
Dynamically Reconfigurable Cache Architecture Using Adaptive Block Allocation

Policy

Milene B. Carvalho, Luís F. W. Góes, Carlos A. P. S. Martins
Computational and Digital Systems Laboratory (LSDC)

Pontifical Catholic University of Minas Gerais - Belo Horizonte, Brazil
milene@ieee.org, lfwgoes@yahoo.com.br, capsm@pucminas.br

Abstract

In this paper, we present a dynamically reconfigurable
cache architecture using adaptive block allocation policy
analyzed by means of simulation. Our main objectives
are: to propose a reconfigurable cache architecture and
to propose, implement and analyze the performance of an
adaptive cache block allocation policy. First, we present a
proposal of the reconfigurable cache architecture that can
adapt according to the workload. Then we present our
adaptive policy and do some performance tests comparing
our cache architecture with some set associative
configurations. In these tests, we use some traces from
BYU Trace Distribution Center of SPEC 2000
Benchmark. Finally, we analyze the results based on some
metrics like cache miss ratio, response time, etc.

1. Introduction

An ideal memory for a computer system would have
an infinite size and be extremely fast, that is, access time
equal to zero and infinite bandwidth, but generally
resources are limited. Thus, caches are designed to create
the illusion to the processor of a big and fast memory [5].

The design of a cache is an optimization problem, like
any computer design. This optimization is mainly related
with the maximization of the hit ratio and the
minimization of the access time [10]. Considering the
constraints involved in the problem and these desired
aspects, cache designers proposed three well-known cache
organizations: direct mapped cache, fully associative
cache and set associative cache.

Each organization can be better for a specific
workload, that is, a specific memory trace behavior.
However, it is difficult to design a cache that has a high
performance for all different workloads of a general
purpose processor. Thus, the designers choose cache
organization/configuration that has a good performance
for the most part of workloads or for the most used ones.
Nevertheless, the ideal design must be optimized for all

workloads. As it is not possible, an alternative is to adapt
the cache organization to the workload, reconfiguring the
cache or a part of it dynamically according to the executed
workload characteristics [1].

In this work, we present a cache optimization based in
the associativity. So, our reconfigurable cache architecture
allows changing the set associativity dynamically
reconfiguring itself. To perform cache reconfiguration, we
developed an adaptive cache block allocation. The
reconfigurable cache architecture allows other policies to
be implemented, but in this paper we will describe only an
adaptive cache block allocation policy based on set
miss/hit and number of accesses. To verify it, we used
simulation, because it appears as a less expensive (cost)
alternative than cache implementation in hardware.
Moreover, simulation allows detailed measurements and
flexible configurations. It is also possible to determine
workloads with desired characteristics [12].

Our main objectives in this article are: to propose a
dynamically reconfigurable cache architecture and to
propose, implement and analyze the performance of an
adaptive cache block allocation policy. Our main goals
are: the proposal of a dynamically reconfigurable cache
architecture; proposal, development and implementation
of an adaptive cache block allocation policy.

2. Related Works

Some works deal with changes in cache memory after
design, dynamically adapting the cache structure or
organization according to the workload. In this paper, we
present a reduced number of these works. Almost all of
them use monitors [7] to get information from workloads
execution. Thus, an algorithm that predicts the new cache
configuration for a given workload uses this information.

Considering spatial locality, there are works that
present changes in the line/block [13] and in fetch [11]
size. These approaches use the inherent spatial locality of
applications and the memory traffic decreases. Lots of
papers describe an cache associativity decreasing to
minimize the cache energy dissipation while maintaining

1-4244-0054-6/06/$20.00 ©2006 IEEE

high performance [9]. The Reactive-Associative Cache (r-
a cache) [2] provides flexible associativity. It has two
types of positions: direct-mapped and set-associativity, the
latter has a higher hit latency than the former.

Our approach present some new ideas not found in
these presented works, like different associativity between
sets and reconfigurable associativity with the same access
time for all sets and entries.

3. Reconfigurable Cache Architecture

Reconfigurable computing was being applied,
especially in hardware, with reconfigurable devices, such
as FPGAs (Field Programmable Gate Arrays), contain an
array of computing elements whose behavior are
determined by configuration bits [4]. Our group has been
working on a reconfigurable cache that dynamically
changes its behavior according to the executed workload
[3] based on concepts of reconfigurable computing
[4][11]. The goal of reconfigurable computing is to allow
that a reconfigurable object has its structure changed to a
nonpredicted state of its design time. It allows an object to
adjust its behavior to a specific situation. So, this object
becomes flexible, leading to a high performance compared
to an object with a fixed behavior.

In our reconfigurable cache architecture (represented
by Figure 1), the configuration of cache’s behavior is
determined by our adaptive cache block allocation policy.
This policy has the parameters of system’s workload
and/or cache performance metrics as an input and chooses,
from possible solutions (configurations), one that will
configure the cache behavior.

Figure 1. Reconfigurable cache architecture
In a n-way set associative cache, there are several sets,

each one with exactly n entries. When the processor
decodes a memory instruction and a requisition is sent to
the cache, part of the address is used to locate the cache
set that must be accessed. Then n set entries tags are
verified. Our reconfigurable cache works like a set
associative organization but it does not have the constraint
of all sets with n entries. It has an initial and a maximum
associativity. The latter indicates the maximum set entries
that can be simultaneously verified. During the cache
execution, it can dynamically adapt to the workload,

changing the number of entries of each set. This number
can change from one to the maximum associativity
(number of comparators). In spite of these changes, the
cache size is always the same of cache design. To
determine the new number of entries to each set, an
adaptive cache block allocation policy was designed.

4. Adaptive Block Allocation Policy

A block allocation policy assigns blocks to cache sets
according to some parameters and restrictions. In our
policy, we consider two parameters: the number of
accesses and number of cache misses per set. The number
of accesses indicates the importance level of a set and
number of cache misses indicates if the number of blocks
is sufficient to support the demand. These parameters are
collected for a slice of time, defined as quantum. In a
quantum the parameters are collected only for a processor
task, so we can consider that there is one quantum for
each task. It is done because each task has a behavior
different of other tasks. During each quantum of a process,
a statistical table is filled. This table contains performance
metrics: the number of accesses and cache misses per set
during the quantum and their means.

A number of accesses or cache misses is considered
large if it is higher than or equal its respective mean of all
the cache sets, otherwise it is considered small. An LL
(large-large) set has a large number of misses and
accesses, so we can consider that it is a highly accessed
set with an insufficient number of block entries. Spite of
having a small number of accesses, a LS (large-small) set
has an insufficient number of block entries and can be
improved. An SL (small-large) set has an ideal condition,
because it is highly accessed and keeps a low cache miss
ratio. A SS (small-small) set has a small number of
accesses and misses, so it can give a block to a more
important (large number of accesses) set or with a higher
cache miss rate.

The three restrictions to assign blocks to sets
considered in our policy are: maximum associativity value
(number of comparators), number of cache sets and
number of cache block entries. The increase of
associativity in cache implementation really improves
performance, doing a parallel search in a set to find a
specific block. However, as the cost to add comparators is
very expensive, designers must evaluate the cost and
benefits of a higher number of comparators. As a
consequence of a limited number of comparators, the
number of blocks in a set cannot exceed the associativity
number. On the other hand, this number cannot be less
than one block, to maintain the number of sets in cache.
We consider that the number of cache sets is fixed,
because its variation can invalidate past configurations

(number of blocks per set), parameters (number of access
and cache misses) generating re-allocation of blocks and
to simplify our block allocation policy.

Based on statistics obtained during the last quantum of
a specific task, our adaptive policy allocates the blocks
among the cache sets to improve performance (reduce the
cache miss rate). Our adaptive policy takes blocks of SS
sets (donors) and gives to the LL and LS sets (receptors).
Although both LL and LS sets can receive block entries,
the LL sets have higher priority, because high miss rate in
high accessed sets can have a higher performance cost
than a less accessed set.

In the end of a quantum, our adaptive policy classifies
all sets in one of the possible combinations. Then, it
creates a queue of donors and receptors. In the receptors
list, the LL sets come first followed by the LS sets. Then
we match donors and receptors in a FCFS (first-come-
first-served) way, until one of the queues becomes empty.
We decrease in one the associativity of donor set and
increase in one the associativity of receptor set and then
both are removed from lists. Then, the cache is
reconfigured and the workload is executed. This operation
can be done many times (quanta) as needed to reach the
end of a task. In each end of quantum, the reconfiguration
is performed. Beyond of reconfiguration overhead, we
must consider the overhead imposed by the adaptive
policy. To determine the total overhead of reconfiguring a
cache we have to consider some implementation choices
as the architecture level on each the adaptive policy is
implemented and the quantum size.

5. Experimental Results

To analyze the performance of our cache architecture
using our adaptive block allocation policy, we developed a
simulator implemented in Java and verified using known
traces from Brigham Young University Trace Distribution
Center [14] available on Internet. They have all memory
references occurred in an execution, including operating
system references.

In our simulations, we used only data access
(read/write) from the available traces. The memory traces
used were six traces collected from SPEC benchmarks
[15] running on Pentium III and Windows 2000 from
BYU Trace Distribution Center [6]. The SPEC
benchmarks used in the simulations and the number of
data memory accesses used were: 256.bzip (3746058),
186.crafty (3861895), 164.gzip (3647919), 254.gap
(4058463), 197.parser (4099236) and 181.mcf (3874037).

In these simulations, the computer configuration is
based on an Athlon XP 2000 cache and primary memory
times. These times are: primary memory latency equal to
139ns; primary memory read time equals to 3.42ns;

primary memory write time equals to 5.81ns; cache
memory access time equals to 2ns; cache memory write
time equals to 0.28ns and cache memory read time equals
to 0.32ns. We used a 512MB primary memory, 64KB data
cache memory, 32 bits word size and blocks with 4 words.
Word and block size is always the same. The cache uses
LRU (Less Recently Used) replacement policy and write-
back strategy. 2-way and 4-way set associative caches
were simulated for performance comparison. The
reconfigurable cache architecture simulated has as initial
associativity equal to 2 and 4 comparators, indicating the
maximum associativity of 4. The cache size (quantity of
blocks that can be stored) used in all simulated
configurations is the same one. As the number of blocks
that can be stored in a cache is the same in all simulations,
the number of sets is variable. The sets number of the
reconfigurable cache is equal to a 2-way set associative
cache (initial condition).

For all simulations we considered a quantum of size
equals to operational system quantum. Using this value,
the overhead can be amortized, considering that the
reconfiguration process is realized during the context
switch, since the task processing has to be interrupted and
some “new” task context must be loaded.

Our reconfigurable cache with adaptive policy has a
miss ratio smaller than a 2-way set associative cache
organization. As a reconfigurable cache has 4
comparators, it was expected. In 256.bzip and 164.gzip we
found a difference between 2-way and 4-way set
associative caches similar to the difference between 4-way
set associative and reconfigurable caches (Figure 2).

Miss Ratio x Workload

0.15

0.20

0.25

0.30

0.35

0.40

0.45

b
z
ip

g
z
ip

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
a
p

Workload

M
is

s
 R

a
ti

o

2-Way

4-Way

Adaptive

Figure 2. Miss ratio of executed workloads
In traces 197.parser and 186.crafty the difference

between set associative 4-way and reconfigurable caches
miss ratio is small (Figure 2). Our cache has a miss ratio
0.075% for 197.parser and 0.29% for 186.crafty smaller.
In traces 181.mcf and 254.gap the difference between set
associative 4-way and reconfigurable caches miss ratio is
small. But our cache has a miss ratio higher than 4-way.
As explained before, it is necessary to analyze this
difference considering the cache memory area. This

difference could be allowed in a design that cares about
used memory area as an example.

The adaptive policy works better on applications
(workload) that access sets in a heterogeneous. So, the
policy tries to balance the distribution of blocks, giving
more blocks to sets more accessed and with more cache
misses. Thus, the access conflicts in these sets are
reduced. Workloads with different types of memory traces
will enforce the policy to adapt the cache many times. The
adaptive policy does not present good improvement with
applications that access addresses in a homogeneous way.
Because more accessed sets will steal blocks from less
accessed but still high accessed sets. This will unbalance
the distribution of blocks among the sets and can decrease
performance.

Gzip Response Time

2.80E-01

3.00E-01

3.20E-01

3.40E-01

3.60E-01

3.80E-01

4.00E-01

SA 2-way SA 4-way Adaptive

Cache organization

R
e

s
p

o
n

s
e
 t

im
e
 (

s
)

gzip

Figure 3. Response time of gzip trace
A miss ratio decreasing improves the workload

response time (a lower response time). As an example,
Figure 3 represents the 164.gzip response time for the
simulated architectures.

6. Conclusions

In this work, we presented a reconfigurable cache
architecture and an adaptive cache block allocation policy
analyzed by means of simulation. So, we used a real
computer (memories size and times) configuration to
measure the response time and miss ratio from execution
of real memory traces. We proposed, implemented and
tested the adaptive policy using traces from BYU Trace
Distribution Center (workload). Finally, we compared the
execution of classic cache organizations (set associative)
against our reconfigurable cache with the adaptive block
allocation policy through some metrics. So, we concluded
that the simple adaptive policy can find best cache
configurations, decreasing significantly miss ratio and
response time. In spite of this, the policy could work
improperly on some applications that access memory sets
in a homogeneous way. In this case, the policy could not
improve the performance, but with other policies, the
reconfigurable cache could reach better performance than
a fixed cache.

Some improvements on our reconfigurable cache
architecture and adaptive policy are: adaptation based on
other cache parameters like block size etc; avoidance of
adaptation on application with homogenous memory
accesses.

Our main contributions described in this article are: the
proposal of a dynamically reconfigurable cache
architecture; proposal, development and implementation
of an adaptive cache block allocation policy.

As future works, we remark: test and verification of
multilevel caches; improvement of the adaptive policy;
implementation of new adaptive policies.

7. References

[1] D. H, Albonesi. Et al. Dynamically tuning processor
resources with adaptive processing. IEEE Computer,
12(36):49-58, 2003.

[2] B. Batson, T. N. Vijaykumar. Reactive-associative caches,
Proceedings of IEEE International Conference on Parallel
Architectures and Compilation Techniques, pp. 49-60, 2001.

[3] M. B. Carvalho, C. A. P. S. Martins. Cache Architecture with
Reconfigurable Associativity, 5th WSCAD, pp. 50-57, 2004.
(in Portuguese)

[4] K. Compton, S. Hauck. Reconfigurable Computing: A
Survey of Systems and Software, ACM Computing Survey,
34(2):171-210, 2002.

[5] J. L. Hennessy, D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, 3th Edition, 2003.

[6] J.L. Henning. SPEC CPU2000: Measuring CPU Performance
in the New Millennium, IEEE Computer, 7(33): 28-35,2000.

[7] T. L. Johnson, D. A. Connors and W. W. Hwu. Runtime
adaptive cache management, Proceedings of the 31th

HICSS,7(6-9): 774-775, 1998.
[8] C. Martins, E. Ordonez, J. Corrêa and M. Carvalho.

Reconfigurable Computing: concepts, tendencies and
application. In: XXII JAI, SBC2003, Vol. 2, pp. 339 – 388
2003. (In Portuguese)

[9] M. D. Powell, A. Agarwall, T. N. Vijaykumar, B. Falsafi and
K. Roy. Reducing set-associative cache energy via way-
prediction and selective direct-mapping, Proceedings of 34th
ACM/IEEE International Symposium on Microarchitecture,
pp. 54-65, 2001.

[10] A. J. Smith. Cache Memories, ACM Computing Surveys,
14(3):473-530, 1982.

[11] W. Tang, A. Veidenbaum, A. Nicolau and R. Gupta. Cache
With Adaptive Fetch Size, Technical Report ICS-00-16 of
University of California, Irvine, April 2000.

[12] R. A. Uhlig, T. N. Mudge. Trace-driven memory
simulation: a survey, ACM Computing Surveys, 29(2):128-
170, June 1997.

[13] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, X. Ji.
Adapting Cache Line Size to Application Behavior,
Proceedings of the 13th ACM ICS, pp. 145-154, 1999.

[14] Brigham Young University Trace Distribution Website:
http://traces.byu.edu/

[15] SPEC - Standard Performance Evaluation Corporation
Website: http://www.spec.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

