
Parallelizing Post-Placement Timing Optimization

Jiyoun Kim1, Marios C. Papaefthymiou1, and Jose L. Neves2

1Advanced Computer Architecture Laboratory 2IBM Server Group

University of Michigan 2455 South Road

Ann Arbor, MI 48109 Poughkeepsie, NY 12533

{jiyoun, marios}@eecs.umich.edu jneves@us.ibm.com

Abstract

This paper presents an efficient modeling scheme and a

partitioning heuristic for parallelizing VLSI post-placement

timing optimization. Encoding the paths with timing viola-

tions into a task graph, our novel modeling scheme pro-

vides an efficient representation of the timing and spatial

relations among timing optimization tasks. Our new par-

titioning algorithm then assigns the task graph into mul-

tiple sessions of parallel processes, so that interprocessor

communication is completely eliminated during each ses-

sion. This partitioning scheme is especially useful for par-

allelizing processes with heavily connected tasks and, there-

fore, high communication requirements. For circuits with

20–130 thousand cells, the partitioning heuristic achieves

speedups in excess of 5× without degrading solution qual-

ity by dynamically utilizing 1–8 processors.

Keywords: Timing Optimization, Parallel VLSI Design,

Physical Design, Partitioning

1 Introduction

In an automated VLSI design flow, post-placement tim-

ing optimization is the step where paths with excessive

delays are optimized to meet given timing specifications.

Since the operating speed of a circuit is determined by its

largest path delay, timing optimization is an important phase

that guarantees the performance of the resulting VLSI sys-

tem. As chip density and design complexity rapidly grow,

this optimization step is becoming increasingly time con-

suming. In today’s VLSI designs, it is common to have

chips with several million gates, requiring tens or hundreds

of hours per post-placement timing optimization run. Since

timing optimization may be performed numerous times un-

til design specifications are met, reducing its runtime with-

out degrading solution quality may significantly impact the

design development cycle and yield shorter time-to-market.

Partitioning can speedup a process by enabling parallel

processing. To that end, partitioners find balanced partitions

of tasks and assign each partition to one of multiple proces-

sors. There have been investigations of parallel databases

for CAD [9] and parallel algorithms for various CAD tasks,

such as placement [2, 7, 12], routing [6, 8] and logic simu-

lation [4, 10]. In post-placement timing optimization, how-

ever, tasks are heavily connected and less amenable to effi-

cient parallelization, due to the excessive need for commu-

nication and/or synchronization.

This paper introduces a new multi-session partitioning

technique for parallel post-placement timing optimization

that eliminates interprocessor communication during task

computation. At each session, the partitioning algorithm

determines path subsets that need not exchange any tim-

ing or geometric information to achieve optimal timing op-

timization results. Consequently, throughout each session,

each processor proceeds uninterrupted with the optimiza-

tion of its assigned partition, without incurring any latency

or synchronization overhead due to communication events.

All information necessary for subsequent sessions is up-

dated only at the end of each session. Thus, the proposed

partitioning scheme provides for structured and highly syn-

chronized parallel processing with minimum communica-

tion overhead.

Sun and Sechen have presented a parallel placement

scheme without processor interaction during each iteration

[12]. This scheme does not remove conflicts during an

iteration, however, and thus may not be suited for post-

placement procedures. Conflicts (i.e.,overlaps) in post-

placement optimizations are more difficult to resolve than

conflicts during placement without degrading design qual-

ity. The motivation behind our work is to completely re-

move communication and conflicts during computation by

introducing multiple sessions of distribute-compute-merge

steps. Since simultaneously processed tasks have no con-

flicts in their resources, there is no competition that would

cause quality degradation for one or more task optimization

1-4244-0054-6/06/$20.00 ©2006 IEEE

Figure 1. Task partitioning example. (a) Given
four paths. (b) Conventional partitioning. (c)

Multi-session (2-session) partitioning.

results. To our knowledge, this is the first work address-

ing the partitioning and parallelizing of the post-placement

timing optimization process.

A simple example of timing optimization parallelization

is given in Fig. 1. Fig. 1(a) shows a set of four timing paths

(A�C,B�C,D�E,F�G) to be optimized, each of which

is associated with physical space specified by dotted bound-

ary. Timing optimization of each path changes the physical

space associated with it. For paths that share logic (e.g.,

A�C and B�C) and/or space (e.g., A�C and F�G), the

communication of timing and spatial information among

them becomes necessary. When using two processors P1

and P2 for the parallel optimization of the four given paths,

it is not possible to find two independent partitions. Con-

ventional partitioners such as METIS [5] will give results

akin to this in Fig. 1(b), where paths A�C,B�C and as-

sociated area (dashed line) are assigned to P1, and paths

D�E,F�G and associated area (solid line) are assigned to

P2. Since the areas of the two partitions overlap, communi-

cation between the two processors is unavoidable.

Fig. 1(c) shows the result of our multi-session partition-

ing. In the first session, path A�C is assigned to P1, and

path D�E is assigned to P2. After the paths on P1 and P2

are processed independently of each other, at the end of the

first session the changes are merged into the main design

and propagated to the following session. In the next ses-

sion, the remaining tasks are independently processed in the

same fashion. By guaranteeing that no pair of tasks sharing

the same logic or space are processed on two different pro-

cessors during the same session, the need for interprocessor

communication during task computation is eliminated.

This paper first presents a task graph modeling scheme

which efficiently represents timing and spatial dependen-

cies among post-placement timing optimization tasks. It

then defines the multi-session partitioning problem on the

task graph, so that task optimization during each session is

guaranteed to proceed uninterrupted. After giving a proof

that the multi-session partitioning problem is NP-hard, it

proceeds to present a greedy, yet efficient heuristic for

multi-session partitioning.

In timing optimization experiments with placed VLSI

circuits comprising up to 130 thousand cells, our graph

modeling and multi-session partitioning heuristic achieves

speedups up to 5.14× without degrading solution quality,

utilizing 1–8 processors. Speedups are strongly correlated

with graph connectivity. Specifically, increased speedups

are achieved when the connectivity of the optimization tasks

diminishes.

The remainder of this paper is organized into six sec-

tions. In Section 2, we review the timing analysis and opti-

mization problem. Our efficient graph modeling for timing

optimization is introduced in Section 3. Section 4 gives a

formal definition of the multi-session partitioning problem

and a proof that it is NP-complete. Our efficient heuristic

for the multi-session partitioning problem is given in Sec-

tion 5. Heuristic evaluation and speedups from paralleliz-

ing post-placement timing optimization of several VLSI de-

signs are presented in Section 6. A discussion of ongoing

work is presented in Section 7.

2 Review of Timing Optimization

In this section, we give a brief review of basic concepts

in the timing analysis and optimization procedure for VLSI

design. Relying on these concepts, we describe the timing

optimization graph modeling and multi-session partitioning

problem in Sections 3 and 4.

In automated VLSI design flows, engineers first generate

a design using a behavioral hardware description language

that specifies the functional behavior of the system. Sub-

sequently, a logic synthesis step automatically generates a

gate-level netlist by taking pre-designed gates from a gate

library. The netlist is then sent to a placement tool, which

arranges design components in a physical space. In the sub-

sequent routing step, the interconnects among circuit com-

ponents are routed. The layout of a placed and routed design

is finally generated and used in manufacturing the chip.

Our work focuses on the timing optimization process that

takes place after placement. Exact delays can be calculated

only after circuit components have been physically placed

in 2-dimensional space, since physical locations of compo-

nents must be known for derivation of interconnect delays.

Post-placement timing analysis and optimization steps use

accurate delay information to improve the speed of a given

placed circuit, which would be very close to the speed of

final chip products.

First, timing analysis determines if a circuit meets all

Figure 2. (a) An example circuit with delays

and (b) its calculated AT , RAT and slack val-

ues

timing goals. Based on the delay information of cells and

nets, timing analysis calculates the delays of all timing

paths. A timing path is an ordered sequence, through gates

and interconnects, of timing points between two significant

timing points (STPs). At each STP, such as the input/output

pins of flip-flops and the primary inputs/outputs of the de-

sign, a timing goal is defined by asserting timing informa-

tion. If a timing path fails to meet the timing assertion at its

STPs, the path is called critical and becomes the subject of

subsequent timing optimization.

All critical paths are identified during the timing anal-

ysis process. At each timing point, a timing analysis tool

calculates Arrival Time (AT), the absolute time at which all

signals actually arrive, and Required Arrival Time (RAT),

the absolute time at which the signals are required to ar-

rive. The slack S of the timing point is then obtained as

S = RAT−AT . The slack indicates how far the timing point

in the path is from its goal. If S = 0, the point has reached

its goal, if S > 0, the point is beyond the goal, and if S < 0,

the point has yet to meet the goal.

Fig. 2 gives an example of timing analysis on a simple

circuit with timing goal T = 10. Fig. 2(a) shows STPs

{A,B,C,D,E} with a given timing assertion (AT = 0 for

launching STPs {A,B,C}, RAT = 10 for receiving STPs

{D,E}) and intermediate gates {X ,Y,Z}. Delays for gates

and nets are denoted by integers next to corresponding el-

ements. AT s are calculated starting from launching STPs

to receiving STPs along the direction of signal flow. RAT s

are calculated in the opposite direction. Fig. 2(b) provides

Figure 3. Timing optimization for circuit in

Fig. 2.

AT/RAT/slack values at every timing point. When multi-

ple signals meet at a timing point, the latest AT and the

earliest RAT become the AT and RAT of the timing point.

For example, at the input of gate X , incoming signals from

A and B have AT = 3 and AT = 1, respectively. There-

fore, AT = max{3,1} = 3. Note that all timing points on

paths {A,X ,Y,D} and {A,X ,Z,E} have negative slack val-

ues. These two paths are critical.

After timing analysis identifies all critical paths, post-

placement timing optimization commences to improve neg-

ative slacks of those paths/STPs. Timing optimization tools

apply a variety of circuit transformation techniques such as

gate sizing, buffer insertion, and gate relocation [1, 11].

Gate sizing powers up a slow gate by replacing it with a

larger gate in order to reduce gate delay. To optimize inter-

connect delays, buffers may be inserted on slow nets to cut

down delays which grow quadratically with wire length. If

the cells connected to a slow net are placed too far to meet

the timing requirement, the optimization tool may move the

cells closer to shrink the span of the net. Typically, timing

optimization routines have superlinear runtime complexity,

resulting in significant runtimes. Consequently, optimizing

the timing of a design with several million gates may take

hundreds of hours.

Fig. 3 shows the optimization result when two buffers are

inserted on the net connecting {X ,Y,Z}, to decrease X→Y

and X→Z interconnect delays. The AT /RAT /S values on the

paths passing through that net change, and slacks on the two

critical paths become non-negative. Since all paths have de-

lays no greater than 10, the timing optimization stops here.

It can be observed that optimization techniques applied to a

cell or a net change not only the timing information of the

optimized element, but also the timing information of all

paths passing through that element.

The spatial configuration of the circuit is also affected

by timing optimization. Fig. 4 illustrates how the buffer

insertion in Fig. 3 may change the original placed circuit.

In addition to gates X , Y and Z, the circuit area in Fig. 4(a)

includes other placed cells which did not participate in the

optimization. When two buffers are inserted, the desired

locations do not have enough space, so nearby cells need

Figure 4. Physical view of the circuit in Fig. 3.

(a) before insertion and (b) after insertion.

to be moved. Cells which have been shifted or moved to a

different row are labeled with integer numbers. As can be

seen in this example, during timing optimization, the spatial

configuration is affected not only for the optimized cell or

inserted buffer but also for some of the nearby cells.

The timing/spatial relations among paths and their asso-

ciated area during post-placement timing optimization must

be considered when partitioning the optimization tasks to

parallelize the process. Following are definitions of terms

used in this paper to describe these relations.

Definition 2.1 Two (sets of) timing paths are timing depen-

dent if timing optimization of one of these (sets of) paths can

change the timing information of the other path (set), due to

their sharing of logic.

Definition 2.2 Two (sets of) timing paths are spatially de-

pendent if optimization of one of these (sets of) paths affects

the spatial configuration of the other path (set).

Each path is associated with its own elements and nearby

cells, whose spatial information can be altered when tim-

ing optimization is applied to the path. If two paths are in

the same physical vicinity so that their associated spaces

are overlapping, timing optimization of one path can cause

changes in the spatial information of the other path.

Note that timing dependence always implies spatial de-

pendence, due to the shared logic. The implication is not

true in the opposite direction, however.

Definition 2.3 A set of timing paths is self-contained for

the timing optimization of a timing point if the set includes

all the paths necessary to improve the slack of the timing

point.

The slack of a timing point is the worst slack among all

paths passing through that timing point. Therefore, to fix the

negative slack of a timing point, all the critical paths passing

through that timing point must be optimized to have positive

slacks. The set of these paths is then self-contained for the

optimization of that timing point. In the example of Fig. 2

and Fig. 3, to improve the slack of STP A, all the critical

paths contributing to it need to be optimized. Therefore, the

set of paths {{A,X ,Y,D},{A,X ,Z,E}} is self-contained for

the timing optimization of STP A.

3 Task Graph Model

In this section, we introduce a task graph for encoding

partitioning constraints related to a given timing optimiza-

tion problem. We also describe an efficient algorithm for

generating it. This graph is subsequently used in Section 5

to derive an efficient task partitioning for timing optimiza-

tion.

The task graph is constructed from a given placed cir-

cuit represented by a placed circuit graph H(C,N), where

each vertex c∈C corresponds to a circuit cell, and each hy-

peredge n∈N corresponds to a net connecting circuit cells.

Since H is placed, the cells and nets are associated with

physical space on the chip. Thus, for every cell a∈C or net

a∈N, the bounding box BB(a) is defined as a minimum-size

rectangle containing the element a with vertical/horizontal

coordinates.

For any given placed circuit, we introduce a two-

dimensional grid structure designed to provide geometric

guidelines for timing optimization. When a cell is sized or

inserted into a grid location, only the elements in that grid

are allowed to be moved around within that grid boundary.

The rippling of geometric shifts is thus restricted, and local

changes do not globally affect chip area. Each grid rectan-

gle contains a roughly equal number of cells, typically up

to a few hundred cells.

The grid structure is also used to represent the physical

space occupied by circuit elements. Every cell a ∈C or net

a ∈ N is associated with a two-dimensional boolean map

Ba(,) derived from the bounding box of a. The boolean

map Ba(i, j) is set to ’1’ when the (i, j)th circuit grid rect-

angle is partially or entirely covered by BB(a), or set to ’0’

otherwise. This boolean map indicates the boundary within

which the geometric information of circuit components can

be changed when a is optimized for timing.

During timing analysis, timing violating cells and nets

with negative slacks are marked and later extracted to

construct a timing violation graph HTV (CTV ,NTV), where

CTV ⊂ C and NTV ⊂ N are timing violating cells and nets,

respectively. Each timing violating element (whether a cell

or a net) a ∈ HTV (CTV ,NTV) is associated with timing anal-

ysis information AT (q),RAT (q),S(q), providing AT , RAT ,

and slack values for each input/output pin q of a. The same

boolean grid map information Ba() derived in H(C,N) is

again associated with a ∈ HTV .

The timing violation graph HTV embeds all critical paths

and all timing and spatial information needed for timing op-

timization. From HTV , the undirected task graph G(V,E)
is constructed so that the task vertices and task edges rep-

resent critical path optimization tasks and the interactions

between them, respectively. Efficient task graph representa-

tion should result in minimum interactions among task par-

titions when graph partitioning is applied to the task graph.

3.1 Task vertex generation

Each task vertex of the task graph G corresponds to a

critical launching STP and all critical paths driven from that

STP. Since a vertex is always assigned to a single partition,

all timing paths contributing to that STP stay in the same

partition, and the timing optimization process can improve

the negative slack of that STP without importing any timing

information from other partitions. Therefore, the partition

is self-contained for optimizing slacks of launching STPs

that are included in it.

Fig. 5(a) gives an example of task vertex generation.

Launching STPs {A,B} and receiving STPs {C,D,E} are

drawn as squares, and intermediate gates {1,2, ..,6} are

drawn as circles. Fig. 5(b) and 5(c) show results from two

possible task vertex generation methods. The receiving-

STP method clusters all paths driving a common STP, so

that the generated vertex is self-contained for the receiv-

ing STP. Similarly, the launching-STP method clusters all

paths driven from a common STP, and the generated ver-

tex is self-contained for the launching STP. Other clustering

methods are possible; for example, generating a vertex for

each critical path, or clustering all timing dependent paths

into one vertex. Those methods are not considered, because

they generate too many or too few vertices to be handled by

a partitioning tool.

Among the two methods considered, the launching STP

method is selected in this paper because it always includes

every net into a task vertex in its entirety, thus facilitat-

ing the application of timing optimization techniques to

the entire net. For example, a multi-sink net connect-

ing cells {1,2,5} of Fig. 5(a) could not be entirely in-

cluded either in vertex X (path {A,1,2,C}) or vertex Z

(paths {A,1,5,D} and {B,3,4,5,D}) using the receiving

STP scheme (Fig. 5(b)). On the other hand, with the launch-

ing STP based scheme, the same net is entirely included in

vertex U (paths {A,1,2,C} and {A,1,5,D}) in Fig. 5(c),

enabling timing optimization of the net as a whole.

The total number of vertices in the task graph equals the

number of launching STPs with negative slack, since each

task vertex has exactly one launching STP. For the ith criti-

Figure 5.Taskvertex generation:(a)Given crit-
ical timing paths, (b) receiving-STP method,

(c) launching-STP method.

cal launching STPi, the corresponding task vertex vi ∈V can

be represented as a subgraph Hi(Ci,Ni) of HTV (CTV ,NTV),
where Ci ⊂ CTV and Ni ⊂ NTV are sets of timing violating

cells and nets reachable from STPi. All critical paths con-

tributing to STPi are then included in Hi.

The subgraph Hi can be obtained from HTV for cells and

nets that are reachable for each STPi. To identify Hi for all

launching STPs in a single search, the reachable subgraph

can be incrementally calculated for every timing violating

cell c ∈ CTV by traversing HTV in reverse topological-sort

order. When a cell is visited, subgraphs from sink cells

(cells driven by the cell currently visited) are merged to cre-

ate the subgraph for that cell.

For each task vertex vi ∈V, its two-dimensional boolean

map Bvi
is obtained to indicate the occupancy of vi on the

grid by the bitwise-OR of the boolean maps of all timing

violating cells and nets vi includes. Formally, we define

Bvi
= (

S
c∈Ci

Bc)∪ (
S

n∈Ni
Bn), where Hi(Ci,Ni) is the sub-

graph for vi. The boolean maps can be calculated in the

same way subgraphs {Hi} are obtained in task vertex gen-

eration, by also providing a boolean grid map of each reach-

able subgraph for each timing violating cell.

After Hi(Ci,Ni) is identified, the task vertex vi is associ-

ated with a vertex weight w(vi) which represents the opti-

mization workload for the tasks in vi. One way to intuitively

assign weights is to count the number of paths requiring op-

timization in each vertex. However, other metrics can be

applied if they estimate the workload of each task.

3.2 Task edge generation

To represent dependencies among partitions, a task edge

is inserted between any two task vertices that are tim-

ing/spatially dependent. Since graph partitioning minimizes

edge cutsize, dependency among partitions is minimized

when the graph partitioning algorithm is applied to the task

graph.

Since timing dependence implies spatial dependence, as

mentioned in Section 2, it is sufficient for the task edge gen-

eration procedure to only check for spatial dependence. In

our modeling scheme, the spatial dependence between two

task vertices is determined by computing the bitwise-AND

of the boolean maps of the two vertices. Let u,v ∈V be two

different task vertices. Then a task edge e(u,v) ∈ E if and

only if Bu ∩Bv �= 0. If the result is not all-zero, then two

task vertices need to work in the same grids, corresponding

to non-zero elements and are thus spatially dependent.

Fig. 6 gives an illustration of task edge generation.

Fig. 6(a) shows five placed STPs {A,B,C,D,E} and critical

paths A�B, A�C, and D�E on the circuit grid. The task

graph for this circuit is shown in Fig. 6(b). First, vertices X

and Y are generated by the launching-STP based clustering

scheme described in Subsection 3.1. The boolean maps BX

and BY are derived from the union of the boolean maps of

Figure 6. (a) An example of critical paths in

a placed circuit and (b) corresponding task
vertex/edge generation.

cells and nets included in task vertices X and Y respectively.

Note that bounding boxes are used to represent locations of

nets. A task edge between vertices X and Y is then inserted

since BX ∩BY �= 0, indicating that the two tasks share the

same area.

It can be shown that the task graph is generated in

O(|ETV |+ |CTV | ·Smax + |V | lg |V |+ |V | ·OLmax ·Smax)) time.

OLmax is the maximum numbers of task vertices overlap-

ping to a task vertex. Smax is the number of grids in the

largest bounding box among bounding boxes, each of which

covers a task vertex. OLmax varies from 0 to |V | and is close

to |V | for small designs, but not as large in larger designs.

Smax equals the total number of grids and is thus bounded

by O(n) in the worst case. Since placement algorithms tend

to bound the physical spans of timing paths, however, Smax

increases much slower than O(n) in practice.

4 Multi-Session Partitioning Problem

This section defines the multi-session partitioning prob-

lem and provides a proof for its NP-completeness.

The task graph described in Section 3 guarantees self-

containment of a partition. Timing/spatial independence is

achieved by finding a partitioning with no task edges be-

tween partitions. When conventional graph partitioners par-

tition dense graphs such as the task graphs derived from cir-

cuits, partitions typically have a large edge cutsize, resulting

in possibly heavy communication during parallel process-

ing.

As mentioned in Section 1, the goal of the proposed par-

titioning scheme is to eliminate all communication during

task computation. To implement parallel processing with

this constraint, a process is broken up into multiple sessions

over time, with each session performing tasks in parallel.

Fig. 7 shows the flow chart for parallel timing optimiza-

tion with the proposed multi-session partitioning scheme.

The task set of the optimization problem is partitioned into

multiple sessions. Within each session, the task subset

is partitioned again into multiple processors, so that tim-

Figure 7. Parallel timing optimization flow

chart.

ing/spatial dependencies among partitions within each ses-

sion are eliminated. All dependencies among tasks exist

only among partitions in different sessions.

In session i, disjoint task subsets {V i
1,V

i
2, ..,V

i
ki
} and

the physical chip space is distributed over local memories

{M1, ...,Mki
}, so that for the jth processor (1 ≤ j ≤ ki), M j

keeps only the grid area in H associated to its task set V i
j .

The timing and spatial information in each local memory

is then changed independently during the optimization pro-

cess by the corresponding local processor. Since there is

no spatial dependency among {V i
j} , i.e., the boolean grid

maps associated with these task sets do not share any grid

square in H(C,N), there are no spatial conflicts among local

memories.

At the end of each session, the grid areas assigned to

{M j} are merged into the main memory M. The tim-

ing/spatial updates made in local processors should be prop-

agated to upcoming sessions. Spatial dependency update of

the entire design is naturally completed when the grid areas

are merged together, yet timing update needs to be done sep-

arately in a post-processing step, by running timing analysis

on the timing violating graph.

The multi-session partitioning problem can be viewed as

a kind of scheduling problem. Given a task graph, a typical

scheduling scheme would assign each task to a processor

so that no dependent tasks are processed at the same time.

For example, whenever a processor becomes available, a

real-time scheduler would find a task independent of the

other tasks being processed in other processors and assign

it to the available processor. Compared to such scheduling

schemes that assign each individual task, multi-session par-

titioning clusters many dependent tasks, which share physi-

cal chip space and thus memory resources, processing them

together in one processor. This scheme saves the effort of

memory distribution/merging actions, since the information

in the memory associated with many tasks in a cluster is

sent to and retrieved from the corresponding processor only

at the beginning/end of corresponding session.

The Multi-Session Partitioning problem is formally

stated as follows:

Problem Multi-Session Partitioning (MSP): Given task

graph G(V,E) with vertex weights w(v) : V → Z+ for each

v ∈ V , processor number p, and maximum number of ses-

sions L, find disjoint sets {V 1
1 ,V 1

2 , ...,V 1
p }, {V 2

1 ,V 2
2 , ...,V 2

p },

..., {V L
1 ,V L

2 , ...,V L
p } such that:

1.
SL

i=1

Sp
j=1 V i

j =V and V
i1
j1
∩V

i2
j2

= /0 if (i1, j1) �=(i2, j2).

2. ∀i, u∈V i
j1

and v∈V i
j2

implies (u,v) /∈E if j1 �= j2.

3. Minimize T =∑
L
i=1max j(W

i
j), where W i

j =∑v∈V i
j
w(v).

The first condition indicates {V i
j} is a set partition of V ,

where i is the session index, and j is the processor index.

Some V i
j may be empty, and thus the total effective session

number may be smaller than L, and the effective processor

number for each session may be smaller than p. The second

condition disallows communication between processors at

each session.

The third condition states the objective of the problem,

which is to minimize the total parallel processing time T .

At each session, the processing time is dominated by the

largest workload among processors, so total processing time

T is the sum of max j(W
i
j), where W i

j is the processing time

for task subset V i
j , and max j(W

i
j) is the processing time

needed for the ith session. Minimizing T also implicitly

balances the partitions in the same session, since imbalance

within each session tends to increase T .

In the decision version of Problem MSP, a positive in-

teger K ≤ |V | is also given, and Condition 3 is changed as

follows:

3’. T = ∑
L
i=1 max j(W

i
j) ≤ K, where W i

j = ∑v∈V i
j
w(v).

In this case, the problem would ask if there are disjoint sets

{V i
j} satisfying conditions 1, 2, and 3’.

In the next theorem, we briefly show that Problem MSPd ,

the decision version of Problem MSP, is NP-complete.

Theorem 4.1 For multiple processors (p≥2) and multiple

sessions (L≥2), Problem MSPd is NP-complete.

Proof. Can be shown by transforming the BALANCED

COMPLETE BIPARTITE SUBGRAPH (BCBS) problem to

Problem MSPd for the case p = 2,L = 2,w(v) = 1. Let

us call the latter problem MSPd(2,2). Given bipartite graph

G′(V ′,E ′) and positive integer K ′ ≤ |V ′|, Problem BCBS

asks for two disjoint subsets V1,V2 ⊆ V ′ such that |V1| =
|V2|= K′ and such that u∈V1,v∈V2 implies that (u,v)∈E ′.

BCBS is known to be NP-complete [3]. From G′(V ′,E ′)
and K′, we can construct G(V,E) and K for MSPd(2,2) as

follows: V = V ′∪{w}, E = E1∪E2, where E1 = {(u,v)| u∈
V,v ∈V,and (u,v) /∈ E ′} and E2 = {(w,v)| ∀v ∈V}, and

K = |V ′|+1−K′. Then BCBS has a solution if and only

if MSPd(2,2) has a solution. It is straightforward to ver-

ify that MSPd(2,2) is in P, and that the transformation

can be done in polynomial time. Therefore, MSPd(2,2) is

NP-complete, and thus Problem MSPd is NP-complete for

p ≥ 2, L ≥ 2, and non-uniform w(v). �

5 Partitioning Heuristic

In this section, we describe Algorithm MSPart, our ef-

ficient and effective heuristic for Problem MSP. Given task

graph G(V,E), available number of processors p, and max-

imum number of sessions L, the proposed heuristic com-

putes a sequence of no more than L sessions. For each ses-

sion, it generates at most p balanced disjoint subsets which

are not connected to each other by any edges.

The main function of MSPart is a subroutine for finding

disjoint subsets for each session. This subroutine can be

described with the help of Fig. 8, where the black region

represents vertices already included into each set, and the

gray region represents vertices adjacent to the vertices of

the black region. To find k disjoint subsets {V i
1,V

i
2, ...,V

i
k}

for session i, k disconnected vertices are chosen as seeds

(Fig. 8(a)). Each subset is then greedily grown from each

seed by including a vertex at a time, while maintaining dis-

connectivity among subsets. The seed and vertex selec-

tion tries to keep the black balance among {V i
j}, and/or

gray balance among {U i
j}, where V i

j is jth subset with se-

lected vertices and U i
j is the set of vertices only adjacent to

∃v ∈ V i
j . Vertices in U i

j are candidates for vertex selection

for V i
j . Maintaining balance for each of both {V i

j} and {U i
j}

heuristically increases the number of vertices selected for

Figure 8. Finding subsets for a session.

MSPart(G, p,L)

1: initialize i=1, inputG=G, max_procnum=p;

2: repeat // for each session i,

3: [procnum,subsets]=FindSubsets(inputG,max_procnum);

// parallel timing optimization

4: parallel_timingOpt(procnum, subsets);

5: merge_optResult(procnum,subsets,inputG);

6: timingAnalysis(inputG);

7: remnantG=GetRemnantGraph(inputG,procnum,subsets);

8: inputG=remnantG, i++; // for the next session

9: if i==L // if next session is the last,

10: then max_procnum=1; // use single processor

11: until (isempty(inputG)==true)

FindSubsets(inputG,max procnum)

1: initialize best_procnum, best_subsets;

2: for procnum->max_procnum to 1

// find disjoint subsets for given procnum

3: seeds=SelectSeeds(inputG, procnum);

4: subsets=GrowSubsets(inputG, seeds);

// check if the result is good for parallelization

5: if goodForParallel(subsets)==true

6: then break;

7: return procnum, subsets;

Figure 9. Algorithm MSPart.

this session. If the balance of {V i
j} is more critical than the

balance of {U i
j}, a vertex that gives the smallest deviation

min(max j(w(V i
j))−min j(w(V i

j))) is selected, where w(V)
is the total weight in the vertex set V . If gray balance is more

critical, a vertex causing min(max j(w(U i
j))−min j(w(U i

j)))
is selected.

An intermediate state of the subset-generating subrou-

tine is shown in Fig. 8(b). Fig. 8(c) shows the result of the

subset search in this session. Three black regions become

the disjoint subsets {V 1
1 ,V 1

2 ,V 1
3 } for session 1, and the graph

under the gray region, called the remnant graph of this ses-

sion, is sent to the next session. In the next session, the

remnant graph becomes the new input task graph and the

disconnected subset search is performed on this graph. A

session ends when the predefined maximum session num-

ber L is reached or when the remnant graph is empty or not

large enough to warrant parallelization. In these cases, the

last session will find an appropriate number –typically one–

of subsets to include all vertices of the remnant graph.

At each session, a lower bound on the subset size as-

signed to each processor is enforced, because each proces-

sor incurs a fixed overhead for task distribution in the begin-

ning of the session and task merging at the end of the ses-

sion. This constraint enforces the use of fewer processors

for some sessions, rather than all the available processors.

Fig. 9 shows the pseudocode for the heuristic MSPart.

At each session with an input graph inputG and number of

processors max procnum, first subroutine FindSubsets()

finds the proper processor number and corresponding dis-

connected subsets in line 3. These disconnected subsets are

then distributed over the processors and optimized in par-

allel in line 4. After all processors complete their tasks,

the results are merged back into the input graph for the ses-

sion (line 5), and a timing analysis is performed to update

timing information for the next session (line 6). This pro-

cedure is iterated until there are no vertices left to be parti-

tioned. When the heuristic reaches the Lth session, the input

graph is assigned to a single processor, the remnant graph

becomes empty, and the routine terminates.

Algorithm MSPart is greedy because at each session, it

tries to find the largest possible disconnected subsets for the

session without any direct consideration of subsequent ses-

sions. Furthermore, subsets grow by greedily finding and

including a vertex which most balances gray and black re-

gions of subsets.

Algorithm MSPart() makes at most L calls to

FindSubsets(). It can be shown that FindSubsets()

runs in O(p2|Ei|+ p|Vsel,i| · |Vi|), where Gi(Vi,Ei) = inputG

and |Vsel,i| is the number of selected vertices for ith session.

Since ∑i |Vsel,i|= |V |, |Vi| ≤ |V |, |Ei| ≤ |E|, overall execution

takes O(p2L|E|+ p|V |2)) steps. In practice, the runtime is

substantially shorter than this analysis suggests, since the

number of for iterations for large |Vi|in FindSubsets() is

much smaller than p. Moreover, |Vi| and |Ei| decrease fast

in early sessions, while the complexity analysis uses just the

overestimated upper bound |V | and |E|, respectively.

6 Experimental Results

To validate our partitioning heuristic and overall paral-

lel timing optimization strategy, we developed a prototype

path-based timing optimization code. Given tasks, the code

iteratively finds the most critical path and optimizes the path

delay by inserting buffers on slow nets on the path, until

all paths have non-negative slacks. Buffer insertion affects

both timing and spatial information. It is regarded as one

of the most effective timing optimization techniques [1].

Therefore, it is most suitable for the purposes of evaluating

our parallelization of post-placement timing optimization.

In our experiments we used a suite of test circuits that

were placed and routed to derive wire delays. Static tim-

ing analysis was then run to obtain timing violating cells

and nets. The task graphs were generated using the proce-

dure described in Section 3, where for each vertex v, the

workload w(v) was set equal to the linear combination of

the slack amount of the launching STP to improve and the

number of critical paths that correspond to that vertex.

Some important characteristics of the test circuits and

their corresponding task graphs are given in Table 1. De-

signs are sorted by size. To indicate task graph density, the

average vertex degree and connectivity metrics are given.

Connectivity indicates what portion of the graph is con-

Task Graph Modeling

Placeable Task Task Average Connect- Time

Design Gates Vertices Edges Degree ivity (sec)

1 24K 559 121677 435 78% 3.04

2 67K 2265 642824 568 25% 4.46

3 85K 3463 3981240 2299 66% 41.56

4 100K 3479 1236764 711 20% 10.82

5 134K 4742 3207015 676 14% 16.57

Table 1. Test circuits.

nected to a vertex and is calculated by dividing the average

degree by the total vertex count. This metric is equal to the

ratio |E|/(|V |(|V |−1)/2), i.e., the edge count over the max-

imum possible edge count. As can be seen in Table 1, the

task graphs derived from our placed circuits are very dense

with average degree ranging from 435 to 2285, and con-

nectivity ranging from 14% to 78%. It can be also observed

that the runtime for task graph generation increases with de-

sign size. In Design 3, edge generation takes a particularly

long time since the tasks overlap particularly heavily for its

size (connectivity of 66%), although connectivity tends to

decrease as design size grows.

Each task graph was multi-session partitioned using our

heuristic MSPart, and timing optimization was applied to

each partition. While an implementation using OpenMP

is under construction, the parallel processing in each ses-

sion was emulated as follows: for each session, after the

disconnected subsets for the session were found, we per-

formed timing optimization for each task subset separately

and recorded the runtimes of the individual runs. The du-

ration of that session was set to the longest run over its

partitions. The optimization results for subsets were then

merged and post-processed, before proceeding to the next

session.

Results from the application of parallel timing optimiza-

tion to our test circuits using Algorithm MSPart for multi-

session partitioning are given in Table 2. For each design,

the first row (Proc.#) gives the number of processors used

in each session. In general the number of processors de-

creases over time, since the size of the input graph for each

session monotonically decreases. The second row (Part.

Time) gives the runtime for computing disconnected par-

titions for the session. The third row (Session Time) shows

the duration of each session when parallelized. The run-

time spent for the merging step is given in the fourth row

(Merge Time). The last row (Serial Time) provides the run-

time spent to do the tasks in each session serially, i.e., with

a single processor. The last entries for rows 2 through 5

in each design give the total runtime for partitioning over-

head, parallel processing, merging overhead, and serial pro-

cessing, respectively. The partitioning time for Design 3 is

two orders of magnitude longer than those for other designs.

The reason is that the partitioning procedure could not find

disconnected subsets larger than the specified size with the

Session 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total

Proc. # 2 1

Ckt. Part.Time 2.3 1.2 3.5

1 Session Time 523 1128 1651

Merge Time 3 0 3

Serial Time 10441128 2172

Proc. # 5 4 5 5 4 2 1

Ckt. Part.Time 3.3 1.3 0.3 0.2 0.9 0.1 0.1 6.2

2 Session Time 430 329 187 168 170 113 159 1566

Merge Time 4 3 2 2 1 1 0 13

Serial Time 20601306 886 597 669 222 159 5899

Proc. # 2 2 2 2 2 1

Ckt. Part.Time 1050 322 261 156 160 125 2073

3 Session Time 1939 710 581 516 3663998 8110

Merge Time 54 20 20 14 18 0 126

Serial Time 38421217108310096743998 11823

Proc. # 6 6 6 6 6 3 4 3 2 3 4 3 2 1

Ckt. Part.Time 1.7 6.3 1.2 0.8 0.7 5.5 0.6 1.8 0.3 0.1 0.1 0.1 0.1 0.1 19.1

4 Session Time 245 283 134 136 38 205 104143191 81 129218165575 2647

Merge Time 11 8 6 5 5 4 4 3 2 2 3 2 2 0 57

Serial Time 13461431 695 634 99 551 246419346213235336324575 7450

Proc. # 8 8 8 8 6 6 5 4 5 5 5 2 1

Ckt. Part.Time 3.2 2.1 1.6 0.7 0.6 0.4 1.3 1.9 2.4 2.8 3.4 2.8 3.4 26.8

5 Session Time 437 338 180 246 120 210 29 107 86 57 70 51 254 2185

Merge Time 11 7 5 7 2 2 2 2 1 2 1 2 0 44

Serial Time 3345243713091691656 880 99 350217144165 56 254 11603

Table 2. Partitioning/parallelization results.

regular subroutine, triggering a different (much slower) rou-

tine to search for the subsets satisfying the specification.

Table 3 summarizes the results from Table 2. Available

Proc. is the maximum available number of processors given

to the partitioning routine. This number was determined

in proportion to design size. Parallel Runtime is the sum

of overheads and runtime in parallel processing, i.e., task

graph modeling time shown in Table 1, total of partition-

ing/merging times over sessions, and total of session dura-

tions over sessions, all shown in the last column of Table 2.

Serial Runtime is the total of Serial Times over all sessions,

taken from the last column of Table 2. Speedup is given by

(Serial Runtime)/(Parallel Runtime), and Proc. Utilization

is the ratio of speedup to the available number of processors.

As shown in Table 3, processor utilization ratios range

from 23% to 75%. Design 3 gives the poorest results. This

design has particularly heavy connections among tasks, re-

sulting in long task graph generation and partitioning times

and the lowest processor utilization. Another test circuit

with high task graph connectivity is Design 1, which also

yields relatively low speedups. Task graph connectivity

may therefore be used to predict the speedup from the paral-

lelization of its timing optimization. Moreover, to improve

Available Parallel Serial Proc.

Design Proc. # Runtime Runtime Speedup Utilization

1 2 1657 2172 1.31 66%

2 5 1575 5899 3.74 75%

3 5 10309 11823 1.15 23%

4 6 2723 7450 2.74 46%

5 8 2256 11603 5.14 64%

Table 3. Parallelization analysis.

Figure 10. Task graph connectivity and

1/speedup.

processor utilization, the maximum number of available

processors should be determined based not only on the size

but also on the connectivity of the task graph. For example,

if two processors were assigned to Design 3, reflecting its

high connectivity, processor utilization would increase from

23% to 58%.

Design 5 is the largest design in our test suite with 130K

cells. Total serial runtime for optimization is 11603 sec-

onds. Its task graph has the lowest connectivity of 14%,

and the parallelization achieves the highest speedup 5.14×
by dynamically assigning 1–8 processors. Overhead due to

task graph building, partitioning, and merging is 87 seconds

total, which is 0.8% of serial runtime.

For each design in our test suite, Fig. 10 gives the

connectivity of its task graph and the value of the metric

1/speedup (which equals the ratio of parallel runtime over

serial runtime). Our data show a strong correlation of con-

nectivity with this metric, leading to the conclusion that

speedups increase as connectivity decreases. In general,

connectivity tends to decrease as circuit size increases, since

the physical span of a timing path is limited, and the portion

of the circuit that overlaps with the path becomes smaller.

Therefore, our multi-session partitioning for parallel timing

optimization is expected to scale well, yielding increasingly

higher speedups when applied to larger circuits.

7 Conclusion and Future Work

In this paper, we explore the problem of parallel post-

placement timing optimization in VLSI design. To our

knowledge, this is the first exploration of this topic. We first

present a task graph representation for efficient paralleliza-

tion of the path-based timing optimization process. We then

describe a new multi-session partitioning scheme to im-

prove the parallelization of heavily connected tasks by con-

centrating all necessary communication to take place only

between sessions. In experiments with placed designs con-

taining 20–130 thousand cells, our modeling/partitioning

technique achieves speedups up to 5.14×, while dynami-
cally utilizing 1–8 processors. The highest speedup is ob-

tained for the design with the lowest connectivity. As con-

nectivity tends to decrease with graph size, we expect our

approach to scale well for increasingly larger circuits.

Future work includes the investigation of criteria for im-

proving balance among sessions and metrics for increasing

the accuracy of workload estimation for each path optimiza-

tion task.

References

[1] C. Alpert, C. Chu, G. Gandham, M. Hrkic, J.Hu, C. Kashyap,

and S.Quay. Simultaneous driver sizing and buffer insertion

using a delay penalty estimation technique. In Proc ACM

Symp. on Physical Design, pages 104–109, 2002.

[2] J. Chandy and P. Banerjee. A parallel circuit-partitioned al-

gorithm for timing-driven standard cell placement. Journal

of Parallel and Distributed Computing, 57(1):64–90, Apr.

1999.

[3] M. Garey and D. Johnson. Computers and Intractability: A

Guide to the Theory of NP- Completeness. Freeman and Co.,

New York, 1979.

[4] A. Guettaf and P. Bazargan-Sabet. Efficient partitioning

method for distributed logic simulation of VLSI circuits. In

Proc IEEE Annual Simulation Symp., pages 196–201, 1998.

[5] G. Karypis and V. Kumar. Multilevel algorithms for multi-

constraint graph partitioning. Technical Report #98-019,

University of Minnesota, 1998.

[6] S. Khanna, S. Gao, and K. Thulasiraman. Parallel hierarchi-

cal global routing for general cell layout. In Proc IEEE Great

Lakes Symp. on VLSI, pages 212–215, 1995.

[7] F. Khundakjie, P. Madden, N. Abu-Ghazaleh, and M. Yildiz.

Parallel standard cell placement on a cluster of workstations.

In Proc IEEE Intl. Conf. Cluster Computing, pages 85–94,

Aug. 2001.

[8] J. Lienig. Parallel genetic algorithm for performance-driven

VLSI routing. IEEE Trans. Evolutionary Computation,

1(1):29–39, Apr. 1997.

[9] B. Ramkumar and P. Banerjee. ProperCAD: A portable

object-oriented parallel environment for VLSI CAD. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and

Systems, pages 829–42, July 1994.

[10] E. Rudnick and J. Patel. Overcoming the serial logic simu-

lation bottleneck in parallel fault simulation. In Proc IEEE

Intl. Conf. on VLSI Design, pages 495–501, 1997.

[11] W. Shi and Z. Li. A fast algorithm for optimal buffer in-

sertion. IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, 24(6):879–891, June 2005.

[12] W.-J. Sun and C. Sechen. A parallel standard cell placement

algorithm. IEEE Trans. on Computer-Aided Design of Inte-

grated Circuits and Systems, 16(11):1342–57, Nov. 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

