An Adaptive System-on-Chip for Network Applications

Roman Koch, Thilo Pionteck, Carsten Albrecht, and Erik Maehle

University of Liibeck
Institute of Computer Engineering
23538 Liibeck, Germany
{koch, pionteck, albrecht, maehle}@iti.uni-luebeck.de

Abstract

This paper presents the hardware architecture of Dy-
naCORE, a dynamically reconfigurable system-on-chip
for network applications. DynaCORE is an application
specific coprocessor for offloading computationally in-
tensive tasks from a network processor. The system-on-
chip architecture is based on an adaptable network-on-
chip which allows the dynamic replacement of hardware
modules as well as the adaptation of the on-chip com-
munication structure. The coprocessor leverages the
active partial reconfiguration feature of modern FPGAs
in order to adapt to shifting demand patterns. An em-
bedded general-purpose processor core within the copro-
cessor runs software which manages the configurations
of the device. With reference to a prototypical imple-
mentation targeting a Xilinx Virtez-1I Pro FPGA, this
paper focuses on on-chip communication issues. Top-
ics include the integration of PowerPC processor cores
into the configurable logic as well as the mode of oper-
ation of the network-on-chip.

1. Introduction

In an environment of continuously changing net-
work protocols and ever increasing data rates, network-
ing applications require processing devices that pro-
vide high degrees of both flexibility and computational
power. Therefore in recent years, specialised network
processors (NPs) were introduced. High performance
NPs exploit chip-level parallel architectures compris-
ing multiple instruction set processors as well as ap-
plication specific hardware accelerators. While provid-
ing limited support for deep packet processing, that
is, processing of entire packets, NPs are generally best
suited for packet header processing as required by clas-
sification and forwarding applications. There is, how-

1-4244-0054-6/06/$20.00 ©2006 IEEE

ever, an increasing demand for deep packet processing
as several applications from the network security and
integrity domain fall into this field. In many cases,
frequently changing standards and protocols prevent
these applications from taking advantage of hardware
accelerators found in NPs. In contrast, software-only
solutions hardly meet the performance requirements,
in particular if huge amounts of payload require pro-
cessing. Hence, other architectural solutions have to be
found in order to cope with the increasing data rates
in network applications.

FPGA based hardware accelerators are promis-
ing candidates for applications where high computa-
tional power is required in combination with flexibil-
ity. By replacing fixed hardware accelerators of NPs
with dynamically reconfigurable modules, adaptation
to changing standards and protocols is made possi-
ble. Futhermore, the usage of such modules also allows
changing traffic profiles to be accounted for. Based on
these ideas, DynaCORE [1] has been designed. Dyna-
CORE is a run-time reconfigurable coprocessor for NPs
and allows computationally intensive tasks to be of-
floaded from the NP. The NP still performs header pro-
cessing tasks such as bridging, IP forwarding, and qual-
ity of service provisioning. Payload processing tasks
like en-/decryption, compression or network intrusion
detection are done within DynaCORE. NP and Dyna-
CORE are loosely coupled. Thus, no changes to the
NP architecture are necessary. In addition, the Dy-
naCORE architecture is independent from any specific
NP. A detailed description of the hardware architecture
of DynaCORE is given in this paper.

This paper is organised as follows: Section 2 de-
scribes the requirements of the application area. The
system architecture is presented in Section 3 while
Section 4 explains how dynamic reconfiguration is
exploited in DynaCORE. As DynaCORE comprises

several communicating components, a network-on-

chip (NoC) was chosen as the basis for the on-chip in-
terconnection scheme. The NoC and its interfaces to
the structural entities of DynaCORE, including CPU
cores, are described in Section 5. Section 6 presents
application scenarios before a short summary is given
in Section 7.

2. Requirement Analysis

Network applications place high demands on com-
putational power and real-time operation. Only a few
ten nanoseconds per packet are available to evaluate in-
coming packet headers. Since capacities of optical links
grow very rapidly about a factor of two per year, to-
day’s link speed already reaches 10 Gb/s (OC-192) and
40 Gb/s (OC-768). Assuming a worst case traffic sce-
nario with TCP acknowledge packets with a packet size
of 40 bytes only, this would lead to processing rates of
about 25 or 100 million packets per second. Backbone
traffic, however, consists in general of packets with an
average size of 507 bytes [8], as traffic traces indicate.

For the last ten years, the composition of internet
backbone traffic has been rather stable in respect of the
protocol layers 1 to 4 of the OSI layer model. In con-
trast to lower layers, higher layer protocols vary more
frequently. IP backbone traffic comprises of about
85.1% of TCP packets or 95.7% of TCP-based data
volume. TCP is a stream-based, connection-oriented,
and lossless transport protocol that provides conges-
tion control. The residual traffic is mainly dominated
by UDP. Only about 2% of packets and less than 1% of
the data volume make up the non-TCP/UDP part [8].
At first view, IPsec and other secure traffic seem to be
marginal, but secure connections are hardly visible at
lower layers. Most secure connections are established
on top of TCP so that they are invisible from the point
of IP. Just a quarter of IP traffic is generated by Tel-
net, SSH, FTP, and SCP. Web applications using the
http and https protocols generate the lion’s share [4].
State-of-the-art network processors such as the Intel
IXP 2400 provide bandwidths of 4 Gb/s and more. So,
the IXP 2400 for example has to deal with 3.8 Gb/s
TCP traffic including at least 0.125 Gb/s traffic for se-
cure socket layer connections and about 0.125 Gb/s of
IPsec traffic.

In the area of edge routers the traffic composition de-
viates. Virtual private networks (VPNs) often combine
encryption with compression so that the computational
effort is high. It has to be assumed that most routers
transport similar packet flows without any need for en-
cryption or compression. Conversely, a small number
of routers generate a high amount of encrypted traffic.
In those routers the ratio of encrypted to unencrypted

traffic is several times higher than in a backbone. Re-
liable numbers, however, can hardly be given because
of the lack of freely available statistics on edge-router
traffic.

Encrypted and/or compressed data rarely uses the
complete maximum transfer unit, but minimal-sized
packets can be assumed to be rare as well. Design pa-
rameters such as buffer sizes and time-out values are to
be adjusted to best ratio of performance and resource
utilisation. Therefore, DynaCORE has to be designed
to deal with average-sized packets. Worst-case assump-
tions base on 1 Gb/s incoming traffic stream and a
packet size of 507 bytes. DynaCORE has about 4 ms
time to classify and dispatch an incoming packet as
well as for a dynamic exchange of functional units, if
applicable.

3. System Architecture

This section covers the system level architecture of
DynaCORE from a structural point of view. The dy-
namic behaviour of the system is considered in detail
in subsequent sections.

The DynaCORE architecture is an adaptive system-
on-chip (SoC) architecture specifically designed for
high-speed networking applications. It relies on an un-
derlying technology which allows blocks of logic cir-
cuitry within the chip to be replaced while the system
is running. In addition, a general-purpose processor is
supposed to be available for software based manage-
ment and processing tasks. Appropriate technology is
available in the form of recent FPGA families which are
capable of dynamic or active partial reconfiguration [3]
and, furthermore, include CPU cores in the FPGA. In
the following, the term reconfiguration is used for the
process of replacing blocks of logic circuitry. Reconfig-
uration enables DynaCORE to adapt to changing re-
quirements by applying, as needed, different algorithms
to data being transferred over a network.

As depicted in Figure 1, the DynaCORE archi-
tecture resolves into static and reconfigurable parts.
The static part of DynaCORE is made up of global
control and system management logic. In particular,
it contains a dispatcher, a reconfiguration manager
(RM) and interfaces for communication with the out-
side world. Utilising the I/O interfaces the receive unit
receives data from the network. Subsequently, data
is directed to the appropriate hardware assist (HA)
by the dispatcher. Processed data is then sent back
to the external network by the transmit unit making
use of the I/O interfaces again. The RM takes care
that the appropriate processing circuitry is available
for the required type of processing. If necessary, it trig-

Transmit-Unit
Receive-Unit >< |‘
I
Dispatcher
g i i
]
:‘qf, Reconfiguration ><
£ Manager
o (HW + SW)
A
Reconfiguration| >< [
Logic [icap
XF
¥ External memory

Figure 1. DynaCORE Block Diagram

gers and controls reconfiguration of DynaCORE. For
that purpose, the RM communicates with reconfigura-
tion logic encapsulating a particular hardware instance
which is referred to as internal configuration access port
(ICAP [9]). The ICAP interfaces DynaCORE logic
with the underlying reconfigurable hardware. Besides
the static part of the architecture there is a reconfig-
urable part which contains the actual processing logic
in the form of HAs. Finally, the component intercon-
nect is provided by a NoC which comprises both static
and reconfigurable elements. The reconfigurability of
the NoC structure allows for HAs of different sizes.

A standard HA is composed of an HA core, a mon-
itor and logic interfacing the NoC. HA cores may be
based on off-the-shelf intellectual property cores (IP
cores). The monitor of an HA processes core state in-
formation and supplies the RM with data necessary for
reconfiguration decisions. In addition to these stan-
dard HAs, there is also an HA that is based on an
embedded processor core instead of an IP core. That
is, it performs data processing tasks in software rather
than in hardware. The software based HA serves as a
universal low-performance backup for situations where
the external demand pattern cannot be matched by
a configuration of solely standard HAs. Futhermore,
the software instance attenuates the effect of standard
HAs being temporarily non-operational in the course
of reconfiguration.

4. Reconfiguration

Adaptivity is the main feature of DynaCORE. In
the following, the basis for reconfiguration decisions is
explained and implementation specific issues are cov-
ered.

4.1. Reconfiguration Control

A conceptual entity, the reconfiguration control, is
set on top of the system to guard and observe its com-
plete functionality. The reconfiguration control is re-
sponsible for allocating reconfigurable logic and con-
figuring functional cores. Its goals are to provide all
functions required by the traffic profile and to achieve
a balanced load distribution. It is comprised of three
components to observe and optimise the coprocessor’s
performance: the reconfiguration manager (RM), the
dispatcher, and the performance monitors.

Each HA hosts a performance monitor to collect in-
formation about its internal state. The collected data
is forwarded to the RM. It may consist of, e.g., number
of processed words and function-specific values. For ex-
ample, a DES encryption core could be observed by the
number of words processed, the number of keys used
and the frequency of key changes in respect to a certain
time period.

Decisions of the RM including creation and removal
of new HAs solely base on this current state informa-
tion. The set of potential configurations is precom-
puted and constitutes the state space of a finite state
machine. Transitions are defined by rules that are
basically composed of comparisons of thresholds and
measurands [1]. Furthermore, the RM manages the
flow mapping. The short-term assignment of incoming
packets is performed by the dispatcher. Strictly speak-
ing, the dispatcher executes the order of the RM for
the crucial parts of protocol wrapping between the net-
work processor, the Internet-protocol world, and Dy-
naCORE with its proprietary internal protocol [2].

4.2 Implementation Issues

During the initial phase of the DynaCORE project
Xilinx Virtex-I1I Pro FPGAs [9] were the only platform
which provided for dynamic partial reconfiguration and
which also met the hardware and software performance
requirements. Therefore, the DynaCORE architecture
has been designed with a prototypical implementation
on a Xilinx Virtex-II Pro FPGA in mind. As the newer
Virtex-4 FX family features a similar chip-level archi-
tecture, that implementation can be easily migrated to
this platform just with marginal modifications. Fol-
lowing the decision for a specific implementation plat-
form, the DynaCORE architecture was, to a certain
degree, tailored according to the specific properties of
that platform. Therefore, DynaCORE does not only
rely on active partial reconfigurability, it also features
components which directly map to the embedded Pow-
erPC 405 processor cores, the ICAP and blocks of dual

ported SRAM (BlockRAM), all of which can be found
in Xilinx Virtex-II Pro and Virtex-4 FX FPGAs. Ex-
ternal memory is used to store descriptions of all types
of HAs and reconfigurable NoC elements. These de-
scriptions are stored in the form of configuration bit-
streams which are sequences of bytes that, when writ-
ten to the ICAP, cause the respective HA or NoC ele-
ment to be configured into the FPGA.

5. Network-on-Chip

This section covers the NoC which serves as the on-
chip interconnection structure of DynaCORE as well
as communication aspects of the components attached
to the NoC.

5.1 Concept

DynaCORE aims at network applications or, more
specifically, at packet payload processing tasks. The
principle way of operation is therefore easily described
as data packets being taken from an external network,
fed into DynaCORE, directed through on-chip process-
ing facilities and, finally, handed over to the external
network. As a consequence, on-chip traffic is domi-
nated by data bursts along certain paths rather than
by an arbitrary exchange of messages between com-
ponents. The actual data path, however, may vary
depending on the particular task. In addition, the dy-
namically replaceable HAs may occupy areas of differ-
ent sizes and thus require changes to the interconnec-
tion structure. Hence, a static interconnection scheme
would not be suitable for DynaCORE. Therefore, Dy-
naCORE builds up upon a reconfigurable NoC.

5.1.1 NoC Topology

The NoC consists of full-duplex links and switches with
a maximum of three links to adjacent switches and one
link to a local HA. Depending on the number of non-
local links a linear network or a two-dimensional grid
can be instantiated. The routing of packets inside the
NoC is indirectly controlled by the RM which supplies
the individual switches with routing tables.

In order to support HAs of varying sizes, switches
can be dynamically inserted into and removed from the
NoC. This provides the basis for replacing a large HA
with two or more smaller HAs or vice versa. The mech-
anism for dynamically changing the NoC is essentially
the same as the one applied for dynamically replacing
HAs. It is based on dynamic reconfiguration controlled
by the reconfiguration control unit in conjunction with
the dispatcher. The RM maintains a global view of

the NoC structure and ensures that connectivity con-
straints are always met.

5.1.2 Protocol Stack

While other NoCs like [6, 7, 10] make use of relatively
lean protocols, the NoC used in DynaCORE utilises a
three-layer protocol stack. The decision for a more
complex protocol was made, because processing in-
stances should be relocatable, there should be support
for prioritised traffic, and a future expansion of the Dy-
naCORE implementation to multiple FPGAs should
be taken into account. The header structures of the
individual layers are depicted in Figure 2.

Data Link Layer
6 6 2 8 2 8
| psT | SsRC [we| Length [ew] =
95 90 89 848382 81 747372 71 64

Network Layer
8 8 6 4 6
| DA | SA | TTL | Trans | Reserved |
63 56 55 4847 4241 3837 32

Application Layer

8 16 8
| AT Context ID |Type of Proc |
31 24 23 87 0

Figure 2. Protocol headers

Each header consists of 32 bits of data. At the lowest
level, there is the data link header. It contains physical
destination (DST) and source addresses (SRC), gives
information on the number of subsequent 32 bit words
that belong to the current packet (Length) as well as
it differentiates several message types (Type) and pri-
orities (Prio). The network-layer header provides logi-
cal destination (DA) and source addresses (SA) and a
time-to-live (TTL) field that serves for breaking loops.
For data packets, another logical destination address
may be supplied in a compressed form (Trans = tran-
sit address). This address specifies to which compo-
nent a packet should be sent after processing. At the
highest level, the application-layer header contains a
sub-address (AT = application type) and a parameter
(Type of Proc = type of processing) for evaluation by
an HA. In addition, this header carries a context iden-
tifier (Context ID) that allows different packets to be
associated with each other.

While physical addresses refer to specific switches
at specific locations within the NoC topology, the log-
ical addresses refer to processing entities. Packets are
routed from one switch to another solely based on the
physical address DST. The addressed switch eventu-

ally passes the packet on to the locally connected HA.
The HA, in turn, determines by the logical address DA
whether any and which of its processing entities is ad-
dressed. A single HA may listen to multiple logical
addresses, and it may also give its switch information
on where to send packets which are misdirected, that is,
which contain a DA the HA is not responsible for. This
mechanism is primarily used in combination with dy-
namic reconfiguration as described in Section 4. The
differentiation between physical and logical addresses
allows HAs and sub-ordinate processing entities to be
moved or combined within the NoC. Moreover, the pro-
tocol is prepared for an envisioned multi-chip system
which comprises one NoC per chip. Here, physical ad-
dresses would be local to each chip and refer to switches
as well as to inter-chip gateways while logical addresses
remain valid in the system level context.

5.1.3 Reconfiguration

The NoC is prepared for two reconfiguration scenarios:
First, it actively supports the replacement of individual
HAs. Second, the NoC topology can be adapted by
dynamically inserting or deleting switches.

Dynamic replacement of an HA. An HA A may
be scheduled to be replaced by an HA B when the RM
determines that the functionality provided by HA B is
more urgently needed than that of HA A. At the time
the replacement process starts, however, there may still
be packets in transit within the NoC that are destined
for HA A. Hence, precautions are necessary to ensure
that these packets are properly processed even when
HA A has already become absent. Therefore, the RM
determines a backup HA C which provides the same
functionality as HA A and assigns the logical addresses
previously used by HA A to HA C. Generally, a soft-
ware based HA as described in Section 3 serves as a uni-
versal backup HA. In case of the Virtex-IT Pro imple-
mentation one of the two PowerPC cores is reserved for
this purpose. Subsequent to actually replacing HA A
by HA B, HA B is supplied with a mapping of the
logical addresses of HA A to the physical address of
backup HA C. Packets destined for HA A will now be
routed to HA B, because HA B is located at the phys-
ical address of former HA A. HA B can now update
the physical address DST of such packets according to
the aforementioned mapping so that these packets are
eventually forwarded to the backup HA C. This for-
warding mechanism is supported by the generic HA
interface which is a subcomponent of any HA and de-
scribed in Section 5.2.

Figure 3. Adaptation of NoC structure

Dynamic insertion and removal of switches.
When the structure of the NoC is changed, special care
has to be taken not to isolate parts of the NoC. It has to
be made sure that a new switch can be accessed by the
neighbouring switches. A typical scenario is depicted
in figure 3. Here, HA2 is replaced by two smaller HAs
(HA7 and HAS). In order to connect HA7 to the NoC a
new switch (5) has to be inserted in between of switches
(D and (2). Since the dynamic reconfiguration should
not affect other hardware modules and their commu-
nications, it must be guaranteed that packets are not
sent directly from switch (1) to switch (2) or vice versa.
Therefore, the routing tables of these switches have to
be adapted. In addition, the routing table of switch
(D should hold information to access the new switch
(5). These updates are done under the control of the
reconfiguration control unit which sends NoC internal
messages containing the routing tables to the affected
switches. The messages are addressed to the physi-
cal addresses of the switches and tagged highest prior-
ity, ensuring that they are processed with precedence
within the packet switched NoC.

As soon as the diversion for packet traffic has been
set up, switch @ is added to the system together with
the new HAs. Now the first step is to initialise the rout-
ing table of the new switch. Therefore, a correspond-
ing message is generated by the reconfiguration control
unit. The message can successfully be forwarded by
switch (1) as it obtained knowledge of switch (5) and its
physical address with the recent update of its routing
table. The final step consists of updating the routing
tables of all surrounding switches, thereby cancelling
the diversion and activating the connections between
switches (1), (5), and (2). In the case of removing a
switch from the NoC essentially the same procedure is
applied.

\
16 16
————g——————
| Y :
. : || Port [1
YYYY W ,': FSM ||
r——---- 1 : o] [
I [Port]| | -~ --F---- !
L] | !
I ! >
L» FIFO | N <
i8] ° 4 i l—f‘f—:) 16
! -
| i NoC/Switch e .
(- Control <~-|j::

I
| L
! [Port E Lyvyey
I|FSM || o :

! A 1

|

16 i 16

Figure 4. Internal switch architecture

5.2 Implementation

The main component of the NoC is the switch. Its
block structure is depicted in Figure 4. For each of
the 16 bit wide input ports of the switch, a Virtex-II
Pro BlockRAM is used as a FIFO allowing storage of a
complete packet. The first 32 bit of the packet header
are bypassed to the switch controller so that header
analysation can start immediately. Beside the TTL
field, only the data-link layer is processed. At first,
the priority of the incoming packet is determined in
order to regulate the access to the routing table. Arbi-
tration is done by using the Prio and the Type field of
the header. In the case of equal priorities, access to the
routing table is granted round robin. The routing table
consists of 64 entries of 2 bit and is mapped onto Dis-
tributedRAM. Depending on the destination address
in the packet header a port is assigned and the packet
is immediately forwarded to the next switch or to the
local HA. In case of a free destination port the header
processing inside a switch is done in five clock cycles.
If the destination port is not available, the complete
packet is buffered in the FIFO of the corresponding
input port. Meanwhile, the switch sends a NoC inter-
nal message to its predecessor in order to prevent the
arrival of further packets.

The routing tables for the switches are provided
by the RM. They are generated after initialisation, a
change in the structure of the NoC and when HAs are
exchanged. For their immediate distribution over the
NoC, a special NoC internal message class is used. Ta-
ble 5.2 provides an overview over the different message

classes of the NoC. In total there exists six message
classes. Differentiation is done using the Type (T) and
Prio (P) field of the data link layer.

Table 1. NoC message classes

T P | Class Description

00 00 | Payload Payload data for HAs

00 01 | Monitor Data to/from HA monitor
Log_Addr Logical addr. for HA interface

01 10 | Forw_Addr | Addresses for packet forwarding

AT field is used for distinction

10 10 | Route_Tbl | Routing tables for the switches

10 11 | NoC_Msg Internal message for flow control

11 11 | Rec-Data Data for dynamic reconf.

When the physical address of a packet matches the
address of a switch, the packet is forwarded to the HA.
The structure of the HA is shown in Figure 5. A spe-
cial interface inside the HA separates the local port
of the switch from the actual IP core. This avoids any
adaptation of the switch to the bitwidth or communica-
tion protocol of an IP core. The HA interface consists
of a receive and transmit unit, an HA identifier block
and the HA monitor. According to the logical address
and the AT field, the receive units transfers the incom-
ing packet to one of the components inside an HA. In
addition, it converts the bitwidth of the different com-
ponents and provides an additional buffer. The actual
determination of the destination of a packet is done
inside the HA identifier block. Therefore, local ad-
dresses of the HA and potential forwarding addresses
are stored inside this block. If the packet matches a
logical address of the HA, the payload is transferred to
the IP core and header information is bypassed to the
transmit unit and the HA identifier. The HA identifier
block determines the new destination address for the
processed payload data. This information is passed to
the transmit unit which creates a new header.

If a packet matches the physical address of the
switch but not any of the logical addresses of the HA,
it is either targeted to the HA monitor or to an HA
which was formely attached to the switch. In the sec-
ond case it is directly transferred from the receive unit
to the transmit unit of the HA. Inside the transmit
unit, the physical and logical destination addresses of
the original header are overwitten by the forwarding
addresses stored in the HA identifier block. After-
wards, the packet is transferred to the switch. If a
packet is assigned to the HA monitor, the application
layer and optional payload are forwarded to the HA
monitor. The HA monitor is capable of sending packets
to the reconfiguration control unit without being trig-

HA-Core
A] | [#
[v L] \ A
o HA
™| Monitor
HA HA
Receive- [y HA Transmit-
Unit |1 Identifier ["] Unit

A] HA-Interface |
| [
\J \j

Figure 5. Generic structure of an HA

gered. Therefore, the HA monitor can create packet
headers independently from formerly received packet
headers.

5.3 Integration of PowerPC Cores

The prototypical implementation of DynaCORE is
based on a Virtex-II Pro XC2VP30 FPGA that con-
tains two PowerPC 405 processor cores, one of which
is dedicated to the RM software while the other is used
for software based HAs. Both cores are connected to
external memory which serves as the storage for both
program code and data. As described in Section 3, the
external memory also stores configuration bitstreams.

The PowerPC 405 cores provide two interfaces which
are suitable for communication with the surrounding
logic: The processor local bus (PLB) and the on-chip
memory bus (OCM bus). Unlike a microcontroller, the
PowerPC does not feature any programmable I/Os.
However, although the OCM bus is exclusively spec-
ified for use with BlockRAM blocks on the FPGA, it
has been successfully used for also interfacing the Pow-
erPC core with arbitrary logic. That way, general pur-
pose I/Os have been implemented very efficiently with
regard to resource usage. In view of the complexity
inherent to logic connecting to the PLB, the OCM bus
was thus chosen for connecting the PowerPC cores to
the NoC. The PLB is solely used to connect the Pow-
erPC cores to external memory.

As a consequence, the RM software must actively
transfer configuration data from the external memory
to the reconfiguration logic word by word. At a first
glance, this approach may appear to be sub-optimal
compared to a solution based on direct transfers from
memory to reconfiguration logic. A closer view, how-
ever, reveals that there is not any negative impact on
the performance of the system. The processor core
may be clocked at a frequency several times as high
as the surrounding logic. Thus, the need for multi-
ple machine instructions per data word to be copied

does not necessarily slow down the process. Moreover,
the copy routine can safely be assumed to reside ei-
ther in the L1 instruction cache or to be stored in on-
chip memory so that instruction fetches do not require
access to external memory. Accordingly, the external
memory bandwidth is exclusively available to the bit-
stream copying process. More specifically, the proces-
sor cores of an XC2VP30FF896-6 can be clocked at up
to 350 MHz. In the experimental system, the external
DDR-SDRAM is clocked at 100 MHz and connected by
a 32 bit data bus. These figures indicate that is quite
feasible to transfer 8 bit words to the ICAP at a rate
of 50 MHz which is the maximum frequency allowed
for configuration. Compared to a solution involving a
second PLB master besides the PowerPCs, the overall
complexity of the system is significantly reduced.

6. Application Scenario

The current focus of applying DynaCORE is set on
stream-based networking applications. These applica-
tions demand a huge variety of different algorithms
which can hardly be supported by a single static device.
In order to support networking applications such as
edge router functionalities, e.g., packet filtering for fire-
walls or network intrusion detection systems, establish-
ing VPNs, content-based switching, etc., DynaCORE
is attached to an NP. The NP allows an appropriate in-
tegration of DynaCORE because of its flexible software
programmability.

Internet

Figure 6. VPN configuration example

A suitable scenario for DynaCORE is a VPN to con-
nect at least two separated local area networks (LANS)
and/or other spread VPN participants. VPNs usually
encrypt their packet payload to ensure security and
frequently compress it to reduce the amount of data.
The need for compression is generally motivated using

strongly limited carriers such as wireless technologies.
Figure 6 shows a feasible configuration. Two LANSs
are combined to a VPN using an edge-to-edge tunnel
with encryption so that any internal VPN connection
is passed through this tunnel. Additionally, a mobile
host with a probably low-bandwidth connection is in-
corporated into the VPN by an end-to-edge tunnel with
encryption and compression. DynaCORE is applied at
the edge routers to perform the deep-packet processing
of these applications. The solid line shows the con-
nection of the VPN terminals, whereas the dashed line
indicates the internal LAN link to the destination. In
detail, the en-/decryption for both types of connec-
tion is performed as well as the compression for the
mobile-host connection. The internal set-up of Dy-
naCORE highly depends on the traffic volume. It is
reasonable to assume that the edge-to-edge tunnel is
more frequently used than the end-to-edge connection.
Moreover, it is assumed that both connections use the
same cryptography algorithm, e.g. 3DES, with differ-
ent keys. So, including the figures of Section 2 three
components may be installed. Two 3DES cores and a
compression core would fit this scenario. Note that the
load distribution between these two 3DES cores can-
not be uniform. Because of the different keys, one core
might deal with two keys. Each key exchange costs
a couple of cycles so that its performance falls off in
comparison to the other. Thus, less packets will be
forwarded to key-exchanging core.

Current edge-router technologies such as the router
extension Encryption Services PIC [5] of Juniper Net-
works support loads of VPN tunnels and deliver rea-
sonable performance. Nevertheless, the system inte-
gration is limited to appropriate router systems and
cryptography algorithms are fixed. Therefore, the flex-
ibility degree is improvable and demands more flexible
stream-processing architectures.

7. Summary

Network applications span a very agile field of com-
puting tasks. Current technologies achieve their lim-
its to fulfil all requirements. Network processors lack
high-performance deep packet processing capabilities
whereas pure hardware solutions cannot cope with
changes in the field. Architectural features of Dyna-
CORE presented here apply run-time reconfigurabil-
ity to close this gap. The ability to compete with the
bandwidth required bases on the NoC communication
structure. The advantage of high bandwidth prevails
over the latency that is included in switched networks.
Basic NoC components are switches and HA interfaces,
complete HAs are built by attaching standard IP cores

to the generic HA interface. Supervised by the recon-
figuration manager the reconfiguration process with a
changing NoC topology is described. The protocol fea-
tures, in particular the layers, are emphasised in this
context. Moreover, the system’s feasibility is demon-
strated by describing the crucial implementation de-
tails on a partially reconfigurable FPGA with embed-
ded processor cores, the Xilinx Virtex-II Pro.

8. Acknowledgement

This work was funded in part by the German Re-
search Foundation (DFG) within priority programme
1148 under grant reference Ma 1412/5.

References

[1] C. Albrecht, J. Foag, R. Koch, and E. Maehle. Dy-
naCORE — a dynamically reconfigurable coprocessor
architecture for network processors. In Proc. of the
Euromicro Conference on Parallel, Distributed and

Network-Centric Processing 2006, Feb. 2006.
[2] C. Albrecht, R. Koch, and T. Pionteck. On the design

of a loosely-coupled run-time reconfigurable network
coprocessor. In Proc. of the Workshop on Media and
Streaming Processors 2005 (MSP-7), Nov. 2005.

[3] P. Butel, G. Habay, and A. Rachet. Managing Par-
tial Dynamic Reconfiguration in Virtex-II Pro FPGAs.
Xcell Journal, 50:32-37, Aug. 2004.

[4] Y. Fei, J. Jones, K. Lakkas, and Y. Zheng. Measure-
ment of the Usage of Several Secure Internet Proto-
cols from Internet Traces. Student Project, Dept. of
Computer Science and Engineering, UCSD, CA, USA,
2002.

[5] Juniper Networks Inc., 1194 North Mathilda Avenue,

Sunnyvale, CA 94089 USA. Encryption Services (ES)

PIC, Nov. 2004.
[6] A. Mello, L. Moller, N. Calazans, and F. Moraes.

MultiNoC: A multiprocessing system enabled by a net-
work on chip. In DATE ’05: Proc. of the conference on
Design, Automation and Test in Europe, pages 234—

239, Washington, DC, USA, 2005.
[7] R. Soares, I. S. Silva, and A. Azevedo. When reconfig-

urable architecture meets network-on-chip. In SBCCI
’04: Proc. of the 17th symposium on Integrated cir-
cuits and system design, pages 216-221, New York,

NY, USA, 2004. ACM Press.
[8] Sprint Corporation. IP Monitoring Project. URL:

http://ipmon.sprint.com/, 2001-2004.
[9] Xilinx, Inc. Virtez-II Pro and Virtex-1II Pro X FPGA

User Guide, Mar. 2005.
[10] H. Zimmer and A. Jantsch. A fault model notation

and error-control scheme for switch-to-switch buses in
a network-on-chip. In CODES+ISSS °03: Proc. of
the 1st IEEE/ACM/IFIP int’l conference on Hard-
ware/software codesign and system synthesis, pages
188-193, New York, NY, USA, 2003. ACM Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

