An Evaluation of Heuristics for SLA Based Parallel Job Scheduling

Viktor Yarmolenko, Rizos Sakellariou
School of Computer Science, The University of Manchester, Manchester M13 9PL, U.K.
{viktor.yarmolenko,rizos.sakellariou }@manchester.ac.uk

Abstract

In the context of SLA based job scheduling for high
performance grid computing, this paper investigates the
behaviour of various scheduling heuristics to schedule
SLA-bounded jobs onto a parallel computing resource.
The key objective of this investigation is to evaluate the
effectiveness of simple scheduling heuristics using as
criteria the mazimization of resource utilization (both
in terms of time and SLAs serviced) and income. Our
results suggest how each SLA constraint ought to be
prioritized in order to improve the income.

1 Introduction

There is a growing interest in high performance grid
computing to move toward job management based on
Service Level Agreements (SLAs) (for example, WS-
Agreement (WS-A) [1]). An SLA is essentially a con-
tract outlining service qualities and guarantees. Con-
sidering an environment where parallel compute re-
sources are made available through the Grid, the use of
SLAs in submitting jobs to those resources may poten-
tially provide more flexibility, increase resource utilisa-
tion and accommodate larger numbers of user requests.

SLAs have already been used in the context of pro-
viding Internet traffic based services [3]. The use of
SLAs job submission on Grid is lagging behind; in-
stead, a traditional queue based system, such as LSF,
may be used. These may or may not have a middleware
layer that is able to map SLA requests onto a queue
scheduler. To be fair, the WS-A specification covers an
extensive set of use cases in general.

This paper aims to investigate the behaviour of a
number of simple heuristics that could be used to
schedule the SLAs onto a parallel compute resource.
The evaluation is based on metrics such as resource
utilisation and income. Other metrics, used in tradi-
tional batch systems, such as the makespan, become
irrelevant for the evaluation of an SLA based system.

The latter rather uses Quality of Service (QoS) con-
straints, such as time deadlines, price etc. in the form
of agreement guarantees embedded in the SLA. The
use of time related constraints suggests some similari-
ties with real-time scheduling, whereas other SLA con-
straints point to work on economic models for Grids.

The paper is structured as follows. Starting with re-
lated work in Section 2, it then proceeds to describe the
model used (Section 3). Section 4 presents the heuris-
tics used in this study and the scheduling algorithm.
This is followed by results and discussion in Section 5
and concluding remarks in Section 6.

2 Related Work

SLAs are not new in the world of customer services;
now they are gradually introduced to the world of Grid
computing, although relatively little has been done on
SLA based job scheduling [5, 7]. In fact, the majority
of SLA based scheduling relates to Web Services and
networking [4]. The most relevant field to the problem
discussed in this paper is real-time scheduling where
scheduling decisions, same as with SLAs, are time crit-
ical [2]. As seen later, some of the SLA terms used in
this study can be mapped onto parameters of real-time
tasks which are dynamically optimised.

3 Model Design

We consider a simple model, which consists of the
Client, the Provider and the Agreement (SLA) between
the two. The Client can represent individual users sub-
mitting their requests to the Provider or a broker that
negotiates a usage of the resource. The Provider (of
a service) represents the owner of a parallel compute
resource, which allocates a Client’s job based on the
Agreement. The Agreement is a coherent contract be-
tween the Client and the Provider which is reached as
a result of a negotiation. The actual process of the ne-
gotiation is not studied here. The role and goals of the
three high-level components are highlighted below.

Time

AW

Figure 1. SLA Terms in pictures.

Terms of Agreement An ideal agreement captures
unambiguously the requirements of the client as well as
capacity and goals of the provider. Adopting the termi-
nology of WS-Agreement [1], the important guarantee
terms of an SLA can be divided in Service Level Ob-
jectives and Business Value List. The former captures
requirements, constraints and level of service whilst the
latter describes the importance of such requirements
individually or as an integrated value indicator. The
following guarantee terms are considered in this study:
SLO: Earliest job start time, T’
SLO: Latest job finish time, T,
SLO: Reserved time for job execution, ¢,
SLO: Number of CPU Nodes required, N_,,,
BVL: Final Price Agreed, V,,,
Figure 1 provides a graphical representation of the
SLO terms. The time line in the figure represents wall-
clock time, referenced by the scheduler when booking
the job. The deadlines T, and T are values in wall-
clock time units and indicate the agreed limits within
which the job must be executed. The job duration, ¢,
is an estimate for the execution time needed by the job;
in this study, we assume that this estimate is equal to
the actual time needed by the job. Finally, the number
of CPU nodes, N, , required for each job imposes a
constraint in an orthogonal dimension. The last two
SLOs explicitly define the size of the job, or amount of
work that is required to be performed by the resource.
Later, we define and use the integrated job size, A.
The final price agreed, V,,,, depends on all SLOs
described here. It can be determined as a fixed price for
the service or as a function of any parameter. Later on,
we will be looking into both these pricing approaches.
In addition, we will evaluate the model in view of three
simple pricing policies, which also influence the final
value of V, ,; in other words, various pricing policies
will define the integrated importance of each SLO, by
specifying the relationships between the latter.

Client and Provider The main role of the Client
is to generate job requests. Each request has a set
of constraints such as: Nepy, tp, Ts and T, that
are used to form an SLA. The Provider is a module
that participates in the negotiation of the job request,
controls the resource and applies heuristics to derive
a schedule. In this study we only concentrate on the
scheduling aspects of the Provider.

3.1 Pricing

A pricing policy can reasonably adequately repre-
sent the Provider’s goals. On the other hand, any con-
straints that the client imposes on pricing can also un-
ambiguously define client’s priorities. Next we attempt
to define two simple constraints on pricing imposed by
the Client and a few pricing policies of the Provider.
These together would influence the final price for each
job done.

3.1.1 The Client’s Constraint on Pricing

We choose two different, mutually excluding, pricing
constraints imposed by the client which represent ei-
ther a simple limitation or more complex (such as those
advocated in [6]). We refer to those as Rigid and
ASAP. Both types depend only on one temporal pa-
rameter, T - the execution start time of the job. It
is assumed that the job duration time, ¢, specified by
the Client is indeed the time it takes for the job to
complete. Therefore the price of the job as a function
of the job start, V(T) can adequately represent the
two constraints:

_ LT, >T7 < (T, —t,)
Vi (T.,)= 4 (1)
0,T, <T7 > (T, —t,)

. (1_Ttejt_,1:ST)’Ts zTejx < (Tp —tp)

Ve (T,) = e
0,Tg <T7 > (T, —t,)
(2)

In the first constraint — Rigid (Equation (1)) —
the value of V(T) experiences two discontinuities at
t =T, and t =T, —t,. In other words, the price
of the job is constant between these two t-points, i.e.
V(T.,) =1 and is zero otherwise.

The second pricing rule (Equation (2)) — ASAP
(As Soon As Possible) — reflects time critical SLAs
in which any delay imposes penalty or discount on the
final price of the service. Such penalty has (Equation
(2)) bears a linear form, but, in principle can be ex-
pressed as any analytical function. Effectively, to en-
capsulate the latter in SLA, one must use a continuous
function to describe an SLA guarantee term.

Despite the popularity of the Rigid constraints,
there is a growing need for more sophisticated way to
describe terms of agreement [6], whilst the general no-
tion itself, of which ASAP rule is a particular case, is
not alien for many business models.

3.1.2 The Pricing Policy

Three different and simple pricing policies are discussed
here. Together with the Client’s pricing constraint they
determine the final value of the service recorded in each
SLA.

Each of the three pricing rules uses either N, or
t,, or both parameters to set a fixed price for each job
upon its completion. The policies are:

SLA Pricing is based solely on a flat rate charge
per SLA:

VI =1=const (3)

SLA

This model represents services that charge on per-
access basis, such as phone directory service, when cus-
tomer pays a flat fee per enquiry irrespective of the time
spent to satisfy this enquiry.

Usage Pricing is based on the amount of CPU-
hours used with no regard for overheads associated
with negotiating the agreement, accessing the service,
managing and starting each job, etc.:

VCJPU = kAJ =k (tJD Ng]PU) (4)
where k is the price unit for the smallest job unit.

Fair Pricing combines the other two pricing rules.
The simplest way this can be expressed is shown below:

ijl(vj + Vi

1+ kA,
F 9 \Vsra C’PU) = 2 : ()

here, k plays the role of a weighting factor between
two types of charges. Normally, providers will try to
use some form of this pricing model, where access to
the service is charged separately from the usage of the
service. Most of the modern services adopt some form
of such a pricing model. For example, the client pays
a line rental (fixed charge for the privilege of accessing
the service) then a variable amount based on the usage
(so much per minute of usage).

4 Scheduling Heuristics

In this section, we consider a number of simple
heuristics for scheduling the SLAs. The main prin-
ciple of those heuristics is the calculation of a priority
value that can be used to prioritize the SLAs. Schedul-
ing, then, falls to a simple routine of picking jobs from
the list in this order of priority and fitting them onto
the resource. The scheduler performs a single iteration
fitting as follows:

e Pick up the first/next job from the sorted list.

e Try to find N,,, CPU nodes which are empty
from T to (T +t,) virtual hours.

o If failed, try to find N ,, CPU nodes which are

empty from T, +At to (T, +At+t,,) virtual hours.
e Repeat the process while (T, + At +¢,) < T,.

o If failed to find a sufficient number of CPU nodes
between Ty and T, times , reject the request alto-
gether, i.e. do not schedule the SLA.

In general, the priority value, H, is computed by
using a function whose generic form is as follows:

H =min (h, +w-h,) (6)
H =max(h, +w-h,) (7)
Here hy,hg is one of {T,., Ty, t,, Nopy, A, tp, .}

and w is a weighting coefficient that can be both pos-
itive and negative. Briefly: T,: earliest job start
time; T,: latest job finish time; ¢,: reserved time
for job execution; N_,,: number of CPU Nodes re-
quired; A: objective job size, measured in CPU-hours,

(A= N_,, xt,); t,: the deadline tightness, defined

by (t;, = T:%TS), t, : the job laxity, similar to t,,

defined ast, =T, — (T +t,).

When w = 0, the heuristics prioritize on the basis
of a single parameter. In addition, the sign of w deter-
mines the order of prioritization (ascending or descend-
ing). For example, H = min (T}, — 5 -t,), prioritizes
SLA requests by the earliest T deadline and by the
longest job first, whereas the value of 5 balances out
the importance of the two parameters. In the exper-
iments we did all possible combinations for the two
parameters hy and ho were considered.

5 Experimental Evaluation

The aim of the experiment is to evaluate the perfor-
mance of different scheduling heuristics in the light of
resource utilisation and the income generated from the
scheduling of SLAs. A job is considered successfully
executed if all the constraints specified by its SLA are
met.

The Setting We start with the description of specific
parameters for the Client used in the experiments. We
used a Gaussian distribution function to generate re-
quests with a varied number of processors, N, , and
job duration, t,. Figure 2 shows the actual distribu-
tion of t,, and N, per job taken from ten random job
sets. The peaks of these two distributions are chosen
to reflect real jobs based on the log files of two parallel
farms. The Client generates the required percentage of

utilisation with the number of CPUs required per job,

SLA Constraints

CPU

I-'-I Fl o1

...... LI B e e e L s
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 0O 10 20 30 40 50 60 70 80 90 100

Figure 2. The distribution of ¢, Nopy and A across a typical job set.

Nepy, and the job duration, tp specified by the distri-
bution function (Figure 2). In the scenarios presented
in this paper the Client generated job requests to sat-
isfy 100% utilisation requirement for each job set. The
resulting job sets of the requests had the same distri-
bution of Ngpy and tp and could potentially fill 100%
of the resource within the specified time period. The
sum of all integrated job sizes, A,, in every job set is
constant. The number of jobs, N, ,, in each job set,
however, is varied slightly. On average, around 384 job
requests, were generated each time to be scheduled by
the Provider. The provider itself consists of a homo-
geneous parallel resource of 64 CPU nodes. Each set
of job requests is generated in such a way that at least
one solution exists where the Provider can fit all jobs
from the set and therefore reach 100% SLA and CPU
utilisation. The time constraints of the job set form
a window of 300 virtual hours between the earliest T,
deadlines and the latest T, deadlines present in this
job set, creating therefore a reference frame of 64 x 300
in size. A preliminary study showed that for the aver-
age job length of 5 virtual hours the boundary of 300
hours is a reasonably large time scale to make the size
effects on the system’s behaviour negligible.

Finally, T, and T}, boundaries for each job are calcu-
lated based on the duration of the job, ¢, , using a fixed
value for tightness and randomly positioned at either
the very end or the very start of each job’s generated
execution time.

Each experiment was conducted 100 times using a
different job set each time and the result was averaged
over 100 experiments. The pricing policy was uniform
across the job set.

Metrics To evaluate the utilization performance of
each scheduling scenario we used two metrics:
The CPU utilization: the amount of the CPU-hours

scheduled normalised by the total value of utilization
generated from the set of jobs (i.e. 64 x 300 CPU-
hours).
The SLA factor: the amount of the SLAs formed and
jobs scheduled normalised by the total number of job
requests from the set of jobs.

To evaluate the success of each scheduling heuristic
in terms of income, we used the equation below

Niob

Voo =2 (VI VL) ®)
J

where V is one of two functions V(T) that represent
the pricing constraint imposed by the Client on job
j (Equations (1),(2)), and VI = {VZ Vi Vi}
represents the pricing policy (Equations (4)-(5)).

The Impact on Utilisation We start the discus-
sion of results considering the utilisation performance
of different heuristics mentioned in Section 4, that is
both SLA utilization and CPU utilization. Due to the
nature of the problem, T, and T, are expected to be
the most influential parameters; prioritizing T, or T,
on their own should yield a better scheduling compared
with any other single parameter discussed in this pa-
per. The dominant influence of Ty and 7. on the per-
formance is supported by preliminary experiments with
the single parameter optimisation (Figure 3). The pri-
oritization based on T, and T, appears to produce a
slightly better schedule than that based on other pri-
oritization. Figure 3 also provides a good reference
point for the integrated (combined) heuristics (Section
4), presented below.

The integrated heuristics, where two parameters and
weighting are used in prioritization (Equation (6)) gen-
erally improve the performance. For each heuristic the
value of w was chosen so that the overall performance

[SLA
95] [JcPU

Performance, %
®
3
;

704

65

60

RND min(T) max(T) min(T) max(T) min) max(t) min(N,) max(N,) min(A) max(A) min(,) max(t)

Single Parameter Oprimisation Heuristics

Figure 3. The utilization performance of var-
ious single parameter prioritizing heuristics
compared to random prioritization. Solid and
dash lines conveniently show which parame-
ter prioritization performs better than random
job order. The values are in percentage of the
complete schedule.

of the schedule is maximized. The typical dependence
of both SLA utilization and CPU utilisation on w is
shown in Figure 4. It can be seen that the optimal
value of w is different for maximum SLA utilization
and maximum CPU utilization.

Figure 5 presents the best average performance for
all the heuristics based on the combination of two pa-
rameters with a weight. Again, the performance is ex-
pressed as a percentage of the maximum performance
for an average job set for both SLA utilization and
CPU utilization. The percentage values indicate the
highest performance for each heuristic using the most
favourable value of w. The precise performance values
and the respective values for w are shown in Table 1.

It is noted that the performance of each heuristic
depends, to a certain extent, on the size of the re-
source relative to the average CPU requirement of a
job. The preliminary study of this size effect, based
on two heuristics (Figure 6), showed that most heuris-
tics favour job requests that require a number of CPUs
which is about one eighth (%) of the resource capacity.
The entire behaviour of the w-curve in both these cases
does not seem to change much but shifts altogether up
or down, depending on the CPU distribution in a job
set. All heuristics that use time based variables show
similar behaviour. The heuristics based on N, and
A change in a very nontrivial way with the change of
the distribution of CPU requests.

Another important factor that affects performance

100
98 4
96 4

943
92

90]

88

86
84
82
80
78
R e
74T

724
70
68
66
64] — SLA Utilisation
P CPU Utilisation
60 T T T T T T T T T T
42 0 -8 -6 -4 2 0 2 4 6 8 10 12

Utilisation Performance, %

‘Weighting parameter, w

Figure 4. The Resource Utilisation depen-
dence on w for H = T, + wN_,, heuristics.
The solid curve represents SLA utilisation;
the dashed curve represents CPU utilisation.

[SLA
%] [C_Jcru

Performance, %

93

92 4

91

90 -
TFWTD TSWTD TFWCPU TSWCPU TFwA TSwA TFwlax TSwiax Awlax TFwTS

Heuristics, H=h l+wh ;
Figure 5. Average utilisation performance
(SLA and CPU) for selected integrated heuris-
tics.

is the job laxity. For example, when the job laxity was
increased five times the performance of H = T, +wt
CPU utilisation was increased from 94.2% to 97.5%.
On the other hand the efficiency of this very heuristics
hardly changed for SLA utilisation, remaining at just
over 96%. A further increase of job laxity by slightly
over one order of magnitude eventually saturates the
performance figures, rendering further increase in lax-
ity redundant. This is generally true for all time based
heuristics whereas heuristics based on N_,, and A
show some unusual behaviour.

The results suggest that integrating any two heuris-
tics with an appropriate sign and weight, the overall
performance of the schedule cannot decrease. In fact,

96.5

96.0

95.5

95.0

94.5

94.0 4

93.5

Scheduling CPU Utilisation, %

93.0
025/ —m—H =T 4wt @ w=-0.78
° —®—H=T+wI,@w=1.0

92.0 - T T T T T T T
2 4 6 8 10 12 14 16

Peak of CPU Distribution, CPUs
Figure 6. Dependence of the Utilisation per-
formance on the CPU distribution in job re-
quests.

the schedule should improve every time a new param-
eter is added to the heuristics relationship (e.g. Figure
7). To illustrate this we show utilisation performance
optimised using three parameters comparing the results
to the respective two-parameter heuristics in Figure 7.

The Impact on Income The second part of our
study looks at the effectiveness of the heuristics dis-
cussed from an income point of view. We look first
at the case of a rigid constraint on pricing in which
V.. (T.,) = const (Equation (1)). The typical example
of the dependence of the income on the weighting factor
of heuristics used is shown in Figure 8. There are two
points to be made here. First, there is a direct linear re-
lationship between the income performance and utilisa-
tion performance. Unfortunately, the exact maximum
possible income cannot be identified due to the specifics
of the job generating process. However a rough 100%
bar can be placed somewhere just above 384 units for
all pricing policies discussed in this paper. The second
point is that for all cases of income performance dis-
cussed here a fair (V) pricing policy yields the same
results as the half sum of the other two, which supports
a commutative nature of these three policies (Figures
8-9). Therefore, Figure 5 represents adequately the rel-
ative performance of income generating effectiveness of
that or other heuristics.

Let us now consider the performance of the same
heuristics but for SLAs constrained by ASAP (Sec-
tion 3.1.1). The pricing affected by ASAP constraint is
truly dynamic and, ideally, requires dynamic schedul-
ing methods. On the other hand, the Rigid pricing
constraint discussed earlier is quasi-dynamic - the in-
come variation on scheduling time is quantised moving
the entire scheduling problem closer to the domain of

[H=P(h, +wh,) [SLA% [w [CPU% | w |
min (T, + wt,) 961 | -0.8| 942 72
min (T, + wi,) 96.0 94| 939 2.8
min (T, + wN.,y) | 979 | 024 | 91.3 | -0.84
min (Ty + wNg) 95.1 072 | 94.1 -0.36
min (7, + wA) 97.9 0.03 93.3 -0.135
min (Ty + wA) 96.9 0.135 93.4 0.0
min (7, + wt,) 961 | -0.12 | 941 | -0.78
min (T, + wl,) 96.2 50 | 94.0 0.3
min (T, + wl) 96.0 | -1.0 | 940 2
min (A + wt,) 93.9 0.06 78.1 -00
max (A + wt,) 90.6 -00 86.7 0
min (t, + WNgpy) 93.8 0.1 84.5 -00
max (t, + WNgp,) | 92.9 -00 87 0.7
min (Ng p, +wt,) 93.9 1.35 78.4 -00
max (Nop, +wt,) | 90.7 -00 87 0.15

Table 1. Table of the highest utilisation per-
formance by various heuristics. The first two
columns show the utilisation of SLAs as a
percentage of the total possible, followed by
the value of w at which the best performance
is observed. The next two columns show the
same data for CPU utilisation.

static scheduling.

The dynamics of this scheduling problem is entirely
temporal. Therefore, the maximum SLAs fit or maxi-
mum utilisation strategy may conflict with the attempt
to schedule each job as close to its T, deadline as
possible. On the other hand, a longer job with the
same deadlines may generate more income than the
two shorter ones, scheduled sequentially, even for the
SLA based pricing policy. Another example is when
utilisation may suffer greatly for the sake of maximum
income, or, indeed, vise versa, income plunged down
when the optimisation of the schedule is geared toward
the utilisation. The scheduling technique used does
not compare the income of two jobs that can be sched-
uled at the same time in order to choose the higher
income. Neither does it try to swap two jobs with the
same deadline to see if it yields a higher income or per-
form any other income related optimisation, but simply
schedules the job at the first available time. Let us now
look at the behaviour of these heuristics and whether
they can still generate sufficiently good income. The
typical behaviour is shown in Figure 9(a), whereas Fig-
ure 9(b) shows the reverse performance behaviour. Ba-
sically, all heuristics produce reasonable income only
when the weighting coefficient takes it away from the
region where the job deadlines, T, and T, have some
influence. Only H = A + wt, (Figure 9(b)) and such
like (which does not include the job deadlines) seem to

[SLA
[JcrU

Performance, %

w,=0.0
w,=-0.78
w,=-0.13
w,= 0.0

TFwAwLax TFWA TFwlax

Heuristics, H=h + w1h1+ thz

Figure 7. Performance for three-parameter
heuristics: H =T, + w, A + w,t, (left), com-
paredto H =T, +w, A+ 0t, (middle) and H =
T,+0A+w,t, (right) two-parameter heuristics.
Both SLA and CPU utilisation are improved in
the three-parameter case.

400

380

320 e I

Profit

300 -
280 T
260

A
240 - K,

220 T T T T T
-40 -30 -20 -10 0 10 20 30 40

‘Weighting parameter, w

Figure 8. Dependence of the generated in-
come on w for H = T, + wt,, heuristics. Solid
curve represents SLA pricing, dashed curve
represents CPU pricing, and dotted curve -
Fair pricing (Section 3.1).

benefit from integrated heuristics from Equation (6).

As was expected, the usual strategies, that perform
well for static and quasi-static problems, do not seem to
work for the new, dynamic, scenario. Analysing graphs
from all heuristics it appears that minimising either 7',
or T, only decreases the income that we are aiming
to maximise. The problem lies in the fact that many

Profit

0 40 60 e 10

0o & 5 4 2 2 4 6 &

Weighting parameter, w

Figure 9. Income made for three different
pricing policies (max (V,,,) ~ 384) with ASAP
constraint. (a) H = min (T, +wN_,,), (b)
H = min (A +wt,), (¢) H = max (T, + wt,),
(d) H = max (T + wN,

CPU)'

of the job deadlines are overlapping. These deadlines
are purposely moved randomly to one of the extremes
to make a scheduling job harder or rather make sure
that the deadlines do not accidentally introduce a bias
that potentially may improve the performance of an
algorithm. Since each job set was generated as a perfect
fit, Ty and T, deadlines that are spread in a uniform
way may reveal the set execution times of each job that
produces a 100% utilisation. Spreading the deadlines
in a random way is an attempt to simulate the job
requests in real life.

Going back to the scheduling process, let us look
what happens after the first few jobs have been sched-
uled. The first batch of prioritized jobs would be sched-
uled at the beginning of their T, deadline, achieving
maximum possible income per job. The next batch of
jobs is scheduled back to back with the previous batch
to achieve maximum income, however this maximum
will no longer be the highest possible income as the
T, deadline overlaps with the jobs that are already
scheduled, and so on. It is expected that the income
constrained by ASAP will be less than in the case of
Rigid constraint.

Table 2 presents income values for all heuristics dis-
cussed here. This data supports the earlier discussion
regarding the prioritization of T, and T} in order of
the largest deadlines as a way to maximise the income
when ASAP based pricing policies are used. Maximis-

H]‘I:P(h1 +wh2) ‘ <VSLA> ‘ <VF> ‘ <VCPU> H

max (T, + wi,) 381 | 367 | 359
max (T, + wt,)) 380 | 367 | 359
max (T + wNgpy,) 384 367 357
max (T + WN,p,) | 388 | 370 | 352
max (T, + wA) 385 | 368 | 357
max (Tg + wA) 388 370 352
max (T, + wl,) 381 | 367 | 359
max (T + wt,) 380 | 366 | 359
min (A 4 wt,) 377 361 347

min (i, + wN_,,) | 38 | 366 | 346
min (N, + wt,) 385 | 366 | 350

Table 2. Table of the highest income perfor-
mance by various heuristics for three pricing
policies.

ing of T}, or T, parameters with the proper weighting
usually improves the income of otherwise single opti-
misation heuristics (Figures 9(c),(d)). This can be ex-
plained by the simple example. As job requests are
prioritized by the latest T there is more chance that
most of them will be scheduled at T, = T, and not
T . > T,. There is a poorer CPU utilisation in general,
however, the jobs scheduled are scheduled immediately
on T, deadline maximising therefore the total income.

6 Conclusions

We performed an evaluation of various scheduling
heuristics and presented a comparative analysis of their
performance for both resource utilisation and income
performance. We showed that using any additional pa-
rameter in heuristics never diminishes but often im-
proves the overall performance, subject to weighting
and signs. Generally, minimising such parameters as
ty, Nepys A, t, leads to an improved V,, income,
whereas maximisation of these and/or minimisation of
T, and T, deadlines decreases the income. Table 3
shows the rest of the parameters and which prioritiza-
tion is suitable for which pricing policy or constraint.
These can play a role of guidelines showing which of
the SLA terms ought to be maximised or minimised in
order to achieve the desired performance. Our results
indicate that when the job laxity reaches = 0.5 - 102 of
t, the job deadlines no longer affect the performance
of the scheduling algorithm. The optimal ratio of the
average value of N_,, and the size of the resource is
roughly 1:8 in the case of algorithm and heuristics used.
The results suggest that integrating any two heuristics
with the correct signs and weighting in the prioriti-
zation heuristics only increases the overall scheduling

[Pricing [
ASAP SLA
ASAP Fair
ASAP CPU
Rigid SLA

Rigid Fair

Rigid CPU

A<l <l > |3

DDl > <l |5
2

> >[4l <l <] <l

DD || D> <) | |=

=}

Al <)<l > > {3
D> <l < <l <l =

Table 3. Table of optimisations for different
parameters and different pricing policies. V
means that respective parameter has to be
minimised in order to achieve maximum re-
spective income, whereas /A means that this
parameter has to be maximised in order to
achieve maximum respective income.

performance. The pricing policy can dramatically alter
or diminish the effects of various heuristics. Thus for
some pricing policies it is irrelevant, to a degree, which
heuristic is used.

Acknowledgement This research has been funded
by EPSRC, UK (grant reference GR/S67654/01) whose
support we are pleased to acknowledge.

References

[1] ‘WS-Agreement’, White Paper to GGF, Draft 18. 14
May 2004.

[2] S. Aldarmi and A. Burns. Dynamic value-density for
scheduling real-time systems. In 11th Euromicro Con-
ference on Real-Time Systems, Dec. 1999.

[3] M. D’Arienzo, A. Pescape, S. P. Romano, and G. Ven-
tre. The Service Level Agreement Manager: Control
and Management of Phone Channel Bandwidth Over
Premium IP Networks. In ICCC ’02: Proceedings of the
15th International Conference on Computer Communi-
cation, pages 421-432, Washington, DC, USA, 2002.

[4] Z. Duan, Z. Zhang, and Y. Hou. Service Overlay Net-
works: SLAs, QoS, and Bandwidth Provisioning. In
IEEE/ACM Trans. on Networking, 11(6), 2003.

[5] C. Dumitrescu and I. Foster. GRUBER: A Grid Re-
source SLA-based Broker. In Euro-Par 2005, 2005.

[6] R. Sakellariou and V. Yarmolenko. On the Flexibility
of WS-Agreement for Job Submission. In Workshop
on Middleware for Grid Computing 2005 (MGC2005),
Grenoble, 2005.

[7] V. Yarmolenko, R. Sakellariou, D. Ouelhadj, and J. M.
Garibaldi. SLA Based Job Scheduling: A Case Study on
Policies for Negotiation with Resources. In AHM2005,
Nottingham, UK, 20-22 Sep, 2005.

