
FPGA based Architecture for DNA Sequence Comparison and Database Search

Euripides Sotiriades Christos Kozanitis Apostolos Dollas

Microprocessor and Hardware Laboratory
Technical University of Crete

Chania 73100 Greece
{esot,kozanit,dollas@mhl.tuc.gr}

Abstract
DNA sequence comparison is a computationally
intensive problem, known widely since the competition
for human DNA decryption. Database search for DNA
sequence comparison is of great value to computational
biologists. Several algorithms have been developed and
implemented to solve this problem efficiently, but from a
user base point of view the BLAST algorithm is the most
widely used one. In this paper we present a new
architecture for the BLAST algorithm. The new
architecture was fully designed, placed and routed. The
post place-and-route cycle-accurate simulation,
accounting for the I/O, shows a better performance than
a cluster of workstations running highly optimized code
over identical datasets. The new architecture and
detailed performance results are presented in this paper.

1. Introduction

When performing DNA Sequence Comparison,
biologists are not interested in the exact match of the
sequences but they are interested in the degree of
similarity between them. For that reason all the
algorithms that have been developed are based on
similarity scoring. First efforts during the early 70s
focused on finding the optimal matching between two
DNA sequences [1]. Dynamic programming methods
were selected due to the nature of the problem, which
results in huge datasets. Needlamn and Wunsch [8]
developed their algorithm which uses a dynamic
programming approach in order to obtain an optimal
global alignment of two sequences. Biologists know that
when there is a need for a comparison between two long
DNA sequences, global similarity will be very poor even
though there are sub sequences with strong, meaningful
similarities. Therefore, local alignment is more
appropriate to locate these sections and global alignment
misleads. Several dynamic programming algorithms for
local alignment have been developed, such as Smith

Waterman[7], FASTA[6] and BLAST[5]. The Smith
Waterman algorithm provides optimal solutions and is
able to recognize distantly related sequences and its
complexity is O(mn), where m is the database size is and
n is the query size. However, FASTA originally, and
subsequently BLAST, which was developed as an
improvement of FASTA, both use heuristic methods to
provide near optimal solution based on their ability to
discard sequences that are not related to the query
sequence. It may be public wisdom, but there is no
mathematical proof that BLAST is faster than FASTA
but it’s a fact that BLAST based programs are the most
widely used sequence comparison codes in the area of
computational biology. The success of BLAST is owed
to it being open source software, with NCBI support and
continuous development. For that reason, the
acceleration of BLAST through custom hardware
architectures seems an appropriate first step in the
speedup of DNA sequence comparison, and this is the
purpose of this work. Historically, DNA string matching
is one of the first applications of reconfigurable
computing [2, 3].

1.1 The BLAST Algorithm

BLAST is the acronym for Basic Local Alignment
Search Tool and was first presented in [5]. A family of
implementations has been developed, depending on the
nature of data to be processed (nucleotides have a 4 letter
alphabet, amino acids have a 20 letter alphabet, and there
may be cases of both in a search.). BLAST is used for
searching large genetic databases to find areas of high
similarity (matches) between the data base and an input
query. For example, it compares a nucleotide query
against a nucleotide sequence database. Depending on
query and database data each BLAST implementation is
named BLASTp when the query is an amino acid and the
database is a protein, BLASTn when both the query and
the database are nucleotides, BLASTx when the query is
nucleotide translated and the database is protein,

1-4244-0054-6/06/$20.00 ©2006 IEEE

tBLASTn when the query is an amino acid and the
database is a nucleotide translated, and finally tBLASTx
when the query and the database are nucleotides
translated. The inputs of the algorithm are the genetic
sequence database (or a part of it such as the human
genome) and a query which tries to find areas of
similarity in the database. Outputs of the algorithm are
the positions of the areas of these two strings that have
similarity, as well the score of these similarities. Each of
these pairs, comprising of a database area and a query
area, is called a High Score Pair (HSP). The score has
significant value for biologists because it is used to
compute several variables, the most important of which
is the e-value.

The algorithm consists of three steps. In the first step
the query is compiled to form a list of length w
substrings. These substrings are called W-mers and are
all the contiguous substrings of length w of the query
sequence. Let ATGAACCTGAATACTGGGTTACCT
be the query DNA sequence of length 24 and let w, the
length of W-mers, be equal to 8. The word list will
contain 17 W-mers.

ATGAACCT will be the first
TGAACCTG will be the second
GAACCTGA will be the third etc. and

GGTTACCT will be the last one.
The Second step is the search of the database for

“hits”. After the word list generation, the database
sequences are searched for an exact match between any
substring of the W-mers list and the database sequence.
Every word of the word list found in the database is
called hit and it is possible to be part of a High Score
Pair (HSP).

The list of the generated “hits” is processed in the
third step. Each substring which generated a match in the
second step is extended locally in both directions as long
as the score of this substring no longer gets improved
following the scoring rules.

The scoring scheme of the algorithm is based on the
PAM (Point Accepted Mutations) matrices which
examine which amino-acid “substitutions” (i.e.
mismatches) are evolutionary accepted. However, in this
project we deal with the implementation of the algorithm
in which both the query and the database consist only of
nucleotide sequences and we use a simpler scheme
where each match is scored with 5 and any mismatch is
scored with -4 (almost all standard literature uses this
scheme). With this scheme we may have answers
slightly different than the use of the PAM matrices but
biologically it does not matter.

Figure 1 BLAST Algorithm Step 1

Figure 2 BLAST Algorithm Step 2

Figure 3 BLAST Algorithm Step 3

2. Sequence Comparison in Large

Sequence Databanks: Implementations

to Date

The genome of many organisms has been sequenced
to date but the process is due to be done for many others.
Large scale sequencing follows computer technology
progress. One of the results of this procedure is the
creation of large centralized databanks that store large
quantities of genomic data. These databanks are
categorized according to their contents (DNA or
proteins). Major databanks are NCBI [18] which
maintains GenBank that stores all DNA sequences that
are made in public; EMBL [9] which is a large DNA
archive in Europe. Important DNA archives are kept in
DDBJ [10], and GSDB [11]. Regarding protein archives,
PIR [12] in the USA and Swiss-Prot[13] in Europe are
the most important databases.

Biologists consider BLAST based tools as one of the
most important in computational molecular biology. For
that reason several implementations and improvements
of the original algorithm have been implemented and
applied to all these huge datasets. NCBI is considered as
the institute where BLAST development started and is
mostly done to date. It maintains and updates GenBank
with sequences of more than 100 billion bases
(characters). The BLAST software that was produced at

NCBI has been used as benchmark for computing
systems such as IBM 375 MHz POWER3-II
multiprocessor (SMP) and the 1.1 GHz POWER4
pSeries 690 Model 681, which according to published
results [19] is the fastest system for BLAST.

2.1 Hardware Efforts for Sequence Comparison

Sequence comparison in Large Sequence databanks
was one of the first applications for FPGAs. D. Hoang
et. al. [2], [3] implemented the Needleman-Wunsch and
dynamic programming algorithms using systolic array
implementation on SPLASH 2 in order to achieve orders
of magnitude higher performance than the conventional
computers of that time. Using JBits S. Guccione et. al.
[4] implement the Smith Waterman matching algorithm.
The same algorithm was implemented at Virginia Tech
[17] and the most recent implementation was at Nanyang
Techological University [14]. Mapping dynamic
programming algorithms on FPGAs seems to be suitable
for the capabilities of FPGAs especially when systolic
array architectures are used. On the other hand, mapping
the BLAST algorithm on reconfigurable logic is not as
suitable and only in [15] an implementation can be
found. In this architecture Muriki et al. measured the
time allocation for BLAST execution in software and
according to their measurements replaced the code

segment that consumes almost 80% of execution time
with a system call to their specific hardware.

Several impressive but not detailed results of
DeCypher have been announced [23]. Unfortunately,
lack of information about the architecture itself (number
of chips, I/O, architecture type, etc.) as well as how the
performance is calculated (types of queries, size of
database, version of BLAST, etc.) do not allow for
comparisons with our present work.

3. The TUC Architecture

The Technical University of Crete (TUC)
architecture, described in this paper, was designed for
BLASTn small query implementation (1000 letters)
regardless of the data base size. Query sequences can be
divided to three cases: small sequence which is between
100 to 2000 characters, medium which is between 2000
and 50000 characters, and large which is between 50000
and 200000 characters. Data base size can also be
divided at three cases; small, medium, and large. Small
consists of 4.7 × 106 characters, medium is between 5 ×
106 and 200 ×106, and large is between 200 × 106 and 4
× 109 characters. NCBI codes consist of several hundreds
of files calculating the BLAST algorithm and exporting
several numbers which have biological meaning. All
these numbers are calculated based on the score of HSP.
These calculations produce substantial computing load

but the most significant part of the computation power is
consumed to find every HSP and extend it, calculating
its score. Previous efforts for hardware implementation
of BLAST using profiling show that almost 80% of CPU
time is spent on these calculations [15].

The TUC architecture is divided into N identical
computing machines, each one of which implements all
three steps of the algorithm. Input data have a width of
2N bits, and come from N different channels. Every
channel drives one of the N computing engines. Every
machine has two major subsystems, one for step 2 of the
algorithm and one for step 3. The first step of the
algorithm (the W-mer calculation) is precalculated
before algorithm is run. The precalculation results are
the first inputs for the machine and they are stored in the
memory, together with their position in the query. After
this procedure the data stream of the database starts to be
processed and if a match is found the second component
of the architecture is activated and starts to extend the
match, thus implementing the third step of the algorithm.
The general design of the architecture is shown in Figure
4.

To illustrate in more detail, before each machine
starts the database search, its setup mode asks for the
precomputation of W-mers, with their position in the
query and their loading to the corresponding memories.
This procedure takes about

Figure 4 BLAST Machine

1000 cycles for 1000-character long queries.The input of
the system in normal mode (database search) is the
database stream, one character for each machine. Only
the 10 MSBs of W-mers are stored in memory and at the
address which corresponds to their 12 LSBs. The stored
bits are called W-mer tags. The width of the memory is
23 bits, 10 for the W-mer tag, 1 for valid, and the
remaining 12 to show the position of the corresponding
W-mer in the input query.

The Hit Finder Unit except for the W-mer memory
that was previously described has an input buffer which
is 2 bits wide (1 character) and one thousand positions
deep, called Future memory. The data stream from the
input channel passes through this buffer. As long as there
is no hit the buffer operates as a FIFO, getting 2 new bits
from the stream in every cycle and driving one shift
register (22 bits long) that shifts 2 bits (one letter) per
cycle. That shift register has one eleven letter long
substring, which is compared with all the W-mers. The
12 LSB of the shift register address the W-mer memory
in order to read the W-mer tag. The W-mer tag is
compared with the remaining 10 MSBs of the shift
register. When a hit is found the Future memory
continues to push its data to the shift register and starts
to send them at the extension unit as well for the 3rd step

of the algorithm. A new comparison is made during
every cycle in which the shift register has new data.
Conditions for a hit are to have two equal strings in the
shift register and the W-mer memory, and the memory
content to be valid. Figure 5 shows the Hit Finder Unit
architecture. If a second hit comes when the previous is
still extended the whole system goes to a stall mode. The
system stops trying to find new hits and signals external
devices to stop sending new data. In this case the
extension unit operates in the normal mode. The Hit
Finder unit stops normal operation but continues to pass
the data stream to the extension unit.

The Extension Unit executes two comparisons in
every cycle, according to the algorithm. It extents both
sides and compares the two pairs of letters. The first pair
comes from the query memory and the history memory
and the remaining couple comes from the Query memory
and the Future memory. The data from the input are
buffered in the History and Future memories, as it can be
seen in Figure 6. There are also counters and registers
that keep several useful data, such as hit position for
query and database, its length, and the score (which is
the most important result to be calculated). Based on the
score all the remaining useful data for biologists (e.g. e-
value) can be calculated.

Figure 5 Hit Finder Unit Architecture Figure 6 Step 3 Architecture

Synchronous RAM

4K x 21

12 bits Address

2 bits

10 Bits Register

Equality

Comparator

=

W-mer

TAG
10 bits

POS of

W-Mers

10 bits

10 bits 10 bits

Shift Register

22 bits

11 Letters

Valid Bit

2 Bits Input

1 Letter

HIT
POS of W-mer

 HIT FINDER

UNIT

Data Base Stream

Data Base

 Stream

Input Buffer

Synchronous

RAM

1K x 2

2 Bits

Input Buffer

Controller

Control Lines

3rd step

POS of W-mer

10 bits

Data Base Stream

Data

Base

History

Memory

Dual Port

1K x 2

bits

Query Memory

Controller

Query Fragment

Shift Register

10 bits

Data Base

History Memory

Controller

HIT FIFO

Address
10 bits

POS of W-mer

Control
Lines

Extension Controller

2 bits

2 bits

2 bit Equality

Comparator

2 bits

2 bits

2 bit Equality

Comparator

Query Fragment

Shift Register

2 bits

Data Base Stream

Control

Lines

HIT

W-mer

Possition

10 bitsAddress

W-mer Mem

Number of

parallel

Machines

Number of

FIFO16/RAMB16s

(Total 552)

Number of 4

input LUTs

(Total

126,336)

1 8 1% 744 >1%

60 480 86% 46,522 36%

69 552 100% 53,836 42%

Table 1 Area Demands of TUC Architecture

4. TUC Implementation

The TUC Architecture has been coded in VHDL and
exhaustively post place-and-route simulated for the
VIRTEX 4 family using the 4VFX140FF1517-11
device. The first experiment was the measurement of a
single machine (N=1) which run at 121.20 MHz and
consumed less than 1% of logic recources and 8
BRAMs. More specifically every single machine needs 8
Blocks of BRAM, 5 of which are given to the memory of
W-mer, 1 is used for query, 1 for History Memory and 1
for Future Memory. On the other hand it consumed 744
out of 126,336 LUTs. That shows that the critical
resource for implementing many parallel machines is the
BRAMs and this restricts parallelization to 69 for the
specific device (it has 552 BRAMs divided by 8 BRAMs
for each machine). The next implementation was for 60
parallel computing machines (N=60) where exactly 480
BRAMs (or 86%) where used but only 36% of the
available LUTs were used. In the last experiment the
critical resource BRAMs were exhausted - 552 are used
to create 69 parallel computing machines running at
100.36 MHz. As in the previous experiments the
percentage of LUT usage was low, only 42%.

In the above experiments it was assumed that there
will be an input data stream of up to 69 characters, 2 bits
each in parallel at a speed of 100.39 MHz. For that data
stream a 138 bit wide bus is needed, with a speed of
13.86 Gbps. The device that was selected for the
experiments supports up to 20 ROCKET I/O serial
transceivers with 3.125 Gbps each [16]. That gives an
upper bound of 62.50 Gbps aggregate bandwidth, and
with a realistic and measurable 2.5 Gbps per link we

have a total bandwidth for the system of 50Mbps, i.e. an
upper bound of 248 parallel computing machines. This
amount exceeds any expected number, so the
architecture is not input-starved. Output is not a problem
and can be accomplished at normal speeds through other
pins.

5. TUC performance – Results

The TUC architecture performance is calculated
according to post place and route timing information of
Xilinx software 7.1.03 which includes Device speed data
version: "ADVANCED 1.54 2005-05-25" for the certain
device. Table 2 has speed measurements for the three
experiments.

Actual runs of NCBI software blast-2.2.12 were
performed on a 2GHz Xeon with 2GB main memory and
the CPU usage was profiled running SUSE 9.1 Linux.
For a small query (987 letters) in a large NCBI data base
(igSeqNt.ftptemp) with 44,419,359 total letters the 2GHz
Xeon measured at 1.380 sec CPU time which is an
actual throughput of 32.19 10

6 characters/sec. The CPU
time as a fraction of the total time indicates that the
database was all stored in memory and the application
was not thrashing.

Muriki et. al. [15] is the only group that did actual
runs of BLAST algorithm in FPGAs to date but their
results proved worse than software implementations due
to I/O problems, PCI bottleneck and the old technology
(XC 4085) which they used (the performance was five
times slower than the purely software version). For that
reason their results are not used in this comparison.

Number of parallel

Machines

Speed

(MHz)

Width of

Data

Stream

(characters)

Actual

Throughput

(characters/sec)

1 121 1 121.20 106

60 103 60 6,192.58 106

69 100 69 6,924.84 106

Table 2 Speed and throughput of TUC Architecture

Number

of

Processors

Type of

Processors

Time

(sec)

Database

Size

(characters)

Actual System

Throughput

(characters/sec)

Actual

Throughput

per Chip

(characters/sec)

POWER3 43.63 4 109 91.68 106 91.68 106

1
Model 681 1.1 21.32 4 109 187.62 106 187.62 106

POWER3 24.09 4 109 166.04 106 83.02 106

2
Model 681 1.1 11.39 4 109 351.18 106 175.59 106

POWER3 14.23 4 109 281.10 106 70.27 106

4
Model 681 1.1 6.53 4 109 612.56 106 153.14 106

POWER3 9.25 4 109 432.43 106 54.05 106

8
Model 681 1.1 4.33 4 109 923,79 106 115.47 106

POWER3 7.56 4 109 529,10 106 33,07 106

16
Model 681 1.1 3.33 4 109 1201,20 106 75,07 106

Table 3 blastn Benchmarks with a Small Single Query and Large Database

System Actual Throughput

(10
6
 characters/sec)

2GHz Xeon 32.19

TUC Architecture N=1 121.20

TUC Architecture N=60 6,192,58

TUC Architecture N=69 6,924.84

IBM single chip 187.62

IBM System 1,201.20

Table 4 Systems Throughput

 SpeedUp of

TUC

Architecture

N=1

SpeedUp of

TUC Architecture

N=60

SpeedUp of

TUC Architecture

N=69

2GHz Xeon 3.76 192.37 215.12

IBM single chip 0.65 33.00 36.90

IBM System (16 chips) 0.10 5.15 5.76

Table 5 TUC Architecture SpeedUp

From Table 3 it can be shown that the fastest system
throughput is achieved with the 16 processors Model 681
1.1 system, which has a throughput of 1,201.20 106

characters/sec. However, the fastest single chip system is
IBM Model 681 1.1 with 187.62 106 characters/sec.

Table 4 has the actual throughput for systems
implementing BLAST algorithm and in Table 5 the
Speedup of TUC architecture against the other systems.

6. Conclusions and Future Work

Significant improvements on this architecture and its
implementation can be achieved. More specifically this
implementation contains several memories which have
been all implemented using BRAMs. The number of
BRAMs in the specific device is 552. As 8 BRAMs are
used for each machine, this gives a parallelisation of 69

machines. Improving the W-mer addressing with a hash
function implementation can save up to 3 or 4 BRAMs
for each machine. Balancing between using of BRAMs
and distributed memory can save 2 more BRAMs for
each machine because half of logic cell are not used.
That will give a new design which uses 2 or 3 BRAMs
for each machine and it will increase parallelisation to
180 computing machines. The use of Power PC cores
that are embedded to VIRTEX 4 must be examined as
alternative solution to extension unit. Finally it would be
very interesting to study architectures for bigger queries.

Acknowledgements

We wish to thank several people that contributed to
this project. Georgia Adamopolou introduced the
problem to us giving us important details about BLAST
algorithm implementation. Support for the FPGA

hardware in the lab came from donations from Xilinx,
Inc. This work was funded from the Greek Ministry of
Education Grand for the project GSRT “IRAKLEITOS:
Research Scholarships for TUC”, Program. TUC, sub-
program #10, “Structures for Reconfigurable
Computing”.

7. References
[1] J. Meidanis and J.C. SetUbal, Introduction to
Computational Molecular Biology, PWS Publishing Company,
1997.
[2] D. Hoang et. al. “FPGA Implementation of Systolic
Sequence Alignment”. Proceedings of the 2nd International
Workshop on Field-Programmable Logic and Applications,
Lecture Notes in Computer Science 705, pp 183-191, 1992.
[3] D. Hoang “Searching Genetic Databases on Splash 2”,
Proceedings IEEE Workshop on FPGAs for Custom
Computing Machines (FCCM), pp 185-191, 1993.
[4] S. Guccione and Eric Keller “Gene Matching Using JBits”.
Proceedings of the 12th International Conference on Field-
Programmable Logic and Applications, Lecture Notes In
Computer Science; Vol. 2438, pp 1168-1171, 2002.
[5] S. Altschul et. al. “Basic Local Alignment Search Tool”, J.
Mol. Biol., vol. 215, pp 403-410, 1990
[6] Pearson, W. and Lipman, D. “Improved tools for biological
sequence analysis”. In Proceedings of National Academic
Science, 85, pages 2444–2448, 1988
[7] T.F. Smith, M.S. Waterman “Identification Of Common
Molecular Subsequences” J. Mol. Biol., vol. 147, pp 195-197,
1981
[8] S. B. Needleman and C. D. Wunsch “A General Method
Applicable to the Search for Similarities in the Amino Acid
Sequence of Two Proteins”, ”, J. Mol. Biol., vol. 48, pp 443-
453, 1970.
[9] www.ebi.ac.uk
[10] www.ddbj.nig.ac.jp
[11] scop.wehi.edu.au/gsdb/gsdb.html
[12] pir.georgetown.edu
[13] www.isb.sib.ch
[14] T. Oliver et. al. “Hyper Customized Processors for Bio-
Sequence Database Scanning on FPGAs”, Proceedings of the
2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays (FPGA), pp 229 – 237.
[15] K. Muriki et. al. “RC-BLAST: Towards a Portable, Cost-
Effective Open Source Hardware Implementation”,
Proceedings 19th IEEE International Symposium Parallel and
Distributed Processing (IPDPS), pp 196b-196b 2005.
[16]
http://www.xilinx.com/products/silicon_solutions/fpgas/produc
t_tables.htm#V4FX
[17] K. Puttegowda et. al. “A Run-Time Reconfigurable
System for Gene-Sequence Searching”, Proceedings. 16th
International Conference on VLSI Design pp 561 – 566, New
Delhi 2003
[18] www.ncbi.nlm.nih.gov
[19] C. P. Sosa et. al. “Some Practical Suggestions for
Performing NCBI BLAST Benchmarks on a pSeries ™ 690
System”,
http://www.redbooks.ibm.com/abstracts/redp0437.html?Open.

[20] Sidhu, R.; Prasanna, V.K. “Fast Regular Expression
Matching Using FPGAs”, Proceedings of the 9th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp 227 – 238, 2001
[21] Hutchings, B.L.; Franklin, R.; Carver, D.” Assisting
network intrusion detection with reconfigurable hardware”,
Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pp 111-120,
2002
[22]http://www.timelogic.com/benchmark_blast.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

