
Using Stochastic Petri Nets for Performance Modelling of

Application Servers

Fábio N. Souza1, Roberto D. Arteiro, Nelson S. Rosa, Paulo R. M. Maciel

Centro de Informática
Universidade Federal de Pernambuco

Caixa Postal 7851 – 50740-540 – PE – Brasil
{fns,rda,nsr,prmm}@cin.ufpe.br

Abstract

 Application servers have been widely adopted as
distributed infrastructure (or middleware) for developing
distributed systems. Current approaches for performance
evaluation of application servers have mainly
concentrated on the adoption of measurement techniques.
This paper, however, focuses on the use of simulation
techniques and presents an approach for performance
modelling and evaluation of application servers using
Petri nets. In order to illustrate how the proposed
approach may be applied, Petri net models of JBoss
application server are presented and their performance
results are compared with ones that have been measured.

1. Introduction

 Java 2 Platform, Enterprise Edition (J2EE) Specifica-
tion defines a standard platform for supporting the devel-
opment of distributed enterprise applications. Different
implementations of J2EE specification (referred to as
J2EE application servers) have been developed and are
widely used as middleware platform in the corporative
marketplace. Choosing the right implementation is a hard
task as it involves evaluating many aspects such as cost,
performance, scalability, flexibility and adaptability, ease
of use, and standards conformance. However, that choice
is usually focused on performance, since evaluating
middleware based on other qualities is too hard [14].
 Three different techniques can be used in performance
evaluations: measurement, analytical modelling and
simulation. The measurement approach has been widely
used in the evaluation of performance of application

servers. Cecchet [1] presents an analysis of the impact of
application and container architectures in the overall
performance of an Enterprise JavaBeans (EJB) system.
Commonwealth Scientific and Industrial Research
Organisation (CSIRO) [2] provides a detailed evaluation
and comparison of different application servers presenting
a qualitative analysis of its features and a quantitative
analysis based on performance and stress tests performed
using a stockbroking benchmark application. Koenev [6]
uses SPECjAppServer2004 benchmark to explore the ef-
fect of different configuration parameters in performance
of the JBoss Application Server (JBoss AS). Transaction
Processing Performance Council (TPC) [13] specifies TPC
Benchmark™ App (TPC-App), which is an application
server and web services benchmark. Nevertheless,
measurement techniques are very sensitive to variations in
environment parameters. That limitation can compromise
the accuracy of the results. Additionally, measurement
experiments require building and configuring a separate
environment. Costs associated with the necessary
equipments, tools and time can be very high.
 Analytic models can derive performance results quickly
providing valuable performance information without
having extra costs associated with the replication of the
real environment. Lladó [8] presents an analytical model,
based on queuing theory, which is suitable for
performance analysis of EJB systems. Koenev [5] uses
Non-Product-Form Queuing Networks to propose an
analytical model for an application server running the
SPECjAppServer2002 J2EE benchmark application. Liu
[7] proposes an approach to predict the performance of
applications running inside application servers at the
design level. This prediction is based on a Queuing
Network Model that is configured with parameters related
to the workload as well as to the application server itself.
However, analytical modelling requires so many
simplifications and assumptions that is difficult to obtain
accurate results [4]. Another problem concerning some
analytical modelling tools is known as the state-space

1 Supported by Banco Central do Brasil. The author hereby certifies that
the content presented is of his own responsibility.

1-4244-0054-6/06/$20.00 ©2006 IEEE

explosion, where the size of the model grows
exponentially and memory resources quickly run out.
 Once simulation models are built to run and not to be
solved, they can incorporate more details (less
assumptions) than analytical ones. So, those models can,
theoretically, be more flexible and come closer to reality.
Mc Guinness [11] presents a scalable simulation model of
a multi-server EJB system that can be calibrated with
parameters describing user interactions and server
information. The outcome includes average execution
time, throughput, and average CPU and I/O utilization.
However, complex simulation models usually require a lot
of time to execute. As each technique has its strengths and
weaknesses, it is usually recommended using more than
one of them to validate the performance results.
 The main objective of this paper is to propose an
approach to predict information about the performance of
application servers through simulation models developed
using Stochastic Petri Nets (SPNs). This formalism was
chosen because it supports system performance
evaluation, whilst it allows a natural modelling of various
services offered by application servers (e.g. instance pool).
 The remainder of this paper is organized as follows.
Theory of Stochastic Petri Nets and basic concepts of
application servers are briefly presented in Section 2.
Section 3 presents the Petri net modelling approach used.
Next, Section 4 presents the validation of the developed
models using simulation and measurement techniques.
Finally, concluding remarks and future work are presented
in Section 5.

2. Background

2.1. Stochastic Petri Nets

 Petri nets are a family of formal specification
techniques that allows a graphical, mathematical
representation and has powerful methods, which enable
designers to perform qualitative and quantitative analysis.
Place/transition Petri nets are used to model systems from
a logical point of view, giving no formal attention to
temporal relations and constraints. Generalised and
Stochastic Petri Net (GSPN) [9] is one of the most
extensively adopted classes of stochastic Petri nets. A
GSPN is defined as a tuple (P, T, I, O, H, G, M0, W,)
where: P is a set of places; T is a set of transitions; I, O
and H are relations describing pre-conditions, post-
conditions, and inhibition conditions, respectively; G is an
enabling function that, given an immediate transition and a
model state, determines if the transition is enabled or not;
M0 is a mapping from the set of places to the natural
numbers describing the model initial state; W associates to
each timed transition a non-negative real number,
depicting the respective exponential transition delay (or
rate), and to each immediate transition a non-negative real

number representing its weight; and associates to each
immediate transition a natural number that represents its
priority level.
 The set of places represents resources, local states and
system variables. The set of transitions represents actions.
This set is divided into two subsets: the set of immediate
transitions that depicts actions that are irrelevant under the
performance point of view; and the set of timed
transitions, which have priority lower than immediate
ones.
 Deterministic and Stochastic Petri Nets (DSPNs) [10]
are an extension to GSPN that includes the possibility of
modelling transitions associated with a constant delay
(deterministic transitions). A DSPN is a tuple (P, T, I, O,
H, G, M0, , W,), where P, T, I, O, H, G, Mo, and are
defined as in GSPN. The function associates a non-
negative real number to each timed transition, depicting
the respective mean firing time (delay), while the function
W associates a non-negative real number representing its
weight to each immediate transition.

2.2. J2EE and Enterprise Java Beans

 The core of J2EE specification is the definition of a
framework for the development of server-side components
known as Enterprise JavaBeans. EJB components (beans)
are hosted in a runtime environment, named EJB
container, which takes responsibility for managing their
life cycle, managing resources in their behalf and
providing them with predefined system-level services such
as transaction management and security. To provide these
services in a transparent way, an EJB container acts as a
proxy between clients and beans.
 One of the services provided by EJB containers is the
instance pooling. When an EJB container intercepts a
request, it may create a new bean instance to process that
request. Otherwise, if there is an already created instance
in memory, it may be better to reuse it, reducing the
memory and time necessary to process the request.
Sometimes, an EJB container may also reduce allocated
resources by destroying bean instances that have not been
used anymore. The actual mechanism used to instance
pooling is not part of EJB specification, but depends on
the EJB container implementation.

2.3. EJB in JBOSS

 In JBoss architecture [3], a client application has access
to an EJB component through a client-side proxy, which
exposes the same methods that are implemented by the
component itself. Each client-side proxy has a chain of
interceptors. When a client application invokes one of the
methods exposed by the proxy, it collects information
about the invoked method in an object named invocation
and delivers that object to the first interceptor in its chain.

This interceptor gathers some information about the
context in which this invocation occurred (e.g. information
about the user doing the request), adds that information to
the invocation object and forwards it to the next
interceptor in the chain. The last interceptor is in charge of
dispatching the invocation object to the invoker proxy,
which marshalls and forwards it through the network.
 At the server side, an EJB container is created when an
EJB component is deployed in JBoss application server.
This container is associated with a server-side component
named invoker whose role is to receive marshalled
invocations, unmarshall and forward them to
corresponding containers.
 As any other EJB container, that one offered by JBoss
is responsible for managing bean instances and providing
them with predefined services. However, instead of
implementing services itself, the container has a chain of
pluggable server-side interceptors, each responsible for
implementing a specific service (see Figure 1). When an
EJB container receives an invocation object, it forwards
that invocation to the first interceptor in its chain. This
interceptor uses the information contained in the
invocation object to perform the corresponding service
and forwards the invocation to the next interceptor.
Eventually, the instance interceptor (see Section 2.4) is
invoked and obtains a bean instance to be used in the
request processing. The last interceptor in this chain is
responsible for identifying the method required, and
invoking it using the obtained instance. The return of the
method transverses the chain in the reverse way until been
received by the container, which deliveries it back to the
invoker. The invoker marshalls the returned value and
sends it back to the invoker proxy, which unmarshalls the
returned value and forwards it through the client-side
chain in the reverse way. Eventually, the returned value is
forwarded to the client application.
 At deployment time, client and server side interceptors
can be configured through a specific XML configuration
file.

2.4. JBoss Instance Pooling Mechanism

 As aforementioned, application servers maintain idle
bean instances in an instance pool. These instances can be
reused eliminating the necessity of creating a new one to
process each incoming request that would surely be a
time- and memory-consuming task.
 JBoss’ instance pool can be configured using an XML
file. Configurable parameters include maximum size,
minimum size and operation mode. Maximum/minimum
size is the maximum/minimum number of instances the
pool can store (default values are 100 and 0, respectively).
 JBoss’ pool can operate in two different modes: strict
and non-strict. In the non-strict mode, instance pool can
create any number of instances in order to process

simultaneous requests, but it can keep and reuse only the
configured maximum size. In the strict mode, instance
pool can create only the configured maximum number of
instances, no matter the number of simultaneous requests
received.
 When the instance interceptor (see Section 2.3)
receives an incoming request, it must require an available
instance from the corresponding instance pool. At this
point, if this pool has available instances, it returns one of
them, otherwise, if the number of instances already created
is lesser than the configured maximum size, the instance
pool creates and returns a new one; else, the behaviour of
the pool depends on its operation mode. If the instance
pool is operating in non-strict mode, it creates and returns
a new instance to the requestor. Otherwise, the incoming
request must wait for an instance to become available.
Additionally, a timeout can be configured to limit the
maximum time that an incoming request can wait.
 After obtaining an instance, the instance interceptor
invokes the next interceptor in the chain. As soon as it
receives the completion, it forwards the used bean instance
back to the instance pool, which removes any information
associated to the previous request. If the instance pool is
not full, it can retain that instance. Otherwise, the instance
becomes eligible to the garbage collection mechanism.

3. Modelling Approach

 This section presents DSPN models for the instance
pooling mechanism of the JBoss Application Server (or
JBoss server, for short). In the first model, referred to as
base model, it is assumed that the delays associated with
timed transitions are exponentially distributed random
variables with mean value obtained directly from
measurement experiments. The second model proposed,
referred to as refined model, is derived from the base one
by replacing some selected timed transitions with s-
transition subnets [15]. Both models have the same
components: Previous Interceptor, Instance Interceptor,
Instance Pool and Next Interceptor.

Figure 1. JBoss EJB architecture.

3.1. DSPN Base Model

 The base model for the pooling mechanism is defined

as Pool=()0, , , , , , , , ,P T I O H G M Wτ Π . Figure 2

depicts this model, and Tables 1 and 2 contain information

concerning G, , W and .
 The Previous Interceptor acts as a workload generator
representing clients’ requests. A token in place
InterceptorReady represents that this interceptor is ready
to forward a new request. Transition generateRequest has
an exponentially distributed firing time, modelling a
Poison arrival process. Place nrRequests is just a counter
used to get actual number of generated requests. Place
ReqGen indicates that Instance Interceptor has a new
request to process.

Instance Interceptor is responsible for obtaining a bean
instance to be used in the request processing. It receives a
request through the firing of its transition invoke. A token
is generated in place InvocationReceived signalling that a
bean instance must required from the Instance Pool.

Instance Pool is a repository of bean instances required
through the transition get. After receiving a request,
Instance Pool checks its operation mode, as indicated by
place CheckingOpMode1 and transitions isStrict and
isNotStrict (which are mutually exclusive, as asserted by
the enabling functions #IsOpModeStrict=1 and
#IsOpModeStrict=0, respectively).
 In “non-strict mode”, a token is generated in place

WaitingLog, immediately enabling transition log, which
represents the application server logging the request. In
“strict mode”, Instance Pool initially attempts to acquire a
permission to get an instance and continue the request
processing. If less than MaximumSize instances are in use,
attempt transition fires, moving a token from place
WaitingAttempt to place WaitingLog, enabling the transi-
tion log. On the other hand, if MaximumSize instances are
actually processing simultaneous requests, current request
waits and the corresponding token stays in place
WaitingAttempt. Transition timeout is deterministic and

Figure 2. DSPN base model of pooling mechanism.

Table 1. Immediate transitions in the DSPN
base model.

Transition
Weight

(W)

Pri.

()

Enabling Function

(G)

attempt 1 3 -

discard 1 1 #IsOpModeStrict=0

free 1 4 -

garbage 1 5 #Pool=MaximuSize

get 1 3 -

invoke 1 2 -

isNotStrict1 1 1 #IsOpModeStrict=0

isStrict 1 1 #IsOpModeStrict=1

poolIsEmpty 1 8 #Pool=0

poolIsNotEmpty 1 8 #Pool>0

release 1 4 #IsOpModeStrict=1

fires when a request has to wait for the corresponding
timeout period. If an instance is released before timeout,
the waiting request will finally be processed.
 After logging requests, Instance Pool checks place
Pool that stores idle instances represented by tokens. This
checking is indicated by place CheckingPool and
transitions poolIsEmpty and poolIsNotEmpty. If Instance
Pool already contains an idle instance (i.e. #Pool > 0),
transition poolIsNotEmpty fires and generates a token in
place WaitingGetPooled. This token enables transition
getPooled that represents the activity of obtaining a pooled
instance. Otherwise, if InstancePool has not an idle
instance available (i.e. #Pool =0), transition poolIsEmpty
fires and a token is moved to place WaitingCreate,
meaning that a new instance must be created. In this
model, instance creation is represented by create
transition. A bean instance is returned to the Instance
Interceptor in the form of a token deposited in place
InstanceReceived.
 After receiving a bean instance, Instance Interceptor
associates it to the current request and invokes the next
interceptor in the container chain, represented by Next
Interceptor component in the DSPN model. The activity
of the next interceptor has been modelled by the transition
invokeNext. When this transition fires, the next Interceptor
completes its execution and returns. This return is
modelled by creating a token in place
NextInterceptorFinished. After that, Instance Interceptor
fires the transition free, releasing the used instance.
 Upon been required to free an instance, Instance Pool
disassociates it from any information related to the
previous request (clear transition). Once the instance is
cleared, a token is stored in place WaitingPut and the
quantity of instances already stored in the pool is checked.
If pool is full (#Pool=MaximumSize), transition garbage
fires indicating that the used instance is now available to
the garbage collection mechanism. Otherwise, transition
garbage is disabled and transition put will eventually fire.
When that occurs, a token is generated in place Pool
indicating that the used instance can be reused. Transition
put also places a token in place CheckingOpMode2. If
Instance Pool is operating in “strict” mode, transition
release fires signalling that another request can be

processed. Otherwise, transition discard fires representing
that the number of simultaneous requests is not controlled.

3.2. DSPN Refined Model

 As mentioned before, an important assumption of the
base model (see Figure 2) refers to the delays associated to
the timed transitions, which are exponentially distributed
random variables with mean value equals to the mean of
the measured delays. However, the measured values do
not seem to follow an exponential distribution, as can be
inferred by their mean and standard deviation presented in
Table 3. In exponential distributions, mean (µ) and
standard deviation () tend to have the same value leading
to an unitary coefficient of variation. In effect, other
strategies, like Chi-square and Kolmogorov, can be used
to evaluate the quality of this approximation.
 In general, a good way of dealing with generally
distributed random variables is to represent them using a
combination of exponential ones in a way that some
moments of the general distribution match corresponding
moments of the exponential composition. These
combinations of exponential distributions are known as
Phase Type distributions (PH distributions) [12].
Algorithms that do this kind of mapping, from a general
distribution to a PH distribution, are called moment
matching algorithms. In fact, a moment matching has
already been done in the base model when an empirically
distributed variable was approximated by an exponential
one promoting a matching between the first moments of
both distributions (i.e., their mean values). Better results,
however, can usually be obtained by using algorithms that
match other moments besides the first one.
 A refined model is derived from the base one using the
moment matching algorithm proposed by Watson III in
[15]. This algorithm takes advantage of the fact that
Erlangian distributions usually have µ , while
Hyperexponential distributions generally have µ , to
propose the representation of an activity with a generally
distributed delay as an Erlangian or a Hyperexponential
subnet referred to as s-transition. Therefore, according to

Table 2. Delays in the DSPN base model.

Transition (T) Delay Time () in µs

clear 45.16

create 187.12

generateRequest 1021.74

getPooled 2.02

invokeNext 16.24

log 41.37

put 3.14

Table 3. Mean (µ), std. deviation () and
coef. of variation for each timed task.

Transition µ (µs) (µs)
Coef. of

Variation

clear 45.16 364.56 8.07

create 187.12 477.77 2.55

generateRequest 1,021.74 4,572.40 4.48

getPooled 2.02 6.45 3.20

invokeNext 16.24 299.12 18.46

log 41.37 323.14 7.81

put 3.14 59.66 19.01

the coefficient of variation (/µ) associated to the delay of
an activity, an appropriate s-transition implementation can
be selected. For each s-transition implementation, there
are parameters that can be configured in such way that the
first and second moments associated to the delay of the
original activity match with the first and second moments
of s-transition as a whole.

 According to the aforementioned algorithm, all timed

transitions presented on the base model should be

approximated by hyperexponential s-transitions, once their

corresponding coefficients of variation are greater than

one (see Table 3). The hyperexponential implementation

for an s-transition proposed by Watson III is presented in

Figure 4. To approximate a generally distributed transition

having mean equals to µ and standard-deviation equals to

, the parameters of the hyperexponetial subnet are

configured to
2 2 2

1 2 /()r µ µ σ= + , 12 1 rr −= and

)/(2 22 σµµλ += . Parameter values associated to the

s-transitions used in the refined model are presented on

Table 4.
 Figure 3 depicts a Petri net that comprehends the core
of the refined model. This net is referred to as control net
once it has complete control of the dynamics of the system
modelled. It is worth observing that all timed transitions
approximated by s-transition subnets are carefully
removed from the control net and represented in

Figure 3. DSPN refined model: control net.

Figure 4. Hyperexponential implementation
for an s-transition.

corresponding subnets (see Figure 5). Control net and s-
transition subnets are connected using a set of places and
transitions. The utilization of this set of places and
transitions (referred to as connectors) associated with a
carefully chosen set of enabling functions and priorities
allows the substitution of each selected timed transition by
the corresponding s-transition subnet without significantly
changing the overall model.

4. Validation of the DSPN Models

 The benchmark application used to calibrate and
validate the proposed models comprises a stateless session
bean and some web components. Clients access this
application sending HTTP requests that are processed by
the web components. These components invoke a bean
instance that returns a constant string, which is placed in
an HTML page and sent back to the clients.

 Ten heavy demanding virtual clients simultaneously
access the benchmark application, each one trying to
perform 100 req/s. Each experiment consists in running
those clients during 100 seconds.
 Tests were realized in an isolated Fast-Ethernet
network containing only a client and a server machine.
The client machine is an Athlon 2000+ with 768MB of
RAM running Windows 2000 Professional and is used
only to simulate client requests. The server machine is a
Pentium M 1.6MHz with 768MB of RAM running JBoss
application server version 3.2.7. Java HotSpot Client
Virtual Machine (version 1.5.0) was used to run JBoss.
Heap was configured with an initial size of 256Mb and a
maximum size of 512Mb. Additional applications and
services in each machine were stopped in order to
minimize external interference. Before starting each
experiment, it was realized a warm-up composed by one
client executing 10000 requests in a row.

4.1. Performance Results and Analysis

 To validate the proposed models, the benchmark
application was set to use the default instance pool con-
figuration having a minimal size of 0 and maximum size
of 100 and operating in non-strict mode. Then, the de-
scribed workload was submitted and the number of bean
instances created was logged. The same workload was
considered in simulation experiments performed on both
base and refined models.
 Figure 6 shows the number of contexts created in both,
measurements (continuous line) and simulations carried

Table 4. Parameters for the s-transitions
used in the refined model.

Transition r1 r2

clear 0.0302 0.9698 0.0007

create 0.2660 0.7340 0.0014

generateRequest 0.0951 0.9049 0.0001

getPooled 0.1786 0.8214 0.0884

invokeNext 0.0059 0.9941 0.0004

log 0.0323 0.9677 0.0008

put 0.0055 0.9945 0.0018

Figure 5. DSPN refined model: s-transitions subnets.

out using the base model (dashed line). Figure 7 presents a
comparison involving measurement (continuous line) and
simulations using the refined model (dashed line).
 Those results demonstrate that the DSPN refined model
approximates closely the actual JBoss pooling mechanism.

5. Conclusions

 This paper has investigated the utilization of simulation
models for performance prediction of application servers.
In order to do this, a DSPN model that represents the
pooling mechanism used by JBoss application server was
designed. It is worth observing that the pooling
mechanism has an important impact on the overall
performance of an application server.
 The simulation results obtained using the DSPN refined
model approximate measurement results closely, validat-
ing both, the approach and the model itself. This point is
considered the main contribution of this work.
 There are some open questions concerning the develop-
ment of a complete performance model. In particular, the
replication of this approach in the identification and
modelling of other relevant services concerning
application servers is been considered. Additionally, it is
currently being developed a Petri net model for a

workload generator in order to allow the simulation a
variety of scenarios.

References

[1] Cecchet, E., Marguerite, J., and Zwaenepoel W., “Perform-
ance and scalability of EJB applications”. In Proc. 17th
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2002.

[2] CSIRO Middleware Technology Evaluation Series:
Evaluating J2EE Application Servers version 2.1, 2002.

[3] Fleury, M., Reverbel, F., “The JBoss Extensible Server”,
Proc. International Middleware Conference, 2003.

[4] Jain, R., “The Art of Computer Systems Performance
Evaluation”, Wiley Computer Publishing, 1991.

[5] Kounev, S. and Buchmann, A., “Performance Modeling and
Evaluation of Large-Scale J2EE Applications”. In
Proceedings of the 29th Int. Conf. of the Computer
Measurement Group on Resource Management and Perf.
Evaluation of Enterprise Computing Systems, 2003.

[6] Kounev, S., Weis, B. and Buchmann, A., “Performance
Tuning and Optimization of J2EE Applications on the
JBoss Platform”. In Journal of Computer Resource Man-
agement, Issue 113, 2004.

[7] Liu, Y., Fekete, A., Gorton, Y., “Predicting the Performance
of Middlewarebased Applications at the Design Level”, In
Proc. 4th Int. Workshop on Soft. and Performance, 2004.

[8] LLadó, C. M., Harrison, P. G.. “Performance Evaluation of
an Enterprise JavaBeans Server Implementation”. In Proc.
2nd Int. Workshop Soft. and Performance, 2000.

[9] Marsan, M., Balbo, G., Conte, G., “A Class of Generalized
Stochastic Petri Nets for the Performance Evaluation of
Multiprocessor Systems”, ACM Transactions on Computer
Systems, vol. 2, pages 93-122, 1984.

[10] Marsan, M., Chiola, G., “On Petri Nets with Deterministic
and Exponentially Distributed Firing Times”, LNCS 266,
pages 132-145, Springer-Verlag, 1987.

[11] Mc Guinness, D., Murphy, L., “A simulation model of a
multi-server EJB system”, A-MOST’05, 2005.

[12] Neuts ,M. F., “Probability distributions of phase type.”, In:
Liber Amicorum Professor Emeritus H. Florin, University
of Louvain, Belgium, pages 173-206, 1975.

[13] Transaction Processing Performance Council, “TPC Bench-
mark App (Application Server)”, v1.1.1, 2005.

[14] Vinoski, S., "The Performance Presumption", IEEE Internet
Computing, vol. 07, No. 2, 2003.

[15] Watson III, J., Desrochers, A., “Applying Generalized Sto-
chastic Petri Nets to Manufacturing Systems Containing
Nonexponential Transition Functions”, IEEE Transactions
on Systems, MAN, and Cybernetics, vol. 21, No. 5, 1991.

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

Time (s)

N
r.

 o
f

C
o

n
te

x
ts

 C
re

a
te

d

Simulation Measurement

Figure 6. Context creation for base model.

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

Time (s)

N
r.

 o
f

C
o

n
te

x
ts

 C
r
ea

te
d

Simulation Measurement

Figure 7. Context creation for refined model.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

