An Entropy-Based Algorithm for Time-Driven Software
Instrumentation in Parallel Systems

Ahmet Ozmen

Dumlupinar University
Dept. of Electrical and Electronics Engineering

Tavsanl Yolu 12 Km., Kiitahya 43100 Turkey
ozmen@dumlupinar.edu.tr

Abstract

While monitoring, instrumented long running par-
allel applications generate huge amount of instrumen-
tation data. Processing and storing this data incurs
overhead, and perturbs the execution. Techniques that
eliminates unnecessary instrumentation data and lower
the intrusion without loosing any performance informa-
tion is valuable to tool developers. This paper presents
a new algorithm for software instrumentation to mea-
sure the amount of information content of instrumen-
tation data to be collected. The algorithm is based on
entropy concept introduced in information theory, and
it makes selective data collection for a time-driven soft-
ware monitoring system possible.

1. Introduction

Performance evaluation and debugging of parallel
systems rely on monitoring run-time behavior. Moni-
toring requires hardware or software instrumentation
to capture run-time data from the concurrent pro-
cesses. Flexibility and portability make software in-
strumentation a widely used alternative. However, it is
intrusive because instrumentation introduces overhead
that perturbs the behavior of the original programs.
Static configuration of instrumentation, although sim-
ple, is not in general efficient in terms of information
gathered to overhead introduced. The problem is more
severe for long running applications, servers and oper-
ating systems.

Last decade many parallel monitoring systems have
been developed using different instrumentation tech-
niques; including on-the-fly instrumentation [10], li-
brary instrumentation [4] and source-to-source instru-

1-4244-0054-6/06/$20.00 ©2006 IEEE

mentation [16, 1]. An important work that relates to
our work is Paradyn [10], which has been developed
for monitoring long running parallel applications. It
collects data using dynamic instrumentation technique
and adjustable sampling rate so as to reduce the perfor-
mance data amount. The time- driven control changes
the sampling rate using a hypothesis set of performance
problems. If incoming data shows a problematic pat-
tern then sampling rate is increased to get more data
and a better vision about the problem.

XPVM and AIMS are other parallel monitoring sys-
tems that employ event driven data collection mech-
anisms for PVM and MPI applications [4, 16]. Inter-
ested parts of an application are instrumented before
execution, e.g. sends, receives or function entries and
exits. When an instrumented application executes, it
generates performance data as a side effect. Provided
on-line or off-line tools consumes this data and generate
graphical outputs about the state and the performance
of the application.

Our research focus on low intrusion software instru-
mentation systems [13, 12]. This paper presents an al-
gorithm for time driven software instrumentation sys-
tems that maximizes the amount of information gained
via instrumentation while minimizing the amount of
overhead incurred due that instrumentation. Although
overhead can be measured with time, no techniques
have been introduced to measure the amount of infor-
mation in performance evaluation. The algorithm has
been developed using the entropy concept introduced
in the information theory to evaluate and quantify the
information content of the performance data.

The rest of the paper is organized as follows. Sec-
tion 2 presents background information about PVM,
software instrumentation, informativeness of perfor-
mance data and entropy definition. Section 3 describes

MODIFY
RUNNING
PROGRAM[10]

TARGET
SYSTEM
MODIFY MODIFY MODIFY

SOURCE COMPILER[3] EXECUTABLE[8]
PROGRAMI 161

MODIFY ==~~~ LIBRARIES
LIBRARY(4,15)

Instrument.
Data

! Compilation process

Executable

Standart

Input/Output

Figure 1. Software instrumentation on differ-
ent stages of compilation.

the algorithm, and Section 4 shows an example how
the algorithm can be used to reduce redundant perfor-
mance data.

2. Background
2.1. PVM: Parallel Virtual Machine

PVM is a software library package which provides
a virtual parallel environment for distributed message
passing programs using existing networked computers
when parallelism is advantageous [15]. PVM was devel-
oped by Oak Ridge National Laboratory in collabora-
tion with several universities, principal among them be-
ing the University of Tennessee at Knoxville and Emory
University. We have used PVM to test our algorithm.

2.2. Software Instrumentation

Performance information can only be obtained by
monitoring program execution via instrumentation. In
a software monitoring system, instances of software in-
strumentation are referred to as sensors. Software in-
strumentation may be inserted before, during or after
compilation as shown in Figure 1 [1, 3, 5, 8, 10, 11, 15,
16].

Instrumentation data is logged by a sensor if an
event of interest occurs. A sensor trigger policy may
either be event-driven or time-driven (these correspond
to tracing and sampling respectively) [6]. In an event-
driven policy, instrumentation data is collected syn-
chronously with the occurrence of an event, whereas
in a time-driven policy the data is collected asyn-
chronously. Instrumentation data is recorded as an
event record that includes information related to that
particular event; such as a time-stamp that shows when
the event occurred, a location-stamp that shows where
the event occurred, and additional data about the state

of the system. Software instrumentation can incur sub-
stantial overhead and redundant instrumentation can
be expensive.

2.3. Informativeness of a Performance Data

To reduce the intrusion, performance data elimi-
nation efforts take place in different phases; during
instrumentation or execution. Many instrumentation
tools allow user to select only some strategic points in
the application to reduce the performance data [4, 16].
Others employ dynamic algorithms that changes in-
strumentation to reduce the data while the application
is in execution [10].

We have focused on developing an algorithm based
on informativeness of performance data that will
change the data collection (instrumentation) dynami-
cally. However, we needed a measurable quality of that
property of a performance data, which is not known
yet. Almost all events that happen during an execu-
tion are known priori, however, the order in which they
occur is not known. This is because control-flow of
a program can not be inferred from a static analysis.
Since we do not know the program flow, it may still be
generating redundant data during execution (for exam-
ple; repeated program segment executions). From the
traces, it was clear that instances of performance data
do not contain equal amounts of information; many of
them are redundant. So, a redundant data is whether
(1) a data contain no information, which means causes
of an event are obvious and known by interested ob-
server, or (2) the information, of which data may con-
tain, can be extracted using previous data.

As a result, we started searching possible ways of
quantifying the informativeness of a performance data,
and ended up with the entropy definition in the infor-
mation theory.

2.4. The Entropy Definition

The concept of entropy is introduced as a measure
of uncertainty of a random variable in the information
theory [14]. The entropy, H, is defined in Equation 1,
where n is the number of possible events whose possi-
bilities of occurrence p;:

H= —sz- log(p:) (1)

Since Z?:l p; = 1, it can be shown that
0 < H < log(n). The units in which the entropy is
measured depend on the base of the logarithm used in

the definition. Bit and nats are used for base 2 and e
respectively.

The entropy H can also be interpreted as the average
amount of information that a message contains [7, 9].
Suppose there is a message which could be either a; or
as with probabilities p; = 1 and py = 0 respectively;
the entropy H is 0, which means the message contains
no new information. At the other extreme, suppose
p1L=Dp2 = % The entropy is then H = 1 bit. Receiving
the message clearly adds new information.

3. The Algorithm

The entropy concept can be used to evaluate infor-
mation content of instrumentation data. A link be-
tween parallel monitoring and the information theory
is set up with the following two statements:

e All the events that will occur during the execution
can be known priori, but the exact order is not
known.

e The uncertainty of events occurrence increases in-
formation content of its data.

We have slightly modified the original entropy defi-
nition to get it work in monitoring properly. There are
two concepts in the algorithm: A window that holds
a sequence of events that happened in the past, and a
probability of transition scheme that describes the pos-
sibility of an event sequence occurrence. An event in
the right most position of the window is called the most
recent event, and an event which has just occurred and
is not in the window is called the destination event.
Concerning a monitoring system: A destination event
represents an event to be decided either to be processed
(collected, time-stamped, forwarded) or not.

Transition probabilities: The transition scheme be-
tween events is shown in Figure 2. The circle on the
left represents a most recent event and the circles on
the right represent possible events at the destination.
The arcs between the circles show transitions both to a
same kind of event and to a different event with prob-
abilities v and 3 respectively, which are also known as
conditional probabilities.

If an event of interest occurs during program exe-
cution then it is more likely to occur again than those
of any other events due to locality of reference. The
conditional probabilities are assigned to the transitions
empirically based on the locality of reference. Any un-
expected event (such as sudden changes in a sequence)
with a very low probability will produce a big entropy
value, likewise an expected event sequence (occurrence
of similar events) at the destination will produce a

most recent destination
event o event
Pw O O

same event

other events

O

Figure 2. Trace transition diagram that shows
the transition probabilities between the most
recent event and destination events.

smaller value. Table 1 shows example empiric tran-
sition probabilities assigned based on repetition count
for a window size of three.

i« 1]
0 05 05
1 07 03
2 09 0.1

Table 1. Empiric o and 3 values based on lo-
cality of reference.

The window: The window holds events happened in
the past, and produces a probability of this sequence
pw based on Markov model [2]. The probability of a
windowed event sequence, p,,, is a product of each re-
peated event’s probability in the window. Repetition
is counted including the most recent event, however, if
a most recent event is different from the previous one,
then p,, is equal to the probability of only that most re-
cent event. For example, if we have the “AAAA” event
sequence in the window with probabilities pg = pa,
P1 = PoQ, P2 = p10a, p3 = paqig respectively, where
pa is the probability of event A to occur and as are
the transition probabilities, then p,, is equal to:

Pw = PoP1P2D3 (2)

The probabilities of all the events are calculated be-
fore execution. These events are extracted with an
analysis tool, and then each event is assigned with
equal amount of probability to occur which makes
Pevent = (1/total event count) assuming that all these
events will happen during execution.

The window size defines “how deep we want to look
at into the history of execution”, and larger window
sizes create more variations in entropy values. For ex-
ample, if the window size is one, then the output be-
comes bi-level since p,, = Py = Pevent 1S the same for

all the time for all the events. Hence, the output of
the algorithm for window size one depends only on the
transition probability.

However, for larger window sizes, the p,, changes
based on the history of execution. Then, the output
of the algorithm depends on both the history with p,,
and the current state of the transition. Hence, the
variation of the output increases with the window size
which gives a better measure about informativeness.
However, the larger the window size, the more over-
head incurs due to calculations. For example, a win-
dow size four produced acceptable results during the
experiments.

Quantification: The algorithm dynamically main-
tains a window that holds event history. At each it-
eration, the algorithm identifies both the most recent
and the destination event. The transition table is then
checked to determine which transitive edge to use (see
Equation 4). Then, the following formulas are used to
quantify how significance of an event.

S=Kpwh (3)
p— _ { ailog(es) if same event occurs,)
B Bi log(B;) otherwise.

where K is an arbitrary number for scaling, and p,,
windowed event sequence probability, h is an informa-
tion theoretic measurement of how abnormal it is the
next event to be different from the last event or remain
the same. The h is calculated with the Formula 4. A
flow chart of the algorithm is shown in the Figure 3.

An Ezample:

Let us assume that a set contains four events
{A, B, C, D} with probabilities to occur p; = 0.25 each,
and these events occur in a sequence shown in the Fig-
ure 4. The modified entropy values can be calculated
using a window (size of three) and transition proba-
bilities (shown in Table 1), for two different window
positions.

In the first window position, repetition count = 0,
thus P, = 0.25. The destination is different from
the most recent event so By must be used in Equa-
tion 4. Then, the informativeness of the event, S, can
be calculated as S = 0.0866 for K = 1. Similarly, for
the second window position; repetition count = 2,
P, = popip2 = 0.2530.520.7 and «s must be used in
the Equation 3, and S is calculated as S = 0.0006 for
K = 1. These meaningful values show that information
amount of an event sequence can be extracted.

‘ Initialize the window (set the window size) ‘

!

‘ Set o and B parameters ‘
[

‘ Calculate the new window probability ‘

pw = p0p1p2...pn

!

‘ Get the next event happened

Is the
next event same with

the last event in the
window ?

take P as transition
probability
Slide window one
forward Calculate S (see Formula 3 and 4)

Is S value
greater than or equal to
a threshold?

The event is unexpected. That means, it is
informative so create a performance data
for the event (fill out a data structure with
event id, timestamp, placestamp etc.)

Log the performance data locally or send it
to the central monitoring server

Is this the end of

execution?

Figure 3. A flow chart of the entropy algo-
rithm for monitoring.

most recent event
ABCDDDDDDCB...

¢ destination

Y
ABCDDDCB...
i

Figure 4. Example sequence and the window
in two different positions.

4. Using the Algorithm with Synthetic
Data

Time-driven instrumentation mechanisms are used
in profiling tools to collect the samples from multi-
ple processes. The data, then integrated in a central
place to show total behavior. The sampling interval in
nodes is usually set short enough to catch every impor-
tant event, and usually unwanted multiple samples are
taken from structures. However, the first and the last
data from a structure are the most informative sam-
ples and the rest reports the same event repeatedly.
The entropy-based algorithm can easily detect the first
and the last points.

Figure 5 shows a simple parallel program to test
our algorithm, in which a parent process spawns
the slave processes and sends initial parameters with
pvm_spawn() library call. Each process (master and
slaves) first receives its own data with pvm_recv()
call, does its own calculations in doCalc(), and
finally sends the results back to the parent with
pvm_send() call. In this example, there are eight
different functions executed; four of them are li-
brary calls: pvm_spawn(), pvm_send(), pvm_recv()
and pvmexit(). Entry and exit points of these
functions becomes interested events during execution.
They all are extracted during static analysis using
AIMS. Since these events are known to happen dur-
ing execution, an equal amount of probability to occur
is given to each of them.

Since we do not have an available time driven per-
formance tool, we instrumented this application with
AIMS, run it under PVM, and recorded the trace data.
Then, we created a sampling data train to test our al-
gorithm from the recorded trace data. We applied this
created sampling data to our algorithm and obtained
the entropy values shown in Figure 6. In the middle of
the figure, modified entropy values drop because sam-
ples come from repeating function foo(), which is not
a long running segment.

Figure 7 shows a hierarchical view of the execution
segments of above program. The vertical lines in the
figure show samples; some of which are solid meaning
a beginning of a new function, and the remaining are
dashed just to distinguish from the others. A conven-
tional profiler tool like gprof, collects whole samples
for a full trace, although samples shown with the solid
black lines were sufficient for profiling.

When compared, entropy values in Figure 6 and the
solid black lines in the Figure 7 show some similarities.
The samples pointed by the solid black lines in the Fig-
ure 7 get the maximum entropy values, and these values
can be used to control a data collection mechanism.

entropy value

main(){
if (parent)
for(i = 0; i < proc ; i++)
pvm_spawn(...);
else
pvm_recv(...);
doCalc();
pvm_recv(...);
pvm_exit () ;

}
doCalc() {
init();
for(i = 0; i < 4; i++) {
foo();
}
for(i = 0; i < proc; i++) {
if (me)
pvm_send(...);
else
pvm_recv(...);
+
}

foo() { /* procedure body */

Figure 5. A simple PVM program to test en-
tropy algorithm for performance data elimina-

tion

05

Entropy values for each sample
T

T T T
'demo2.ent’ —

15 20 25 30 35 40 45
sample

Figure 6. Entropy values of the execution in a
node. Entropy values drop dramatically when
the samples starts coming from the same

segment

staj

end

main

pavn pvmird(v

doCalc

]
3

PR exi

init ‘ foa ‘ ‘ foo

o

phfsent [J[pf fee

sarpiples

12 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 3233 34 35 36 37 38

39 40

Figure 7. Hierarchical view of execution segments: Solid lines show the most informative samples.

5 Conclusion

Time-driven instrumentation systems are preferred
for monitoring long running applications since it is pos-
sible to reduce the performance data amount by chang-
ing the sampling rate. In conventional time-driven
instrumentation systems the sampling rate is usually
fixed. If the sampling interval is set short, then a lot of
performance data is generated. Or, if the sampling in-
terval is set larger to reduce the data amount when the
program executes longer, then some important events
can be overlooked.

This paper presented an algorithm to solve this
dilemma by adjusting sampling interval of a time-
driven instrumentation system based on the informa-
tiveness of a performance data. A quantified value of
the informativeness gives another dimension to the per-
formance data which becomes an important parameter
to control its collection.

References

[1] V. Adve, J. Crummey, M. Anderson, K. Kennedy, J.-
C. Wang, and D. Reed. An integrated compilation
and performance analysis environment for parallel pro-
grams. In Proceedings of Supercomputing ’95.

G. Bolch, S. Greiner, H. de Meer, and K. Trivedi.
Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Ap-
plications. John Wiley and Sons, 1998.

Convex Computer Corporation. Conver CXpa Re-
frence, second edition edition, Dec. 1994.

A. Geist, , J. Kohl, and P. Papadopoulos. Visualiza-
tion, debugging, and performance in pvm. In Proceed-
ings of Visualization and Debugging Workshop, Oct.
94.

L. Harris and B. Miller. Practical analysis of stripped
binary code. In Workshop on Binary Instrumentation
and Applications (WBIA-05), Sept. 2005.

(6]

[11]

[12]

[13]

[14]

[15]

[16]

R. Hoffmann, R. Klar, B. Mohr, A. Quick, and
M. Siegle. Distributed performance methods, tools,
and applications. IEEE Transactions on Parallel and
Distributed Systems, 5(6):585-598, June 1994.

D. Jones. Elementary Information Theory. Oxford
University Press, 1979.

J. Larus. Abstract execution: A technique for effi-
ciently tracing programs. Software: Practice and Fx-
perience, 20(12):1241-1258, Dec. 1990.

J. Lim. Two Dimensional Signal and Image Process-
ing. Prentice-Hall Signal Processing Series, 1990.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth,
R. Irvin, K. Karavanic, K. Kunchithapadam, and
T. Newhall. The paradyn parallel performance mea-
surement tool. IEEE Computer, 28(11):37-46, Nov.
1995.

B. Miller, M. Clark, J. Hollingsworth, S. Kierstead,
S. Lim, and T. Torzewski. Ips2: The second gen-
eration of a parallel program measurement system.
IEEE Transactions on Parallel and Distributed Sys-
tems, 2(1):206-217, Apr. 1990.

A. Ozmen. A minimal overhead instrumentation sys-
tem. In Proceedings of The Fifteenth International
Symposium on Computer and Information Sciences,
(ISCIS XV), pages 102-110, Nov. 2000.

A. Ozmen and J. Lumpp. Dynamic configuration
of software instrumentation in parallel systems. In
Proceedings of The Twelfth International Symposium
on Computer and Information Sciences, (ISCIS XII),
Nov. 1997.

C. Shannon, W. Weaver, R. Blahut, and B. Hajek. The
Mathematical Theory of Communication. The Univer-
sity of Illinois Press - Urbana, 1999.

V. Sunderam. Pvm: A framework for parallel dis-
tributed computing. Concurrency, Practice and FExpe-
rience, 2(4):315-340, 1990.

J. Yan. Performance tuning with AIMS — an Au-
tomated Instrumentation and Monitoring System for
multicomputers. In Proceedings of the 27 th Hawaii
International Conference on System Sciences, pages
625-633, Jan. 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

