
Using SCTP to hide latency in MPI programs

H. Kamal, B. Penoff, M. Tsai, E. Vong, A. Wagner

University of British Columbia
Dept. of Computer Science

Vancouver, BC, Canada
{kamal, penoff, myct, vongpsq, wagner}@cs.ubc.ca

Abstract

A difficulty in using heterogeneous collections of ge-
ographically distributed machines across wide area net-
works for parallel computing is the huge variability in
message latency that is orders of magnitude larger than
parallel programs executing on dedicated systems. This
variability is in part due to the underlying network
bandwidth and latency which can vary dramatically ac-
cording to network conditions. Although such an envi-
ronment is not suitable for many message passing pro-
grams there are those programs that can take advantage
of it.

Using SCTP (Stream Control Transmission Proto-
col) for MPI, we show how to reduce the effect of la-
tency on task farm programs to allow them to effec-
tively execute in high latency environments. SCTP is
a recently standardized transport level protocol that has
a number of features that make it well-suited to MPI
and our goal is to reduce the effect of latency on MPI
programs in wide area networks. We take advantage
of SCTP’s improved congestion control as well as its
ability to have multiple independent message streams
over a single connection to eliminate the head of line
blocking that can occur in TCP-based middleware.

The use of streams required a novel use of MPI
tags to identify independent streams rather than dif-
ferent types of messages. We describe the design of a
task farm template that exploits streams, uses buffer-
ing and pipelining of task requests to improve its per-
formance under network loss and variable latency. We
use these techniques to improve the performance of two
real-world MPI programs: a robust correlation matrix
computation and mpiBLAST.

1 Introduction

There is considerable interest in taking advantage of
large numbers of geographically distributed machines
connected across wide area networks (WANs) for com-
puting distributed and parallel applications. One large
source of programs that already exist is MPI message
passing programs. MPI (message passing interface)
has been widely adopted for use in high performance
computing and there are tools and runtime systems to
support its use in heterogeneous environments, like the
Internet [11, 2, 5]. In these environments, implemen-
tations of MPI typically rely on the standard Internet
protocol stack, TCP and UDP over IP. The use of these
ubiquitous standard protocols allows MPI programs to
seamlessly execute in very diverse environments.

Using MPI in wide area networks is challenging be-
cause of the latency, which can be one or two orders
of magnitude larger than a LAN or a dedicated paral-
lel machine. Variability in latency is a problem where
the delay of even a single message can delay the entire
computation. In TCP, variability in delay or round trip
time is due to flow control and congestion avoidance,
as indicated by segment loss. Segment loss in particu-
lar causes a spike in latency, slowing down all messages
in the stream, as well as reducing the available band-
width.

SCTP (Stream Control Transmission Protocol) is a
newly standardized transport protocol [16] similar to
TCP but has been shown to perform much better than
TCP under segment loss [15]. Although there are sev-
eral reasons for the improved performance, one feature
of SCTP of particular interest is the ability to have
multiple independent message streams inside a single
connection. Messages on a stream are guaranteed to be
delivered to the application in-order, but messages on
different streams can be delivered in the order in which
they are successfully received. Under loss conditions,
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this ensures that a delayed message on one stream does
not block the delivery of messages on the other streams
(i.e., no head of line blocking). For example, in TCP-
based MPI implementations, when there is a single con-
nection between two processes and several messages in
flight, packet loss in the first message delays the arrival
of all subsequent messages, even when these messages
could be independently completed by the receiver.

We have implemented an SCTP-based version of
MPI that takes advantage of SCTP streams [9]. In
[9] we described the design of the MPI communication
middleware and compared TCP to SCTP under loss for
the NAS benchmarks, which did not use the multiple
stream feature of SCTP, and a synthetic farm program
which did. Although we were able to demonstrate head
of line blocking, it was not clear how easy or to what
extent multiple streams could be used to improve the
latency tolerance of real programs. Multiple streams
are advantageous only when there are sufficient number
of independent messages in flight. In an MPI program
this requires the extensive use of asynchronous com-
munication and, as we propose in this paper, the use
of tags to identify messages that can be completed in-
dependently at the receiver. This is a novel use of tags
since tags are usually used to denote message types.
Our use of tags is consistent with the message-ordering
semantics of MPI and does not preclude other uses of
tags. But, by identifying those messages that are inde-
pendent, it is makes it possible to have multiple streams
active at the same time, thus reducing the effect of mes-
sage loss. The use of tags for the purpose of identifying
independent message streams may in general be of use
for any middleware that is able to manage or schedule
messages (for example OpenMPI [7]).

We demonstrate how our use of tags can lead to bet-
ter performance for a class of MPI programs that can
hide latency, namely farm programs. We introduce a
simple model to characterize the effect of latency on
the performance of farm programs. We then describe
the design of a farm template that uses tags, buffering
and asynchronous communication to hide latency. We
experimentally show that SCTP programs using these
techniques are less sensitive than TCP to fluctuations
in latency due to the conditions in the network. Some
of these performance improvements are the result of
better SCTP congestion control and our use of SCTP
streams to eliminate the head of line blocking that oc-
curs with TCP. The farm template and a discussion
of the performance results comparing SCTP to TCP
under varying network loss and latency conditions is
given in Section 3. Finally, we experimented on real-
world programs by applying our techniques to two ex-
isting MPI programs: a robust correlation matrix com-

putation and mpiBLAST [4]. In Section 5 we briefly
describe some related work and give our conclusions in
Section 6.

2 Background

In this section we give a brief overview of MPI mid-
dleware, SCTP and our implementation of an SCTP
module for LAM-MPI. A more complete description of
the design can be found in [9].

2.1 MPI middleware

MPI has a rich variety of message passing routines.
These include MPI Send and MPI Recv along with var-
ious combinations such as blocking, nonblocking, syn-
chronous, asynchronous, buffered, unbuffered versions
of these calls. It is the responsibility of the middle-
ware to progress messages from a send call in one pro-
cess to the matching receive call in another process.
The message progression layer is the part of the mid-
dleware responsible for message progression, match-
ing and delivery. Message matching is based on three
values inside the message envelope: (i) context, (ii)
source/destination rank, and (iii) tag . The context
identifies a set of processes that can communicate with
each other. Within a context, each process has a unique
identification called rank and messages can be further
specified by a tag value. A receive call matches a mes-
sage when the context, rank and tag specified by the
call matches the corresponding values in a message en-
velope. MPI semantics dictate that messages belonging
to the same tag, rank and context (TRC) must be re-
ceived (i.e., completed) in the order in which the sends
were posted.

The message progression layer in our MPI middle-
ware uses SCTP for transport and is similar in design
to LAM’s TCP progression layer. As is typical, it uses a
short and long message protocol and also maintains two
queues, an expected message queue and an unexpected
message queue. The expected message queue contains
posted receives that have not yet been matched. The
unexpected queue contains messages that have arrived
for which a receive has not been posted. Short mes-
sages are sent eagerly. When the message arrives at
the destination the middleware first searches the ex-
pected message queue for a match and if unsuccessful,
then adds the message to the unexpected queue. A
receive for a short message causes the middleware to
first search the unexpected queue for a match and if
unsuccessful, then adds the receive request to the ex-
pected message queue. In this manner, as long as there
are sufficient message slots in the queues, messages can



be delivered independently of whether the send or the
receive was posted first. Synchronous short sends are
also sent eagerly but the send does not complete un-
til an acknowledgment is received. Long messages are
not sent eagerly but use a rendezvous mechanism so
that the send does not complete until after the receive
has been posted. For long messages, this ensures that
large messages can be directly transferred into the re-
ceive buffer.

2.2 SCTP

One feature that makes SCTP well suited for MPI
is the ability to have multiple streams within a single
association. An association in SCTP is similar to a
TCP connection but has broader scope. Streams are
multiplexed on an association and sequenced. Hence
messages within a stream are delivered in-order to the
application, while messages on different streams are de-
livered according to their order of arrival. In the case
of loss, multiple streams makes it possible to deliver a
message on one stream before messages on another. In
our implementation of the MPI middleware MPI mes-
sage ranks are mapped to separate associations and the
context and tag field are mapped to a stream within
the association for a given rank (see Figure 1). This
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Figure 1. Mapping of MPI tags, rank and con-
text to SCTP streams.

is consistent with the message-ordering semantics of
MPI and in combination with non-blocking sends and
receives, makes it possible to have several independent
message streams active at the same time.

Endpoints in SCTP are more general than those in
TCP and in an SCTP association an endpoint, by de-
fault, binds the IP addresses of all the interfaces to a
port. An SCTP association is thus represented by a
set of IP addresses and a port on both the source and
destination endpoints. This is SCTP’s multi-homing
feature and allows for multiple paths between two end-
points. In SCTP the multiple paths are used for auto-
matic failover in the case of failure and it is also used

for congestion control where re-transmissions are sent
over a different path.

SCTP can operate in a one-to-one manner where,
like TCP, there is a association (i.e. connection) be-
tween two machines, or it can operate in a one-to-
many manner where a single socket can receive mes-
sages from multiple processes where there are multiple
associations, one for each process. In both cases, SCTP
provides reliable in-order delivery of messages and uses
TCP-like congestion control mechanisms to react to
network conditions. We used one-to-many SCTP sock-
ets to implement the MPI middleware. This avoids
having a separate socket and connection for each pro-
cess as occurs in TCP-based MPI middleware. Like
UDP, SCTP is message-based and each socket call re-
turns a complete message.

There are several other features of SCTP that make
it an attractive target for MPI in open network en-
vironments. SCTP has several security enhancements
that make it more secure than TCP. Another property
of SCTP which makes it conducive to being widely de-
ployed is that it is TCP-friendly. When several SCTP
and TCP sources are sharing the same network, they
share the network resources fairly [15]. Although rel-
atively new, SCTP is currently available for all major
operating systems and is part of the standard Linux
kernel distribution.

2.3 SCTP module for LAM-MPI

In our SCTP-based middleware we mapped each tag
into a separate stream within an association. In the
case of loss, it allows messages in the same associa-
tion (i.e. rank) with different tags to overtake each
other. In addition during message progression on the
send side, we multiplex short messages with long mes-
sages on a given association. As a result, it is possible
for short messages to be sent and received during the
transmission of a long message.

As mentioned, SCTP is message based and this fact
both simplifies and complicates the middleware. It
simplifies the handling of short messages, since mes-
sage framing is done by SCTP and each receive socket
call returns a compete message. For long messages, it
is necessary to fragment and re-assemble them in the
user’s receive buffer. Also, as the result of using one-
to-many style SCTP sockets, we did not use select(),
and we need to pull messages from socket buffers as
long as there are messages. This eliminates the costly
select() call and also makes it easier to empty socket
buffers reducing the chance that flow control closes the
advertised window thus reducing the available band-
width. But, the one-to-many style complicates the



handling of those primitives where it would be easier
to simply block on the appropriate connection. As a
result, we need to poll. As well, the number of unex-
pected messages tends to be larger in SCTP because
of the need to pull messages from the socket buffers.

Like the TCP-based layer in LAM-MPI, our SCTP-
based layer in LAM-MPI runs as a single thread with
the application program and thus only progresses mes-
sages during MPI calls (weak message progression).
For protocols using standard TCP-like flow control this
can cause performance problems because the adver-
tised window may shrink when the middleware is not
running often enough to empty the socket buffers. For
MPI non-blocking communication this suggests that we
need to carefully plan how often we poll for messages
at the application program. In the case of weak pro-
gression it is important to consider how messages are
advanced during each call.

2.4 Experimental setup

Our experimental setup consists of a dedicated clus-
ter of eight identical Pentium-4 3.2GHz, FreeBSD-5.3
nodes connected via a layer-two switch using 1Gbit/s
Ethernet connections. Kernels on all nodes are aug-
mented with the Kame.net SCTP stack [10]. The ex-
periments were performed in a controlled environment
and Dummynet was configured on each of the nodes to
allow us to vary the latency and loss on the links be-
tween the nodes. We have separate Dummynet pipes
for TCP and SCTP where each one is setup such that
packets are dropped at both ends (inbound + out-
bound) of each node. We also used an instrumented
version of the middleware to determine the effect of
latency and loss on the number of expected and un-
expected messages and the frequency of calls to the
advance() function which progresses messages.

In order to make the comparison between SCTP and
TCP as fair as possible, the following settings were used
in all the experiments discussed in subsequent sections:

1. By default, SCTP uses a larger
SO SNDBUF/SO RCVBUF buffer size than TCP.
In order to prevent any possible effects on perfor-
mance due to this difference, the send and receive
buffers were set to a value of 220 Kbytes in both
the TCP and SCTP modules.

2. Nagle’s algorithm is disabled by default in LAM-
TCP and this setting was used in the SCTP mod-
ule as well.

3. An SCTP receiver uses Selective Acknowledgment
SACK to report any missing data to the sender,

therefore, the SACK option for TCP was enabled
on all the nodes used in the experiment.

4. In our experimental setup SCTP’s multi-homing
feature was not used so as to keep the network
settings as close as possible to that used by the
LAM-TCP module.

5. TCP is able to offload checksum calculations on
to the NICs on our nodes and thus has zero CPU
cost associated with its calculation. SCTP uses a
CRC32c checksum which adds overhead in terms
of CPU cost. We modified the kernel to turn off
the CRC32c checksum in SCTP to better compare
the two.

6. Unlike Linux, TCP in FreeBSD does not use
maxburst. The maxburst parameter is part of
a rate pacing mechanism that limits retransmis-
sions when exiting Fast Recovery. If maxburst

is set too high, bursting will stress the message
queues in the network and lead to increased packet
loss. Whereas if maxburst is set too low, packets
will be send out at a slower pace limited by the
maxburst value. The SCTP stack in FreeBSD im-
plements its own version of maxburst while TCP
under FreeBSD does not and essentially sends out
segments as quickly as possible. Therefore we set
maxburst in SCTP from the default of 8 to 148
segments, which corresponds to the maximum size
of SCTP’s socket buffer.

3 Latency tolerant processor farm

Although many MPI programs are not suitable for
execution in a WAN environment, there is one class of
programs that is a good candidate, namely task farms.
Task farming is a commonly used strategy for execut-
ing problems that are pleasingly parallel consisting of
some large number of independent tasks. A task farm
may be part of a larger computation; granularity (task
execution time) can often be varied and tasks are of-
ten dynamically distributed to load-balance the com-
putation. If one can sufficiently overlap communica-
tion with computation, then it is possible to effectively
compute these types of message passing programs in
WANs. We describe a farm template that uses tags to
identify independent streams. In addition we provide a
simple model for the execution of task farms in a WAN
environment and use the model to demonstrate where
multiple streams can be used to hide latency.

The farm template is demand-driven where workers
request work from the manager and return results as



soon as they are completed. The basic structure of the
farm is shown in Figure 2.
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Figure 2. Structure of the farm template.

There are three main routines: one to create tasks,
one to do the task, and finally one to process the
results. Typically the do task routine requires the
most computation time and is the routine performed
by a separate worker process. The create task and
process results routines are often combined into a
single manager process that distributes tasks and gath-
ers results from the workers.

Assuming a separate process for each of the routines
leads to the type of interactions shown in Figure 3.

Request

Result

Task

Request

Task

Result

Task 1 

Compute 

Time

Task 2 

Compute 

Time

RTT Create 

Task 1

Create 

Task 2

Process   

Result 1

Worker-

do task

Manager-

Create Task

Manager-

Process Results

Request

Task

Create 

Task 2

Figure 3. Execution scenario between a
worker process and two manager processes.

Figure 3 assumes that the execution of a task can be
overlapped with the request for the next. This is the
ideal case since network latency, which is part of the
time to obtain another task, can be entirely overlapped
with task execution. If task granularity is too fine or
the request time becomes too large, then the worker
idles waiting for its next task and we get the type of
execution scenario depicted in Figure 4.
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Figure 4. Execution scenario with higher la-
tency and finer grain tasks.

These scenarios give rise to following formula (Fig-
ure 5) for the performance of one worker executing k
tasks.

T = RTT + k × T(do_task)

        + max((k − 1)×(RTT − T(do_task)),0)

where

 T(do task)= time for the do_task routine 

 k = number of tasks executed

 RTT (round trip time)

       = T(create_task)+C(req)+ C(reply)

 T(create_task)= time for create_task routine

 C(req)= communication time for a request

 C(reply)= communication time for a reply

Figure 5. Formula for the execution time of
one worker.

The term RTT − T (do task), when positive, is the
time the worker idles waiting for another task.

The execution time of the entire farm will be the
maximum time taken by all the workers, where the time
for the worker includes the time to send and process the
last result (C(result) + T (process results)). We
assume that results are sent as soon as they are com-
puted and that, as we assumed with tasks, the com-
munication for sending the results is overlapped with
the computation. The model simplifies the communica-
tion and assumes asynchronous communication where
it is possible to overlap communication with computa-
tion. As well, although communication time and task
computation time in general varies, we expect that for



a sufficient number of tasks, the steady-state perfor-
mance of the farm to follow the given formula.

The formula was validated by choosing various task
compute times and task create times which ranged
from small to large. We also varied the message sizes
from short messages to long (greater than 64Kbytes).
By adjusting the ratio between task compute and task
create time, we tested the farm template under the
different scenarios that could occur. Under the as-
sumption that fairness is strictly enforced, the exper-
iment was performed using the manager with a single
worker. The experimental results were within 5% of
the expected values. We did not test the model for
large number of processes, where scheduling may be a
factor, nor for dynamically varying compute times and
message sizes. The same model applies to the case of
heterogeneous workers since the task compute rates can
vary and the request-driven farm template will adjust
just as it does to varying task compute times.

3.1 Variation in Latency

In a less ideal setting, where task execution time
and latency varies, then [RTT− T (do task)] may fluc-
tuate above zero and degrade performance. In these
situations, buffering can help smooth out the variation
and ensure that the worker does not idle waiting for
a task. Buffering along with asynchronous communi-
cation makes it possible to have multiple MPI com-
munications actively sending requests, receiving tasks,
and sending results. Separate MPI tags will be used to
identify the different instances of requests, tasks and
results that are independent from each other.

The use of separate tags to identify independent
message streams makes it possible for our SCTP-based
middleware, should loss occur, to complete messages
in the order in which they are successfully sent or re-
ceived by the transport layer. This eliminates the head
of line blocking that can occur when a packet is lost
and allows out of order delivery to the MPI middle-
ware layer. This has the potential of reducing or elim-
inating idle time on instances when RTT become larger
than T (do task) since instead of waiting, the execu-
tion of buffered tasks can proceed. In addition to the
elimination of head of line blocking, there are other fea-
tures of SCTP that reduce the effect of loss on latency
and bandwidth. SCTP’s congestion control mechanism
has improvements over TCP that allow it to achieve
larger average congestion window size and faster re-
covery from segment loss [15] .

3.2 Design of the buffered farm template

The goal of our buffered farm template is to use
SCTP to reduce the effect of loss and latency on the
application. In the design of the buffered farm tem-
plate, individual workers determined the number of
buffers to use and also the number and frequency of
task requests. Our implementation of the manager
combined the create task and process results into
one process and was also responsible for distributing
tasks based on the requests it receives. The manager
uses a simple round-robin scheduling scheme that dis-
tributes tasks fairly according to the demand.

As mentioned, MPI tags were used as task identi-
fiers (IDs) which made it possible to map each task
to its own SCTP stream. We used a pool of task IDs
so that the manager could execute an arbitrarily large
number of tasks. Using a program defined bound on
the number of tags made it possible to maintain other
tag uses while at the same time reserve a range of tags
for SCTP streams. Although tags are 32 bits integers,
when other uses are taken into account, it is important
to be able to reuse the tags. The manager also main-
tained a dictionary using the tag as its key to match
results to tasks. This may not always be necessary.
IDs can be managed locally by the worker since tags
only need to be unique with respect to a particular
association.

Figure 6 illustrates the overall structure of the
worker program. While there are tasks to execute,
the worker blocks on MPI Waitany to receive the first
available task (j) from all the posted MPI Irecv.
The worker immediately sends off another request,
MPI Isend, and then executes the task. Once finished,
it uses MPI Isend to send the result and then again
posts an MPI Irecv for the next task.

while(tasks)

{

  MPI_WaitAny(&j);

  Isend(request);

  do_task();

  Isend(result);

  Irecv(task);

}

pos
t

pos
t

post

requests

advance()

send()

recv()

program middleware transport

Figure 6. Overview of farm software.

In our implementation, each worker used a fixed
number of maximum outstanding requests, MAXREQS,
and we also added the ability for the worker to batch re-
quests by allowing the worker to request k tasks rather
than simply one. Batching requests reduces the num-



ber of messages and also tends to send more tasks ear-
lier, which increases the potential for head of line block-
ing that SCTP can avoid.

We do not batch tasks by sending more than one
task at a time. Although there may be less overhead
in sending one larger message, it increases the negative
effects of message loss. If it is possible to batch tasks,
then it is often easy to increase the granularity of the
task and avoid the cases where RTT is large enough to
cause performance problems.

One enhancement to the template we did not ex-
plore was to vary the number of requests according to
network conditions. The number of outstanding re-
quests can easily be adjusted dynamically, however,
under varying network conditions, the challenge is to
avoid buffering too many tasks yet to buffer enough to
avoid idle time. Buffering too many task is a problem
towards the end of the computation [18]. If the num-
ber of tasks are known, then towards the end of the
computation the workers can request fewer tasks. The
manager does record the number of outstanding tasks
for each worker. We did not use this information, how-
ever, it could be used to implement a scheduling regime
other than round-robin to better ensure load-sharing.

There is a complication that occurs with long mes-
sages. Long messages result in a rendezvous, which
does not allow the overlap of communication with com-
putation. However, the application level protocol used
in the worker and manager ensures that the receives
are always posted before the corresponding send. This
reduces wait time, but cannot avoid the synchronous
transfer of the message from the send slot to the receive
slot, which does add extra communication costs to re-
ceiving tasks or sending results. Our use of multiple
streams makes it possible to multiplex long and short
messages over the same association. However, it may
result in added delays in cases where the long message
needs to be received as early as possible.

3.3 Performance of the buffered farm pro-
gram

We experimented with the buffered farm program
on the setup described in Section 2.4 using a synthetic
workload. The experiments were run at loss rates of
0%, 1% and 2% and added network latencies of 0, 20, 40
and 80 milliseconds. The farm program was run three
times for each of the different combinations of loss rates
and message sizes and the average value of total run-
times are reported. The average and the median values
of the multiple runs were very close to each other. We
also calculated the standard deviation of the average
value, and found the variation across different runs to

be very small.

Table 1 and Table 2 compare the performance of
the buffered farm program using SCTP-based middle-
ware versus the performance of the same program for
TCP-based middleware for short (12Kbyte) and long
message (128Kbyte)sizes. In the tables, we have high-
lighted in bold the entries where SCTP performed bet-
ter than TCP.

Latency(milliseconds)
0 20

Loss SCTP TCP SCTP TCP

0% 16.98 16.95 17.11 17.11
1% 16.72 30.85 26.01 59.43
2% 17.19 42.63 37.35 90.04

(a) small latencies

Latency(milliseconds)
40 80

Loss SCTP TCP SCTP TCP

0% 21.61 19.76 36.62 36.65
1% 51.77 109.06 102.78 200.26
2% 69.47 160.66 123.72 264.29

(b) large latencies

Table 1. Comparison of the execution time (in
seconds) of SCTP and TCP for a farm using
7 workers with a synthetic workload of 5000
tasks for short messages.

As both Table 1 and Table 2 show, SCTP outper-
forms TCP as loss and latency increases. For short
messages, TCP execution times are about 2 times
longer than SCTP at loss rates of 1% and 2%. For
long messages, TCP is slower than SCTP by about
70% at 1% loss rates with 20 - 80ms delay and about
80% at 2% loss rates with 20ms delay. This occurs be-
cause buffering has not been able to sufficiently hide
all the latency. For each task request, RTT is a com-
bination of the network latency and the time to create
tasks at the manager. As network latency increases at
some point buffering is no longer able to hide the la-
tency and worker executes at the speed at which it can
obtain tasks. As segment loss increases, this creates a
spike in latency, which depends on how quickly the con-
gestion control mechanisms of the transport layer can
recover from the loss. The table shows that, when loss
occurs, the improvements of SCTP over TCP increases
with increased latency.



Latency(milliseconds)
0 20

Loss SCTP TCP SCTP TCP

0% 6.50 5.88 26.10 56.14
1% 35.50 40.59 189.97 323.67
2% 53.53 80.95 287.77 519.49

(a) small latencies

Latency(milliseconds)
40 80

Loss SCTP TCP SCTP TCP

0% 53.29 109.92 97.37 215.06
1% 361.22 620.22 693.49 1194.41
2% 506.54 982.24 993.17 1705.99

(b) large latencies

Table 2. Comparison of the execution time (in
seconds) of SCTP and TCP for a farm using
7 workers with a synthetic workload of 5000
tasks for long messages.

3.3.1 Head of line blocking

SCTP’s congestion control mechanism and the ability
to use multiple streams to reduce head of line blocking
both contribute to the improved performance of SCTP
over TCP. In order to isolate the effects of head of
line blocking in the buffered farm template, we used a
version of the SCTP module, one that uses only a single
stream to send and/or receive messages irrespective of
the message tag, rank and context. In all other respects
the modules were identical.

In general, we found the improvements due to con-
gestion control were more consistent and more signifi-
cant than the elimination of head of line blocking. The
benefit of using multiple streams was not as evident
because not as many tasks were actively being sent by
SCTP at the same time. We attempted to improve the
farm template by allowing workers to request up to k
tasks for each request message.

We performed the same experiments again with
k = 10 tasks. The farm program was run at differ-
ent loss rates for short message (12Kbyte). The results
are shown in Table 3.

The results obtained show the effect of head of
line blocking and the advantage due to the use mul-
tiple tags/streams at higher loss and increased latency.
At 2% loss and 80ms delay, multiple-stream performs
about 8% faster than single-stream. This shows that
head of line blocking can affect performance in highly
variable environment such as WANs, where loss and la-

Latency(milliseconds)
0 20

Streams Streams
Loss 1 10 1 10

0% 16.07 16.06 16.21 16.24
1% 16.34 16.46 26 25.75
2% 25.65 17.99 35.21 35

(a) small latencies

Latency(milliseconds)
40 80

Streams Streams
Loss 1 10 1 10

0% 17.97 24.72 32 42.37
1% 53.70 52.04 95.95 94.32
2% 74.03 68.43 149.04 137.01

(b) large latencies

Table 3. Comparison of the execution time (in
seconds) of 1-Stream SCTP and 10-Stream
SCTP with k = 10 for short messages.

tency are an issue. It is possible to reduce the effect of
head of line in the farm template by adding additional
buffering. As shown in the experiments, head of line
blocking was still a factor with k = 10.

4 Real world examples

In this section we consider two real-world message
passing programs that are based on task farms. The
first program is the parallel computation of a large cor-
relation matrix. For this program, we used the buffered
farm template described in the previous section. The
second program is mpiBLAST, a parallel version of the
BLAST bioinformatics tool. For mpiBLAST, rather
than re-structure the program we focused on its com-
munication and added the ability to make multiple re-
quests and buffer tasks to the application. We describe
the latency tolerance properties of each example ac-
cording to model presented in the previous section. As
well, we give performance results to show where and
the extent to which these latency hiding techniques im-
proved performance.

4.1 Robust correlation computation

Computing the correlation or covariance matrix is
critical to many data mining activities. They are the
basis for principle component analysis, dimensionality



reduction, as well as for detecting multidimensional
outliers. Robust methods, like the Maronna method,
are used because the classical techniques are sensitive
to the presence of multidimensional outliers that dis-
tort their true values. The Maronna method is very
computation intensive, however, there is a simple par-
allelization using task farming that can speed-up part
of the computation [3]. We used the farm template
from Section 3 to perform the task farming part of the
computation.

The Maronna method takes as input a m×n matrix
with m rows corresponding to samples and n columns
corresponding to values of the variables for each sam-
ple. The method first computes the median and the
median absolute deviation (MAD) for each column.
These values for each column i, j are used to compute
the correlation of variable i and j. Once the median
and MAD have been calculated, the correlation calcu-
lation, which is a iterative process, can be performed
independently for each i, j. The median and MAD
computation are small relative to the correlation com-
putation and we used the farm template to compute
this phase. Once the median and MAD are computed
and distributed to the workers, the farm template was
used to do the correlation computation. The manager
then gathered back the correlation results and assem-
bled the final matrix.

The correlation computation was divided into a user
specified number of tasks where each task was a set of
correlations. It was sufficient to use a single integer to
identify the range of correlations to be performed. Al-
though it is possible to statically partition the work,
experimentation had shown that it has better load-
balancing when there are significantly more tasks than
processors. Each task returned the correlation values
of the set specified by the task. Hence, the result mes-
sage is large in comparison to the task message.

For input, we used a gene expression dataset with
6028 entries that requires computing a 6028 by 6028
correlation matrix with over 18 million values. Table 4
compares the performance of the buffered farm pro-
gram using SCTP-based middleware versus the per-
formance of the same program for TCP-based mid-
dleware. As before, we have highlighted in bold the
entries where SCTP performed better than TCP. The
results show that as loss and latency increases, SCTP
outperforms TCP by at least 50%. The Maronna re-
sults are similar to the synthetic farm results in Ta-
ble 1. This is not surprising since both used same
farm template, however, unlike the synthetic workload,
there were other phases to the computation and tasks
required different amounts of computation. Like the
synthetic workload the task messages were small, short

Latency(milliseconds)
0 20

Loss SCTP TCP SCTP TCP

0% 28.90 28.90 44.56 102.56
1% 56.20 64.50 368.48 615.90
2% 94.60 142.00 540.16 990.42

(a) small latencies

Latency(milliseconds)
40 80

Loss SCTP TCP SCTP TCP

0% 86.48 178.52 173.98 414.50
1% 704.73 1187.37 1314.30 2092.24
2% 1015.61 1955.63 1786.97 3495.13

(b) large latencies

Table 4. SCTP versus TCP for various values
of loss and latency, 6028 Gene expression
dataset, split into 1000 tasks.

messages, but the results were long messages, approxi-
mately 140Kbytes. The results show the dramatic im-
pact that loss can have on execution time, especially in
the case of high latency where the execution time has
gone from almost 30 seconds to almost 30 minutes. The
major source of the increase is the rendezvous protocol
for long messages which requires the worker to syn-
chronize with the manager to return a result. SCTP
alleviates the effect of loss or high latency on execution
time, but when both loss and latency became large
there simply was not a sufficient amount of computa-
tion to overcome the time needed to return results.

4.2 mpiBLAST application

mpiBLAST is an open source parallel implementa-
tion of BLAST, a widely used bioinformatics tool that
searches for similarities between a given set of query
sequences and a database of known DNA and protein
sequences. For a given query, BLAST can be paral-
lelized by segmenting the database among a set of ma-
chines and having each machine execute the query. It
fits the processor farm template as described in Fig-
ure 2, where the manager consists of two processes, a
scheduler and a writer. The scheduler sends the tasks
to the worker that performs the query, and the writer
is responsible for gathering the query results from each
of the workers.

The original mpiBLAST has a task farm infrastruc-
ture by default, however it uses few tags and does not



buffer tasks at the workers. In executing the original
mpiBLAST program, when there was no loss or added
latency, the task execution time for a reasonably sized
query greatly exceeded the time to obtain the next task
and mpiBLAST provided excellent speed-up. In the
case of segment loss there were cases where the work-
ers idle waiting for another task, which indicates that
buffering and multiple streams may improve the per-
formance.

mpiBLAST consists of a scheduler, worker, and
writer. Under little network variations, a worker’s I/O
search time and a writer’s output time dominate a fixed
portion of the total execution time, while the commu-
nication time is insignificant. However, as the net-
work condition deteriorates, communication time in-
creases greatly with respect to the fixed components
of the total execution time. By adopting more tags
and pipelining of requests, we believe that our modi-
fied mpiBLAST can adapt to the network conditions
in a smoother fashion and utilize the machines better
than the original.

To test these latency hiding techniques proposed in
this paper, we modified the original mpiBLAST pro-
gram to use tags as task IDs. In order to minimize the
changes, we encoded the task number so that for any
tag we can extract both the original mpiBLAST tag
and the task ID with bitwise operations. We also mod-
ified mpiBLAST by adding buffers to allow each worker
to have up to MAXREQ outstanding task requests. Re-
quests were batched so that in response to each request
message the scheduler sent MAXREQ tasks. In respond-
ing to requests, it is important to distribute the work
fairly, otherwise initially some workers idle waiting for
their first task.

In our experiments we used several different
sized queries based on the Swiss protein database
swissprot, which is about 66 Mbytes in size (seg-
mented into 8 parts and pre-distributed). We used
queries of size 30, 100 and 500 obtained from NCBI
website1. The maximum number of outstanding re-
quests made by each worker was 10 using 8 workers
with varied latency and loss. The scheduler, writer and
8 workers processes are assigned round-robin to the 8
processors.

Table 5 compares the performance of modified mpi-
BLAST using SCTP-based middleware versus the per-
formance of the same program for TCP-based middle-
ware. As before, we have highlighted the entries where
SCTP performed better than TCP.

When focusing on latency with no loss, the various
latencies have little effect on the overall runtimes. This
is due to the fact that task computation time in mpi-

1http://www.ncbi.nlm.nih.gov/

Latency(milliseconds)
0 20

Loss SCTP TCP SCTP TCP

0% 226.50 224.58 230.30 224.02
1% 229.72 226.46 224.21 237.20
2% 233.56 223.18 228.54 287.59

(a) small latencies

Latency(milliseconds)
40 80

Loss SCTP TCP SCTP TCP

0% 228.02 227.65 231.92 245.51
1% 235.71 325.25 312.82 529.30
2% 260.09 475.73 410.26 819.47

(b) large latencies

Table 5. Comparison of the execution time (in
seconds) of the modified mpiBLAST program
with 500 queries for SCTP and TCP.

Latency(milliseconds)
0 20

Loss SCTP TCP SCTP TCP

0% 73.2 75.0 73.92 77.63
1% 78.8 75.8 77.25 89.83
2% 75.9 75.8 81.08 100.82

(a) small latencies

Latency(milliseconds)
40 80

Loss SCTP TCP SCTP TCP

0% 78.4 78.0 81.1 89.1
1% 84.6 107.5 102.9 162.24
2% 94.3 149.2 144.0 271.6

(b) large latencies

Table 6. Comparison of the execution time (in
seconds) of the modified mpiBLAST program
with 100 queries for SCTP and TCP.

BLAST is large and overall mpiBLAST requires little
communication. In addition, what performance penal-
ties mpiBLAST does suffer are alleviated by its new
ability to make multiple task requests at once. This re-
duction in communication by the modified mpiBLAST
is also the reason why loss with no latency similarly
has little effect. There is simply not enough message
passing for streams to help. However, as both loss and



latency increase, the benefits of SCTP congestion con-
trol and our middleware design helps to reduce the ef-
fects of increased communication penalties. Moreover,
head of line blocking was insignificant in mpiBLAST
because the local compute time contributes the most
to a search request.

In addition to the previous changes, we also changed
the protocol used to send results to the writer. In
the original mpiBLAST there is an explicit handshake
where the worker sends the size of the result, the writer
ACKs after which the sender sends the result. We elimi-
nated the handshake protocol to make mpiBLAST less
synchronous. These changes benefited mpiBLAST for
SCTP and TCP. Table 7 shows a comparison between
the original mpiBLAST and our modified version when
running under no loss and no delay. The results shows
a slight improvement in performance with the modified
mpiBLAST.

Protocol
SCTP TCP

Queries Original Modified Original Modified

100 81.80 73.27 81.18 75.06
500 240.58 229.83 241.21 224.57

Table 7. Comparison of the execution time (in
seconds) of modified mpiBLAST to the orig-
inal program with no loss and no added la-
tency.

Some possible future improvements to mpiBLAST
are adaptive scheduling algorithms, more efficient out-
put writing with possible use of MPI-2 I/O features,
and a more asynchronous mechanism for worker in-
volvement in segment distribution.

5 Related work

There are several projects that have investigated the
execution of MPI programs, which uses TCP, in het-
erogeneous environments such as the Internet or wide
area networks. MPICH-G2 [11] and PACX-MPI [12]are
both multi-protocol implementations of MPI for meta-
computing environments that make it possible to link
together clusters over wide area networks. MPICH-G2
and PACX-MPI use a two layer approach that takes
advantage of vendor implementations of MPI inside a
cluster and use TCP for communication between clus-
ters. In our case, our implementation of MPI uses one
protocol and the farm template we investigated sup-
ports heterogeneous collections of machines but was

not specially tailored to the type of cluster of clusters
environment targeted by MPICH-G2 and PACX-MPI.
Some of the benefits of SCTP may be useful in this en-
vironment as well for use as the glue for communication
between clusters.

Another project on wide-area communication for
grid computing is NetIbis [5] that focuses on connec-
tivity, performance and security problems of TCP in
wide-area networks. NetIbis enhances performance by
use of data compression over parallel TCP connections.
Moreover, it uses TCP splicing for connection estab-
lishment through firewalls and can use encryption as
well. The use of parallel connections in NetIbis could
likely benefit from the design of our task template and
our use of tags to identify independent streams. In [14]
we discuss some of the challenges in using an aggressive
design that attempts to map each independent commu-
nication stream into its own TCP connection.

Even though both SCTP and TCP sit atop IP, mid-
dleboxes like firewalls or boxes performing network ad-
dress translation (NAT) are transport (i.e., L4 layer)
aware and typically only work with TCP. However,
some firewalls like the IPTables firewall within Linux,
support SCTP. Even with full support in middleboxes,
the fact that SCTP supports multi-homing presents
some unique challenges. The IETF behave working
group is currently researching what SCTP NAT traver-
sal considerations are required 2.

MagPIe [13] is a library of collective communica-
tion optimized for wide-area networks that is built
on top of MPICH. MagPIe constructs communication
graphs that are wide-area optimal, taking the hierarchi-
cal structure of network topology into account. Their
results show that their algorithms outperform MPICH
in real wide-area environments. The collective commu-
nication routines used in our implementation did use
SCTP, but they were the simple point-point based ver-
sions of the collectives and were not optimized to take
advantage of multiple streams.

Several projects have used UDP rather than
TCP [17, 1]. UDP is message based and can also
be used to avoid head of line blocking and potentially
avoids some of the “heavy-weight” mechanisms present
in TCP and SCTP. However, when one adds reliability
on top of UDP, the advantages begin to diminish. For
example, LA-MPI, a high-performance, reliable MPI li-
brary that uses UDP, reports performance of their im-
plementation over UDP/IP to be similar to TCP/IP
performance of other MPI implementations over Eth-
ernet [1]. WAMP [17] is an example of UDP for MPI
over wide area networks. Interestingly, WAMP only

2http://www.ietf.org/internet-drafts/draft-stewart-behave-
sctpnat-01.txt



wins over TCP in heavily congested networks where
TCP’s congestion avoidance mechanisms limit band-
width. In any case, depending on the implementation,
the techniques for latency hiding investigated in this
paper could be used in these UDP-based implementa-
tions.

Recently OpenMPI [8] has been announced which is
a new public domain version of MPI-2 that builds on
the experience gained from the design and implemen-
tation of LAM/MPI, LA-MPI and FT-MPI [7]. The
point-point communication modules in OpenMPI have
the potential to manage messages and could also make
use of tags to identify independent messages to help
schedule messages across interfaces or interfaces that
support multiple streams.

6 Conclusions

In this paper, we explored a class of programs suit-
able for WANs, namely task farms, through a simple
performance model and a farm template, which max-
imally overlapped computation with communication.
We showed that the farm template which uses buffer-
ing and our novel use of tags as task IDs, had better
performance in SCTP-based middleware compared to
TCP-based middleware. We also evaluated these tech-
niques by experimenting with two real-world programs,
mpiBLAST and robust correlation matrix computa-
tion. Our results have shown to be positive. The per-
formance of farm programs can be improved in WANs
by application decisions such as the ability to buffer
tasks and intelligent middleware design to benefit from
SCTP’s multistreaming and improved congestion con-
trol mechanisms. Therefore in highly variable shared
environment such as WANs, where there may be loss
and increased latency, SCTP may be a better choice
for MPI middleware.

6.1 Future work

We have investigated one group of MPI applications,
namely the task farms in this paper. In the future, we
are interested in exploring more classes of parallel pro-
grams and its real world applications that can poten-
tially benefit with a MPI-SCTP combination. SCTP
has shown to be more robust in a variable environment.
Hence, we would like to simulate our experiments in
different network topologies via Emulab [6], in a larger
scale and a more heterogeneous environment. SCTP is
gradually evolving and we believe as its functionalities
mature, more benefits are yet to be explored.
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