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Abstract 

In this paper, we present a dynamically reconfigurable 
cache architecture using adaptive block allocation policy 
analyzed by means of simulation. Our main objectives 
are: to propose a reconfigurable cache architecture and 
to propose, implement and analyze the performance of an 
adaptive cache block allocation policy. First, we present a 
proposal of the reconfigurable cache architecture that can 
adapt according to the workload. Then we present our 
adaptive policy and do some performance tests comparing 
our cache architecture with some set associative 
configurations. In these tests, we use some traces from 
BYU Trace Distribution Center of SPEC 2000 
Benchmark. Finally, we analyze the results based on some 
metrics like cache miss ratio, response time, etc.  

1. Introduction 

An ideal memory for a computer system would have 
an infinite size and be extremely fast, that is, access time 
equal to zero and infinite bandwidth, but generally 
resources are limited. Thus, caches are designed to create 
the illusion to the processor of a big and fast memory [5]. 

The design of a cache is an optimization problem, like 
any computer design. This optimization is mainly related 
with the maximization of the hit ratio and the 
minimization of the access time [10]. Considering the 
constraints involved in the problem and these desired 
aspects, cache designers proposed three well-known cache 
organizations: direct mapped cache, fully associative 
cache and set associative cache. 

Each organization can be better for a specific 
workload, that is, a specific memory trace behavior. 
However, it is difficult to design a cache that has a high 
performance for all different workloads of a general 
purpose processor. Thus, the designers choose cache 
organization/configuration that has a good performance 
for the most part of workloads or for the most used ones. 
Nevertheless, the ideal design must be optimized for all 

workloads. As it is not possible, an alternative is to adapt 
the cache organization to the workload, reconfiguring the 
cache or a part of it dynamically according to the executed 
workload characteristics [1]. 

In this work, we present a cache optimization based in 
the associativity. So, our reconfigurable cache architecture 
allows changing the set associativity dynamically 
reconfiguring itself. To perform cache reconfiguration, we 
developed an adaptive cache block allocation. The 
reconfigurable cache architecture allows other policies to 
be implemented, but in this paper we will describe only an 
adaptive cache block allocation policy based on set 
miss/hit and number of accesses. To verify it, we used 
simulation, because it appears as a less expensive (cost) 
alternative than cache implementation in hardware. 
Moreover, simulation allows detailed measurements and 
flexible configurations. It is also possible to determine 
workloads with desired characteristics [12]. 

Our main objectives in this article are: to propose a 
dynamically reconfigurable cache architecture and to 
propose, implement and analyze the performance of an 
adaptive cache block allocation policy. Our main goals 
are: the proposal of a dynamically reconfigurable cache 
architecture; proposal, development and implementation 
of an adaptive cache block allocation policy. 

2. Related Works 

Some works deal with changes in cache memory after 
design, dynamically adapting the cache structure or 
organization according to the workload. In this paper, we 
present a reduced number of these works. Almost all of 
them use monitors [7] to get information from workloads 
execution. Thus, an algorithm that predicts the new cache 
configuration for a given workload uses this information.  

Considering spatial locality, there are works that 
present changes in the line/block [13] and in fetch [11] 
size. These approaches use the inherent spatial locality of 
applications and the memory traffic decreases. Lots of 
papers describe an cache associativity decreasing to 
minimize the cache energy dissipation while maintaining 
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high performance [9]. The Reactive-Associative Cache (r-
a cache) [2] provides flexible associativity. It has two 
types of positions: direct-mapped and set-associativity, the 
latter has a higher hit latency than the former. 

Our approach present some new ideas not found in 
these presented works, like different associativity between 
sets and reconfigurable associativity with the same access 
time for all sets and entries. 

3. Reconfigurable Cache Architecture 

Reconfigurable computing was being applied, 
especially in hardware, with reconfigurable devices, such 
as FPGAs (Field Programmable Gate Arrays), contain an 
array of computing elements whose behavior are 
determined by configuration bits [4]. Our group has been 
working on a reconfigurable cache that dynamically 
changes its behavior according to the executed workload 
[3] based on concepts of reconfigurable computing 
[4][11]. The goal of reconfigurable computing is to allow 
that a reconfigurable object has its structure changed to a 
nonpredicted state of its design time. It allows an object to 
adjust its behavior to a specific situation. So, this object 
becomes flexible, leading to a high performance compared 
to an object with a fixed behavior. 

In our reconfigurable cache architecture (represented 
by Figure 1), the configuration of cache’s behavior is 
determined by our adaptive cache block allocation policy. 
This policy has the parameters of system’s workload 
and/or cache performance metrics as an input and chooses, 
from possible solutions (configurations), one that will 
configure the cache behavior.  

Figure 1. Reconfigurable cache architecture
In a n-way set associative cache, there are several sets, 

each one with exactly n entries. When the processor 
decodes a memory instruction and a requisition is sent to 
the cache, part of the address is used to locate the cache 
set that must be accessed. Then n set entries tags are 
verified. Our reconfigurable cache works like a set 
associative organization but it does not have the constraint 
of all sets with n entries. It has an initial and a maximum 
associativity. The latter indicates the maximum set entries 
that can be simultaneously verified. During the cache 
execution, it can dynamically adapt to the workload, 

changing the number of entries of each set. This number 
can change from one to the maximum associativity 
(number of comparators). In spite of these changes, the 
cache size is always the same of cache design. To 
determine the new number of entries to each set, an 
adaptive cache block allocation policy was designed. 

4. Adaptive Block Allocation Policy 

A block allocation policy assigns blocks to cache sets 
according to some parameters and restrictions. In our 
policy, we consider two parameters: the number of 
accesses and number of cache misses per set. The number 
of accesses indicates the importance level of a set and 
number of cache misses indicates if the number of blocks 
is sufficient to support the demand. These parameters are 
collected for a slice of time, defined as quantum. In a 
quantum the parameters are collected only for a processor 
task, so we can consider that there is one quantum for 
each task. It is done because each task has a behavior 
different of other tasks. During each quantum of a process, 
a statistical table is filled. This table contains performance 
metrics: the number of accesses and cache misses per set 
during the quantum and their means.  

A number of accesses or cache misses is considered 
large if it is higher than or equal its respective mean of all 
the cache sets, otherwise it is considered small. An LL 
(large-large) set has a large number of misses and 
accesses, so we can consider that it is a highly accessed 
set with an insufficient number of block entries. Spite of 
having a small number of accesses, a LS (large-small) set 
has an insufficient number of block entries and can be 
improved. An SL (small-large) set has an ideal condition, 
because it is highly accessed and keeps a low cache miss 
ratio. A SS (small-small) set has a small number of 
accesses and misses, so it can give a block to a more 
important (large number of accesses) set or with a higher 
cache miss rate.  

The three restrictions to assign blocks to sets 
considered in our policy are: maximum associativity value 
(number of comparators), number of cache sets and 
number of cache block entries. The increase of 
associativity in cache implementation really improves 
performance, doing a parallel search in a set to find a 
specific block. However, as the cost to add comparators is 
very expensive, designers must evaluate the cost and 
benefits of a higher number of comparators. As a 
consequence of a limited number of comparators, the 
number of blocks in a set cannot exceed the associativity 
number. On the other hand, this number cannot be less 
than one block, to maintain the number of sets in cache. 
We consider that the number of cache sets is fixed, 
because its variation can invalidate past configurations 



(number of blocks per set), parameters (number of access 
and cache misses) generating re-allocation of blocks and 
to simplify our block allocation policy. 

Based on statistics obtained during the last quantum of 
a specific task, our adaptive policy allocates the blocks 
among the cache sets to improve performance (reduce the 
cache miss rate). Our adaptive policy takes blocks of SS 
sets (donors) and gives to the LL and LS sets (receptors). 
Although both LL and LS sets can receive block entries, 
the LL sets have higher priority, because high miss rate in 
high accessed sets can have a higher performance cost 
than a less accessed set. 

In the end of a quantum, our adaptive policy classifies 
all sets in one of the possible combinations. Then, it 
creates a queue of donors and receptors. In the receptors 
list, the LL sets come first followed by the LS sets. Then 
we match donors and receptors in a FCFS (first-come-
first-served) way, until one of the queues becomes empty. 
We decrease in one the associativity of donor set and 
increase in one the associativity of receptor set and then 
both are removed from lists. Then, the cache is 
reconfigured and the workload is executed. This operation 
can be done many times (quanta) as needed to reach the 
end of a task. In each end of quantum, the reconfiguration 
is performed. Beyond of reconfiguration overhead, we 
must consider the overhead imposed by the adaptive 
policy. To determine the total overhead  of reconfiguring a 
cache we have to consider some implementation choices 
as the architecture level on each the adaptive policy is 
implemented and the quantum size. 

5. Experimental Results 

To analyze the performance of our cache architecture 
using our adaptive block allocation policy, we developed a 
simulator implemented in Java and verified using known 
traces from Brigham Young University Trace Distribution 
Center [14] available on Internet. They have all memory 
references occurred in an execution, including operating 
system references. 

In our simulations, we used only data access 
(read/write) from the available traces. The memory traces 
used were six traces collected from SPEC benchmarks 
[15] running on Pentium III and Windows 2000 from 
BYU Trace Distribution Center [6]. The SPEC 
benchmarks used in the simulations and the number of 
data memory accesses used were: 256.bzip (3746058), 
186.crafty (3861895), 164.gzip (3647919), 254.gap 
(4058463), 197.parser (4099236) and 181.mcf (3874037). 

In these simulations, the computer configuration is 
based on an Athlon XP 2000 cache and primary memory 
times. These times are: primary memory latency equal to 
139ns; primary memory read time equals to 3.42ns; 

primary memory write time equals to 5.81ns; cache 
memory access time equals to 2ns; cache memory write 
time equals to 0.28ns and cache memory read time equals 
to 0.32ns. We used a 512MB primary memory, 64KB data 
cache memory, 32 bits word size and blocks with 4 words. 
Word and block size is always the same. The cache uses 
LRU (Less Recently Used) replacement policy and write-
back strategy. 2-way and 4-way set associative caches 
were simulated for performance comparison. The 
reconfigurable cache architecture simulated has as initial 
associativity equal to 2 and 4 comparators, indicating the 
maximum associativity of 4. The cache size (quantity of 
blocks that can be stored) used in all simulated 
configurations is the same one. As the number of blocks 
that can be stored in a cache is the same in all simulations, 
the number of sets is variable. The sets number of the 
reconfigurable cache is equal to a 2-way set associative 
cache (initial condition). 

For all simulations we considered a quantum of size 
equals to operational system quantum. Using this value, 
the overhead can be amortized, considering that the 
reconfiguration process is realized during the context 
switch, since the task processing has to be interrupted and 
some “new” task context must be loaded. 

Our reconfigurable cache with adaptive policy has a 
miss ratio smaller than a 2-way set associative cache 
organization. As a reconfigurable cache has 4 
comparators, it was expected. In 256.bzip and 164.gzip we 
found a difference between 2-way and 4-way set 
associative caches similar to the difference between 4-way 
set associative and reconfigurable caches (Figure 2). 
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Figure 2. Miss ratio of  executed workloads 
In traces 197.parser and 186.crafty the difference 

between set associative 4-way and reconfigurable caches 
miss ratio is small (Figure 2). Our cache has a miss ratio 
0.075% for 197.parser and 0.29% for 186.crafty smaller. 
In traces 181.mcf and 254.gap the difference between set 
associative 4-way and reconfigurable caches miss ratio is 
small. But our cache has a miss ratio higher than 4-way. 
As explained before, it is necessary to analyze this 
difference considering the cache memory area. This 



difference could be allowed in a design that cares about 
used memory area as an example. 

The adaptive policy works better on applications 
(workload) that access sets in a heterogeneous. So, the 
policy tries to balance the distribution of blocks, giving 
more blocks to sets more accessed and with more cache 
misses. Thus, the access conflicts in these sets are 
reduced. Workloads with different types of memory traces 
will enforce the policy to adapt the cache many times. The 
adaptive policy does not present good improvement with 
applications that access addresses in a homogeneous way. 
Because more accessed sets will steal blocks from less 
accessed but still high accessed sets. This will unbalance 
the distribution of blocks among the sets and can decrease 
performance. 
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Figure 3. Response time of gzip trace 
A miss ratio decreasing improves the workload 

response time (a lower response time). As an example, 
Figure 3 represents the 164.gzip response time for the 
simulated architectures. 

6. Conclusions 

In this work, we presented a reconfigurable cache 
architecture and an adaptive cache block allocation policy 
analyzed by means of simulation. So, we used a real 
computer (memories size and times) configuration to 
measure the response time and miss ratio from execution 
of real memory traces. We proposed, implemented and 
tested the adaptive policy using traces from BYU Trace 
Distribution Center (workload). Finally, we compared the 
execution of classic cache organizations (set associative) 
against our reconfigurable cache with the adaptive block 
allocation policy through some metrics. So, we concluded 
that the simple adaptive policy can find best cache 
configurations, decreasing significantly miss ratio and 
response time. In spite of this, the policy could work 
improperly on some applications that access memory sets 
in a homogeneous way. In this case, the policy could not 
improve the performance, but with other policies, the 
reconfigurable cache could reach better performance than 
a fixed cache. 

Some improvements on our reconfigurable cache 
architecture and adaptive policy are: adaptation based on 
other cache parameters like block size etc; avoidance of 
adaptation on application with homogenous memory 
accesses. 

Our main contributions described in this article are: the 
proposal of a dynamically reconfigurable cache 
architecture; proposal, development and implementation 
of an adaptive cache block allocation policy. 

As future works, we remark: test and verification of 
multilevel caches; improvement of the adaptive policy; 
implementation of new adaptive policies. 
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