most popular items are allocated
to less loaded channels so that they appear more fre-
quently. As a consequence, if the items are sorted by
non-increasing popularities, then the group sizes are
non-decreasing.

Corollary 1. [10] Let d1, d2, . . . , dN be N uniform
length items with pi ≥ pk whenever i < k. Then, there
exists an optimal solution for partitioning them into
K groups G1, . . . , GK , where each group is made of
consecutive elements.

By the above corollary, in the uniform case the
items are assumed to be sorted by non-increasing pop-
ularities, and any solution S will be compactly rep-
resented by a segmentation, that is a (K − 1)-tuple
(B1, B2, . . . , BK−1), where Bj is the index, called bor-
der, of the rightmost item belonging to group Gj and
B1 < B2 < . . . < BK−1. Notice that the cardinal-
ity of Gj , i.e. the number Nj of items in the group,
is Nj = Bj − Bj−1, where B0 = 0 and BK = N
are assumed. From now on, a segmentation S =
(B1, B2, . . . , BK−1) for the uniform case is called fea-
sible if N1 ≤ N2 ≤ . . . ≤ NK . Indeed, by Lemma 1,
an optimal solution will be sought only among feasible
solutions.

For any n ≤ N and k ≤ K, let optn,k denote the
cost of an optimal solution for items d1, . . . dn and k
channels (groups). Let Ci,h be the cost of assigning
consecutive items di, . . . , dh to one group, i.e. Ci,h =
1
2 (h − i + 1)

∑h
q=i pq. The following result holds.

Theorem 1. [10] Let d1, d2, . . . , dN be N uniform
length items, sorted by non-increasing popularities.
Hence,

optn,k =
{

C1,n if k = 1
min1≤�≤n−1{opt�,k−1 + C�+1,n} if k > 1

(2)

Theorem 1 suggests an O(N2K) time dynamic pro-
gramming algorithm to solve the problem in the uni-
form case. Indeed, consider the K × N matrix M
with Mk,n = optn,k. The entries of M are com-
puted row by row applying Recurrence 2. In order
to actually construct an optimal partition, a second

matrix F is employed which stores in Fk,n the value
of � which minimizes the right-hand-side of Equa-
tion 2. Hence, the optimal solution for N and K is
given by S = (B1, B2, . . . , BK−1) where, starting from
BK = N , the value of Bk is equal to Fk+1,Bk+1 , for
k = K − 1, . . . , 1. A useful property of the optimal so-
lution is that the values stored in each row of matrix F
are non-decreasing, as stated in the following Lemma:

Lemma 2. [4] Let d1, d2, . . . , dN be N uniform length
items, sorted by non-increasing popularities. For any
n ≤ N and k ≤ K, Fk,n−1 ≤ Fk,n.

In words, Lemma 2 implies that, given the items
sorted by non-increasing popularities, if one builds an
optimal solution for N items from an optimal solution
for N − 1 items, then the border BK−1 can only move
to the right.

2.1 Two Channels and Uniform Lengths

This subsection exploits the structure of the optimal
solution in the special case where the item lengths are
uniform and there are only two channels. Indeed, as
shown later, the values assumed varying � in the right
hand side of Recurrence 2 for k = 2 form a unimodal
sequence. That is, there is a particular index � such
that the values on its left are in non-increasing order,
while those on its right are in increasing order. By this
fact, one can search the minimum of Recurrence 2 in
a very effective way, improving on the overall running
time.

Formally, for K = 2 and N uniform length data
items, the problem is to find a partition S into G1 and
G2 such that AEDS = 1

2 (N1P1 + N2P2) is minimized,
where Ni and Pi denote the cardinality and the sum
of the popularities of items in Gi, respectively, with
i = 1, 2. Clearly, N = N1 + N2, and by Lemma 1,
N1 ≤ N2 holds for any optimal solution. Moreover,
any feasible solution S can be denoted by the single
border B1, which coincides with N1.

Lemma 3. Consider N uniform length items, sorted
by non-increasing popularities, and K = 2 channels.
Let S = (N1) be a feasible solution such that P1 ≤ P2.
If the solution S′ = (N1 +1) is feasible, then AEDS′ ≤
AEDS.

Proof. Since S′ is feasible, then N1 + 1 ≤ N2 − 1. The
new solution S′ differs from S because item dN1+1 is
moved from G2 to G1. Therefore, AEDS′ = 1

2 ((N1 +
1)(P1 + pN1+1) + (N2 − 1)(P2 − pN2−1)) = 1

2 (N1P1 +
N2P2 + (N1 − N2 + 2)pN1+1 + (P1 − P2)).

Since AEDS = 1
2 (N1P1 + N2P2), N1 − N2 + 2 ≤ 0,

and P1−P2 ≤ 0, it follows that AEDS′ ≤ AEDS .

While Lemma 1 gives the upper bound N1 ≤ �N
2 � on

the cardinality of group G1, Lemma 3 provides a lower
bound b on N1. Indeed, it guarantees that any optimal
solution contains at least the first b items d1, . . . , db,
where b is the largest index for which P1 =

∑b
h=1 ph ≤

P2 =
∑N

h=b+1 ph. Formally, Recurrence 2 for K = 2
can be rewritten as follows:

optN,2 = min
b≤�≤�N

2 �
{C1,� + C�+1,N} (3)

where

b = max
1≤s≤�N

2 �

{
s :

s∑
h=1

ph ≤
N∑

h=s+1

ph

}
.

The following lemma improves on the upper bound
of N1 given by Lemma 1, and shows that the values of
the feasible solutions assumed in the right-hand side of
Equation 3 form a unimodal sequence.

Lemma 4. Consider N uniform length items, sorted
by non-increasing popularities, and K = 2 channels.
Let S = (N1) be a feasible solution such that P1 > P2.
Consider the solutions S′ = (N1+1) and S′′ = (N1+2).
If AEDS′ > AEDS, then AEDS′′ > AEDS′ .

Proof. By definition, AEDS = 1
2 (N1P1 + N2P2) and

AEDS′ = 1
2 ((N1 + 1)(P1 + pN1+1) + (N2 − 1)(P2 −

pN1+1)) = AEDS + 1
2 ((P1−P2)+pN1+1(N1−N2 +2)).

Since AEDS′ > AEDS , it follows that (P1 − P2) >
pN1+1(N2 − N1 − 2).

Moreover, AEDS′′ = 1
2 (N1 + 2)(P1 + pN1+1 +

pN1+2) + 1
2 (N2 − 2)(P2 − pN1+1 − pN1+2), and thus

AEDS′′ − AEDS′ = 1
2 (P1 − P2) + 1

2pN1+2(N1 − N2 +
2) + (pN1+1 + pN1+2).

Since pN1+1 ≥ pN1+2, one has (P1 − P2) >
pN1+2(N2 − N1 − 2).

Finally, AEDS′′ > AEDS′ holds because
1
2 (P1−P2)+ 1

2pN1+2(N1−N2 +2)+(pN1+1 +pN1+2) >
1
2 (P1 − P2) + 1

2pN1+2(N1 − N2 + 2) > 0.

In practice, one can scan the feasible solutions of
Equation 3 by moving the border � rightwards, one
position at a time, starting from the lower bound b ob-
tained applying Lemma 3. The scan continues while
the average expected delay of the current solution does
not increase, but stops as soon as the average expected
delay starts to increase. Indeed, by Lemma 4, further
moving the border � to the right can only increase the
cost of the solutions. Hence the border m that mini-
mizes Equation 3, that is the optimal solution of the
problem, is given by:

optN,2 = C1,m + Cm+1,N (4)

Procedure BinSearch (i, j);
m ← � i+j

2 �;
if i = j then

return m
else

if f(m) ≥ f(m + 1) then
BinSearch (m + 1, j)

else
BinSearch (i,m);

Figure 1. The binary search on a unimodal se-
quence.

where

m = min
b≤�≤�N

2 �
{� : C1,� + C�+2,N < C1,�+1 + C�+2,N} .

Note that, in the above equation, the cost variation is:

(C1,�+1 + C�+2,N) − (C1,� + C�+1,N) =

1
2
(

�∑
h=1

ph −
N∑

h=�+1

ph + p�+1(2� + 2 − N)).

Due to the unimodal property of the sequence of val-
ues on the right-hand side of Equation 4, the search of
m can be done in O(log N) time by a suitable modified
binary search [6]. For the sake of completeness, a sim-
plified implementation of such binary search is given in
the following.

Let f(�) = C1,� + C�+1,N = �
2

∑�
h=1 ph +

N−�
2

∑N
h=�+1 ph. Then, the unimodal sequence consists

of the values f(b), f(b + 1), . . . , f(�N
2 �). As said, solv-

ing Equation 4 is equivalent to find the index m such
that f(b) ≥ . . . ≥ f(m) < f(m + 1) < . . . < f(�N

2 �).
This can be done by invoking the recursive procedure
BinSearch, given in Figure 1, with parameters i = b
and j = �N

2 �. The BinSearch procedure first computes
the middle point m = � i+j

2 �. Then, the values f(m)
and f(m+1) are compared in the light of the unimodal
sequence definition. If f(m) ≥ f(m+1), the minimum
must belong to the right half, otherwise it must be in
the left half. Procedure BinSearch proceeds recursively
on the proper half until the minimum is reached.

3 New Heuristics

The purpose of the new heuristics to be presented
in this section is to quickly find good sub-optimal so-
lutions for the most general case of non-uniform data

lengths and an arbitrary number of channels. Such a
goal is achieved by pretending that the optimal solu-
tion characterization, proved in Subsection 2.1 for the
special case of two channels and uniform lengths, holds
also in the general case of more than two channels and
non-uniform lengths.

As for all the previously known heuristics, the new
heuristics also assume that the items are sorted by non-
increasing pi

zi
ratios. This can be done in O(N log N)

time by a sorting preprocessing step. Moreover, since
the lengths are non-uniform, the cost of assigning the
items from di to dj to a single channel becomes Ci,j =
1
2

(∑j
h=i ph

) (∑j
h=i zh

)
. Letting Pi,j =

∑j
h=i ph and

Zi,j =
∑j

h=i zh, one notes that all the P1,n and Z1,n,
for 1 ≤ n ≤ N , can be computed in O(N) time by two
prefix sum computations, performed as a preprocessing
step. Hence, a single Ci,j can be computed on the fly in
constant time as Ci,j = 1

2 (P1,j −P1,i−1)(Z1,j −Z1,i−1).
From now on, in order to simplify the presentation, Ci,j

is defined to be 0 whenever i > j.

3.1 The Greedy+ Algorithm

The Greedy+ heuristic is a refinement of the Greedy
heuristic presented in [9]. Recall that the Greedy
heuristic works for a fixed number N of data items.
It initially assigns all the N items to a single group.
Then, for K − 1 times, one of the groups is split in
two groups, that will be assigned to two different chan-
nels. To find which group to split along with its ac-
tual split point, all the possible points of all groups are
considered as split point candidates, and the one that
decreases AED the most is selected. An efficient imple-
mentation takes advantage from the fact that, between
two subsequent splits, it is sufficient to recompute the
costs for the split point candidates of the last group
that has been actually split.

In summary, Greedy+ consists of two phases. In
the first phase it behaves as Greedy, except for the
way the split point is determined. In the second phase,
the solution provided by the first phase is refined by
working on pairs of consecutive channels.

Specifically, in the first phase, Greedy+ uses an ap-
proach similar to that of Equation 4 to determine the
split point. This is because splitting one channel is the
same as solving the data broadcast problem for two
channels. In details, assume that the channel to be split
contains the items from di to dj , with 1 ≤ i < j ≤ N ,
and let costi,j,2 denote the cost of a feasible solution
for assigning such items to two channels. Then, the
split point is given by the value of m that satisfies the
following relation:

costi,j,2 = Ci,m + Cm+1,j (5)

where

m = min
i≤�≤j−1

{� : Ci,� + C�+1,j < Ci,�+1 + C�+2,j} .

Note that, since the item lengths are not uniform,
the sequence of values Ci,� + C�+1,j , for i ≤ � ≤ j − 1,
is not unimodal. However, Greedy+ behaves as such a
sequence were unimodal. Hence, instead of trying all
the possible values of � between i and j, as done by
Greedy, Greedy+ performs a left-to-right scan starting
from i and stopping as soon the AED increases. In this
way, a sub-optimal solution S = (B1, B2,BK−1) is
found.

The second phase is performed only when K ≥ 3
and consists in refining the solution S by recomput-
ing its borders. It consists in a sequence of odd steps,
followed by a sequence of even steps. During the t-th
odd step, 1 ≤ t ≤ �K

2 �, the two-channel subproblem
including the items assigned to groups G2t−1 and G2t

is solved. Specifically, Equation 5 is applied choosing
i = B2t−2 + 1 and j = B2t, thus recomputing the bor-
der B2t−1 of S. Similarly, during the t-th even step,
1 ≤ t ≤ �K−1

2 �, the two-channel subproblem including
the items assigned to groups G2t and G2t+1 is solved by
applying Equation 5 with i = B2t−1+1 and j = B2t+1,
thus recomputing the border B2t of S.

The initial sorting requires O(N log N) time. Since
each split runs in O(N) time, and K splits are com-
puted, the first phase of Greedy+ takes O(NK) time.
The second phase of Greedy+ requires O(N) time since
each item is considered as a candidate split point at
most in a single split computation among all the odd
steps, and in a single split computation among the even
steps. Therefore, the overall time required in the worst
case by the Greedy+ heuristic is O(N(K +log N)), the
same as the original Greedy heuristic proposed in [10].

In the special case of uniform data lengths, by
Lemma 4, each split is performed on a unimodal se-
quence by invoking the BinSearch procedure, which
takes O(log N) time. Therefore, the worst case time
complexity of Greedy+ becomes O((N+K) log N), im-
proving over the O(N(K + log N)) time of the original
Greedy algorithm [10].

Note that Greedy+ scales well when changes occur
on the number of channels, on the number of items,
on item popularities, as well as on item lengths. In-
deed, adding or removing a channel simply requires
doing a new split or removing the last introduced split,
respectively. Adding a new item first requires to in-
sert such an item in the sorted item sequence. Assume
the new item is added to group Gj , then the border

of the two-channel subproblem including items of Gj

and Gj+1 is recomputed by applying Equation 5. Sim-
ilarly, deleting an item that belongs to group Gj re-
quires to solve again the two-channel subproblem in-
cluding items of Gj and Gj+1. Finally, a change in the
popularity/length of an item is equivalent to first re-
moving that item and then adding the same properly
modified item.

3.2 The Dlinear Algorithm

The Dlinear heuristic follows a dynamic program-
ming approach similar to that provided by Recur-
rence 2. It solves all the NK instances, for 1 ≤ n ≤ N
and 1 ≤ k ≤ K, with the objective of obtaining an
O(N(K +log N)) worst case time complexity. Fixed k,
Dlinear computes a solution for n items from the previ-
ously computed solution for n−1 items, exploiting the
characteristics of the optimal solutions for the uniform
case.

For any n ≤ N and k ≤ K, let Mk,n denote the cost
of a feasible solution for items d1, . . . dn and k channels,
and let Fk,n be the index of the last element assigned
to channel k − 1 in such a solution. Dlinear selects the
feasible solutions that satisfy the following Recurrence:

Mk,n =
{

C1,n if k = 1
Mk−1,m + Cm+1,n if k > 1 (6)

where

m = min
Fk,n−1≤�≤n−1

{� : Mk−1,� + C�+1,n <

Mk−1,�+1 + C�+2,n} .

In practice, Dlinear pretends to adapt Recurrence 4,
that holds for the uniform data lengths, also to the case
of non-uniform data lengths. In particular, the choice
of the lower bound Fk,n−1 in the formula of m is sug-
gested by Lemma 2 which says that the border of chan-
nel k − 1 can only move right when a new item with
the smallest popularity is added. Moreover, m is deter-
mined as in Equation 4 pretending that the sequence
Mk−1,� + C�+1,n, obtained for Fk,n−1 ≤ � ≤ n − 1, be
unimodal. Therefore, the solution provided by Dlinear
is a sub-optimal one.

As regard to the time complexity, computing Mk,n

requires O(Fk,n − Fk,n−1) time. Hence, row k of M is
filled in

∑N
n=1 O(Fk,n − Fk,n−1) = O(Fk,N − Fk,1) =

O(N) time. Since M has K rows and the sorting step
takes O(N log N) time, the overall time complexity of
the Dlinear algorithm is O(N(K + log N)).

N/K/θ/z Algorithm AED % Error Time
500/20/0.8/3 Greedy 18.72 7.1 102

Greedy+ 17.58 0.6 3514
Dlinear 17.47 2106

Lower bound 17.47
1500/20/0.8/3 Greedy 53.85 7.9 283

Greedy+ 51.71 3.6 21240
Dlinear 49.90 6519

Lower bound 49.90
1750/20/0.8/3 Greedy 62.64 7.9 326

Greedy+ 58.92 1.5 31137
Dlinear 58.04 7488

Lower bound 58.04
2000/20/0.8/3 Greedy 71.24 7.9 373

Greedy+ 66.93 1.4 38570
Dlinear 65.98 8602

Lower bound 65.98
2250/20/0.8/3 Greedy 79.70 7.8 457

Greedy+ 75.06 1.6 45170
Dlinear 73.87 9749

Lower bound 73.87
2500/20/0.8/3 Greedy 88.40 7.8 474

Greedy+ 82.51 0.7 62376
Dlinear 81.93 10920

Lower bound 81.93

Table 1. Experimental results on Zipf distri-
butions, when K = 20, θ = 0.8, and z = 3.

4 Experimental Tests

In this section, experimental results, performed on
implementations of both the Greedy+ and Dlinear
heuristics, are discussed for the data broadcasting
problem with K channels and non-uniform lengths. In
addition, the implementation of Greedy, as detailed
in [9], is used for comparison purposes. The algorithms
are written in C and the experiments are run on an
AMD Athlon XP 2500+, 1.84 GHz, with 1 GB RAM.

The heuristics are tested on some non-uniform
length instances generated as follows. Given the num-
ber N of items and a real number 0 ≤ θ ≤ 1, the item
popularities are generated according to a Zipf distribu-
tion whose skew is θ, namely:

pi =
(1/i)θ∑N
i=1(1/i)θ

1 ≤ i ≤ N

In the above formula, θ = 0 stands for a uniform
distribution with pi = 1

N , while θ = 1 implies a high
skew, namely the range of pi values becomes larger.
The item lengths zi are integers generated according
to a uniform distribution in the range 1 ≤ zi ≤ z, as
in [8]. The items are sorted by non-increasing pi

zi
ratios,

as suggested in [8]. The parameters N , K, z, and θ
vary, respectively, in the ranges: 500 ≤ N ≤ 2500,
10 ≤ K ≤ 500, 3 ≤ z ≤ 10, and 0.5 ≤ θ ≤ 1.

N/K/θ/z Algorithm AED % Error Time
2500/10/0.8/3 Greedy 179.16 7.8 381

Greedy+ 167.86 1.0 97356
Dlinear 166.14 4919

Lower bound 166.14
2500/40/0.8/3 Greedy 44.04 7.9 562

Greedy+ 41.58 1.9 34147
Dlinear 40.79 22771

Lower bound 40.79
2500/80/0.8/3 Greedy 21.98 7.9 685

Greedy+ 20.72 1.7 19179
Dlinear 20.37 46545

Lower bound 20.37
2500/100/0.8/3 Greedy 17.14 5.2 740

Greedy+ 16.75 2.8 27452
Dlinear 16.29 57906

Lower bound 16.29
2500/200/0.8/3 Greedy 8.56 5.1 1009

Greedy+ 8.37 2.8 12974
Dlinear 8.15 0.1 116265

Lower bound 8.14
2500/500/0.8/3 Greedy 3.4 4.2 2313

Greedy+ 3.35 2.7 21430
Dlinear 3.32 1.8 273048

Lower bound 3.26

Table 2. Experimental results on a Zipf distri-
bution, when N = 2500, θ = 0.8, and z = 3.

Since the optimal solutions can be found in a rea-
sonable time only for small values of N and z, a lower
bound on AED is used for large values of N and z. The
lower bound for a non-uniform instance is obtained by
transforming it into a uniform instance as follows. Each
item di of popularity pi and length zi is decomposed
into zi items of popularity pi

zi
and length 1. Since more

freedom has been introduced, it is clear that the op-
timal AED for the so transformed problem is a lower
bound on the AED of the original problem. Since the
transformed problem has uniform lengths, its optimal
AED is obtained by running the Dichotomic algorithm
presented in [4].

The simulation results are exhibited in Tables 1, 2,
3, and 4. The tables report the time (measured in
microseconds), the AED, and the percentage of error,
which is computed as(

AEDheuristic − AEDlowerbound

AEDlowerbound

)
100

The running times reported in the tables do not include
the time for sorting.

By observing the tables, one notes that Greedy+
and Dlinear always outperform Greedy in terms of so-
lution quality. In particular, Greedy+ at least halves
the error of Greedy, producing solutions whose errors is
at most 5.7%. Moreover, Dlinear reaches the optimum

N/K/θ/z Algorithm AED % Error Time
2500/50/0.5/3 Greedy 47.74 9.7 595

Greedy+ 46.02 5.7 23175
Dlinear 43.52 0.02 29075

Lower bound 43.51
2500/50/0.7/3 Greedy 39.59 6.8 600

Greedy+ 38.47 3.8 23606
Dlinear 37.05 0.02 29132

Lower bound 37.04
2500/50/0.8/3 Greedy 34.33 5.2 603

Greedy+ 33.49 2.6 24227
Dlinear 32.61 29121

Lower bound 32.61
2500/50/1/3 Greedy 23.10 3.2 609

Greedy+ 22.53 0.6 27566
Dlinear 22.38 28693

Lower bound 22.38

Table 3. Experimental results on Zipf distri-
butions, when N = 2500, K = 50, and z = 3.

almost in all cases, and its maximum error is as high
as 1.8% only in one instance.

As regard to the running times, although all the
three heuristics have the same O(N(K + log N)) time,
Greedy is the fastest in practice. Greedy+ and Dlinear
are slower than Greedy, but their running times are al-
ways less than one tenth of second. Their highest run-
ning times occur in Table 2, where those of Dlinear are
directly proportional to K while those of Greedy+ are
inversely proportional to K. This singular behaviour
of Greedy+ might depend on the fact that, in the sec-
ond phase each Split execution stops its scan earlier
when the cardinality of each pair of channels decreases,
and therefore the number of channels K increases. It
is worth to note that, due to the dynamic program-
ming approach, Dlinear solves all the instances with
1 ≤ n ≤ N items and 1 ≤ k ≤ K channels, while
Greedy and Greedy+ only solve the K instances with
n = N .

Further simulation results for an extensive set of ex-
periments have been reported in [3], which include dis-
tributions other than Zipf and/or instances with uni-
form data lengths. Overall Dlinear still continues to
produce the best solutions among all the three heuris-
tics.

5 Conclusions

In this paper, the problem of broadcasting data with
non-uniform lengths over multiple channels, with the
objective of minimizing the average expected delay of
the clients, was considered under the assumptions of
skewed allocation to multiple channels and flat schedul-

N/K/θ/z Algorithm AED % Error Time
500/50/0.8/3 Greedy 7.34 5.3 147

Greedy+ 7.19 3.1 2517
Dlinear 6.98 0.1 5423

Lower bound 6.97
500/50/0.8/5 Greedy 10.78 5.3 147

Greedy+ 10.52 2.8 2938
Dlinear 10.25 0.1 5490

Lower bound 10.23
500/50/0.8/7 Greedy 14.50 4.9 146

Greedy+ 14.16 2.4 3329
Dlinear 13.85 0.2 5499

Lower bound 13.82
500/50/0.8/10 Greedy 19.48 5.1 145

Greedy+ 18.97 2.3 3899
Dlinear 18.58 0.2 5507

Lower bound 18.53

Table 4. Experimental results on a Zipf distri-
bution, when N = 500, K = 50, and θ = 0.8.

ing per channel. Since for non-uniform lengths the
problem is computationally intractable, new heuristics
have been proposed, which experimentally outperform
the previously known heuristic in terms of the solu-
tion quality. In particular, the experimental tests have
shown that the Dlinear heuristic finds optimal solu-
tions almost always. In contrast, Greedy is the fastest
heuristic, but produces the worst solutions. Finally,
Greedy+ presents running times and sub-optimal so-
lutions which are both intermediate between those of
Greedy and Dlinear. In conclusion, the choice among
the heuristics depends on the goal to be pursued. If
one is interested in finding the best sub-optimal solu-
tions, then Dlinear should be adopted. Instead, if the
running time is the main concern, then Greedy should
be chosen, while if adaptability to parameter changes is
the priority, then either Greedy or Greedy+ should be
applied. In this scenario, Greedy+ represents a good
compromise since it is scalable and produces fairly good
solutions.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broad-
cast disks: data management for asymmetric communica-
tion environments. In Proc. SIGMOD, May 1995.

[2] M.H. Ammar and J.W. Wong. On the optimality of cyclic
transmission in teletext systems. IEEE Transactions on
Communications, 35(11):1159–1170, 1987.

[3] S. Anticaglia, F. Barsi, A.A. Bertossi, L. Iamele, and M.C.
Pinotti. Efficient Heuristics for Data Broadcasting on Mul-
tiple Channels. Technical Report, 2005/5, Department of

Mathematics and Computer Science, University of Peru-
gia, 2005.

[4] E. Ardizzoni, A.A. Bertossi, M.C. Pinotti, S. Ramaprasad,
R. Rizzi, and M.V.S. Shashanka, Optimal Skewed Data
Allocation on Multiple Channels with Flat Broadcast per
Channel. IEEE Transactions on Computers, 54(5):558–
572, 2005.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and Zipf-like distributions: evidence and im-
plications. In Proc. IEEE INFOCOM, 1999.

[6] A.S. Goldstein and E.M. Reingold. A Fibonacci version
of Kraft’s inequality applied to discrete unimodal search.
SIAM Journal on Computing, 22(4):751–777, 1993.

[7] I. Stojmenovic (Editor). Handbook of Wireless Networks
and Mobile Computing. Wiley, Chichester, 2002.

[8] N. Vaidya and S. Hameed. Log time algorithms for schedul-
ing single and multiple channel data broadcast. In Proc.
Third ACM-IEEE Conf. on Mobile Computing and Net-
working (MOBICOM), September 1997.

[9] W.G. Yee, Efficient data allocation for broadcast disk ar-
rays. Technical Report, GIT-CC-02-20, Georgia Institute
of Technology, 2001.

[10] W.G. Yee, S. Navathe, E. Omiecinski, and C. Jermaine. Ef-
ficient data allocation over multiple channels at broadcast
servers. IEEE Transactions on Computers, 51(10):1231–
1236, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

