

Network Intrusion Detection with Semantics-Aware Capability

Walter Scheirer and Mooi Choo Chuah

Lehigh University

Dept. of Computer Science and Engineering
Bethlehem, PA 18015 USA

{wjs3, chuah}@cse.lehigh.edu

Abstract

Malicious network traffic, including widespread worm
activity, is a growing threat to Internet-connected
networks and hosts. In this paper, we propose a
network intrusion detection system (NIDS) with
semantics-aware capability. Our NIDS segregates
suspicious traffic from the regular traffic flow, extracts
binary code from the suspicious traffic, and performs
semantic analysis on it to identify potential threats. Our
contributions in this work are threefold: (a) we believe
our prototype is the first NIDS that provides semantics-
aware capability, (b) our implementation is more
efficient than what is reported in [5], (c) our designed
templates can capture polymorphic shellcodes with
added sequences of stack and mathematic operations.

1. Introduction

 In recent years, computer intrusion has been on
the rise. The popularity of the Internet and the
widespread use of homogeneous software provide an
ideal climate for infectious programs. The cost of
viruses and worms in 2002 was estimated to be 45
billion dollars [1]. In 2003, this number jumped to 55
billion dollars [1]. Much money has to be spent on
researching techniques that can fend off intrusion
attempts such that computer systems can operate
effectively. A popular technology called the Intrusion
Detection System (IDS) has emerged to identify and
block intrusion attempts. Popular network IDS (NIDS)
systems such as Snort [2] and Bro [3] utilize a signature-
based approach to detect malicious network traffic. In
these systems, static signatures of known attacks are
used to identify attack packets. A major drawback of
this approach is that unknown attacks cannot
be detected – the ones, which conceivably will cause the
most damage.

 Typically, new attacks are detected in an ad hoc
fashion through a combination of intrusion detection
systems alerting potential attacks, and skilled security
personnel manually analyzing traffic to generate attack
characterization. Such an approach is clearly not
sufficient since it may take hours to generate a new
worm signature. In recent studies [4], the authors
suggest that if the attack traffic is indicative of a worm
outbreak, effective containment may require a reaction
time of well under sixty seconds. Thus, new techniques
that can help to identify threats from unseen worms or
exploit packets need to be devised.
 In this paper, we describe a prototype system
with semantics-aware capability that we have built to
automatically identify threats from some unknown
malicious network traffic. This work is an extension of
the approach presented in [5]. The semantics-aware
malware detection algorithm of [5] is an extremely
powerful tool for program profiling. Based on the
observation that certain malicious behaviors appear in
all variants of a certain kind of malware, the authors
propose using template-based matching to detect
malware. Their approach looks for a match of program
behaviors rather than program syntax matching. In this
manner, polymorphic and metamorphic code instances
can be identified right along with their static
counterparts. However, in [5], the authors only perform
experiments on a non-networked host with standalone
virus samples as well as evaluating their templates
against a set of benign programs. As most threats to
end-systems now emanate from the Internet, much in
the form of self-propagating network code, network
enabled detection is critical. Thus, in this work, we
have built a full-featured network intrusion detection
system with semantic-aware capability that can detect
not only viruses, but remote exploits, including worm
traffic. Through rigorous testing, we show that
semantic detection is an extremely powerful tool for
identifying static and polymorphic network exploits.

Our system can perform more efficiently than the
system presented in [5].
 The rest of the paper is organized as follows: In
Section 2, we describe some related work and discuss
how one particular work motivates this research. In
Section 3, we describe the motivation for the semantic
analysis of malicious code, and discuss how binary
exploits work. In Section 4, we present the system
architecture of the NIDS we have built and describe in
detail how different stages of the system work. We
describe our experiments and the results we obtained in
Section 5. Finally, we summarize our findings and
discuss some future work that we intend to explore in
Section 6.

2. Related Work

 Much research has been devoted to intrusion
detection in recent years. Two enormously popular
open source tools, Snort [2] and Bro [3], have shown
that static signature based IDSs can be quite successful
in the face of known attacks. Combined with automatic
monitoring and incident response, system
administrators have a powerful tool against network
attacks. In [13], the authors present the case for
collaborative intrusion detection system where
intrusion detection nodes cooperate to determine if a
network attack is taking place and take corrective
actions if it does. Others have sought to use statistical
approaches to detect worm outbreaks. In [10], the
authors propose a method to identify a worm victim by
observing if the number of scans per second it performs
exceeds a certain threshold. The numbers of worm
victims observed in successive windows are then
compared to the numbers predicted using a typical
worm spread model and if they match, then a worm
outbreak is declared.
 In [7], [8], the authors show that byte-level
analysis of packet payloads can yield useful signatures
for worm detection. The premise being some portions
of the worm code will be invariant. At first glance,
these approaches looked promising, however, in
practice, they generate far too many signatures, with a
sometimes-undesirable accuracy rate. A recent paper
[12] also addresses the polymorphic worm detection
problem in a similar manner. They advocate using
disjoint data signatures. With [14], we begin to see a
research trend towards using semantics knowledge for
potential worm detection. Here, the authors observe
that invariant byte positions may be disjoint (a result of
advanced polymorphic techniques), but will be present
nonetheless as they are integral to functionality. With
[5] and [6], the application of semantics is introduced.
Non-binary attacks, such as URL based web server
exploits, are analyzed and clustered in a data-mining

scheme in [6]. In this work, we built upon the approach
described in [5]. Our contributions are three fold: (a)
our prototype is a complete NIDS that provides
semantic aware capability, (b) our implementation is
more efficient than what is reported in [5], (c) our
designed templates can capture polymorphic shellcodes
with added sequences of stack and mathematic
operations.

3. Semantics-Aware Malware Detection
Methodology

 Current IDSs often use static signatures.
However, new malware or worms that have appeared
recently indicate that the authors of such malicious
code often use code obfuscation to evade IDSs that use
static signatures. There are two forms of code
obfuscation: polymorphism and metamorphism.
Traditional polymorphism has taken the form of an
encrypted body of code with an attached (and often
obfuscated) decryption routine. The encryption
technique used is good enough to fool pattern-matching
IDSs. Metamorphic code relies on the obfuscation of
the entire code base, including code transposition,
equivalent instruction substitution, jump insertion,
NOP insertion, garbage instruction insertion, and
register reassignment. Figure 1 shows a simple
decryption routine and two obfuscated variants of that
same decryption routine. The decryption routine shown
in Figure 1(a) consists of a loop that performs an xor of
a memory location against a static key, followed by an
increment of the memory address to the next location.
Figure 1(b) makes several changes to the code in
Figure 1(a), including obscuring the key by adding mov
and add instructions that work with a register. The inc
instruction is also substituted with an add instruction.

 Figure 1. Three equivalent code routines.

decode:
 xor byte ptr [eax], 95h
 inc eax
 loop decode

 (a) Simple xor based decryption routine

decode:

 mov ebx, 31h

 add ebx, 64h
 xor byte ptr [eax], ebx
 add eax, 1
 loop decode

 (b) 2nd instance of xor decryption routine

decode:

 mov ecx, 0

 inc ecx

 inc ecx

 jmp one

 two: add eax, 1

 jmp three

 one: mov ebx, 31h

 add ebx, 64h
 xor byte ptr [eax], ebx
 jmp two

 three: loop decode

 (c) obfuscated instance of xor decryption

These seemingly minor changes are good
enough to fool a pattern matching IDS. Figure 1(c)
improves on 1(b) by adding garbage instructions, and
changing the code order while preserving the execution
sequence with jmp instructions. One can think of a
plethora of equivalent programs – thus, we must rely
on the meaning of the code, and not its syntax, for
reliable detection.
 The authors of [5] reduce the problem of
semantic equivalency to a template matching problem.
In essence, if we can create a template describing the
expected behavior of a piece of code, we can match it
to an actual code routine to see if the tested code
exhibits the same behavior. Stated formally in [5], “A
program P satisfies a template T (denoted as P = T) iff
P contains an instruction sequence I such that I
contains a behavior specified by T.” A template will
consist of a sequence of instructions, along with its
associated variables and symbolic constants.

Figure 2. A template and matching assembly
code segment.

 In Figure 2, we show an instance of a template
on the left, and a matched assembly code segment on
the right. The template shown is designed to match the
decryption routine described in Figure 1. Each template
is simply a description of the behavior we expect from
a known routine – not the exact syntax that will show
up in a code fragment. By looking at the assembly code
segment on the right, we see that the code segment
does not have a one-to-one correspondence with the
template but the behavior defined by the template is
present in the code routine. Thus, we can construct an
algorithm to locate patterns defined in templates in real
assembly code segments.
 While [5] formalizes the template matching
problem rather nicely, it presents a somewhat limited
engineering approach to intrusion detection. The
system that the authors built currently assumes that
malware samples are available as inputs to their
system. In order for the semantics-aware approach to

be useful in a NIDS, a classifier needs to be provided
so that semantic analysis is only performed on a small
percentage of suspicious traffic. In addition, we believe
that false positives are bound to emerge unless a good
classifier is provided. For example, during the course
of this research, we identified several legitimate
programs (Crypkey [18], ASProtect [19]) that obscure
binaries with simple encryption routines as a form of
copy protection. Locating a decryption loop (the
primary test in [5]) within a program protected by one
of these applications will signal a false alert. As copy
protection schemes begin to incorporate methods
reminiscent of code circulating in the computer
underground, we expect the false positive rate of the
detection scheme based on purely checking installed
binary programs on an end-host as described in [5] to
grow accordingly. However, it is highly unlikely for
copy protected program to be embedded in a web
request sent by a scanning source, thus, one can easily
differentiate between the two scenarios using a smart
traffic classifier. Thus, we incorporate (a) a traffic
classifier, and (b) a binary data identification and
extraction module in our prototype. The combination of
these features, and the semantic analysis allow the
NIDS system we have built to be more effective than
other NIDSs that are based on syntactic pattern
matching approaches. In addition, our NIDS is more
efficient than that reported in [5].

 4. NIDS with Semantic-Aware Capability

Figure 3. The semantic-aware NIDS
architecture.

In this work, we develop a full NIDS that

segregates suspicious traffic from regular traffic flow,
extracts binary data from suspicious traffic and
performs semantic analysis on the binary data in order
to identify potential threats. Such a NIDS does not rely
on fingerprints or other syntax based methods. Figure 3
shows the system architecture of our NIDS. It consists
of five major components, namely (a) traffic classifier,

(b) binary data identification and extraction module, (c)
disassembler, (d) intermediate representation generator,
(e) semantic analyzer. This NIDS can be deployed on a
standalone machine connected to the network.

4.1. Traffic Classification

 Traffic classification is necessary to determine
which packets are “interesting” and require further
analysis. While it is possible to pass all traffic directly
to the “Binary Detection and Extraction” module, it is
more efficient to prune the traffic sent to the later
stages, as they are very CPU-intensive. Currently, two
classification schemes are implemented in our
prototype system. The first is a simple and effective
honeypot scheme. When the system is initialized, it is
given a list of decoy hosts that exist for no other
purpose than to attract unsolicited traffic (the
effectiveness of honeypots has been explored in-depth
by [16]). Any sending host emitting traffic destined for
a honeypot address is considered suspicious; and any
packets sent by such a host will be analyzed.
 The second scheme is a bit more complicated,
and is useful for the detection of widespread worm
traffic. Initially, we note the un-used IP address space
in our network, with the premise that any traffic
repeatedly destined to the un-used address space may
be indicative of malicious scanning. If a host sends an
initial packet to an un-used address, a count n is
initialized. If we continue to observe this host sending
additional packets to other un-used addresses, the count
will be incremented until it reaches a threshold t, at
which point, packets emanating from that suspicious
host will be considered for further analysis.

4.2. Binary Detection and Extraction

 In this work, we are interested in examining
binary threats primarily in the form of buffer overflow
exploits (we do not currently support detection of
textual web attacks, brute force password attacks, etc.).
Thus, we need a way to identify binary data within
packet payloads. To accomplish this task, we need to
understand how buffer overflow exploits are
constructed and presented to a victim host.

 Figure 4. Format of buffer overflow exploits.

Traditional buffer overflow exploits (Figure 4)
have taken the following form: a region of NOP
instructions at the lowest address region on the stack,
followed by the instructions the attacker wishes to
execute, followed by a series of return addresses that
will overwrite the return pointer of the subroutine and
point back into the stack. Historically in IDS, it has
been easy to detect the NOP region, as it was only
composed of a repeating series of the same instruction
(i.e. 0x90 for the x86 architecture). However, this is no
longer the case – polymorphic exploit generators can
use a whole host of instructions that have “NOP-like”
behavior, thus making the NOP region variant. This
leaves us with the return address region as a possible
place to observe some invariant data. Only the least
significant byte can be varied, since the return address
must point back to a valid address in the buffer.
 In practice, we observe network buffer
overflow exploits to consist of a well-formed initial
application layer protocol request, with exploit content
usually resembling (but not necessarily matching
exactly) Figure 4 encapsulated within it. By noting
what is expected in a protocol request, and what is
abnormal, we can often locate malicious binary
content. Figure 5 displays the content of the Code Red
II worm exploit. Here, a well-formatted HTTP GET
request is made to a module of the IIS webserver. A
stream of repeated ‘X’ characters initiates the overflow,
and these characters are followed by the Unicode data.
Our module has the ability to distinguish between
acceptable protocol usage and suspicious repetition.
Thus, we can locate the approximate region where we
believe the binary content is located, and extract it. In
the case of Unicode data (as is observed in Figure 5),
we translate it into an appropriate binary form, for
further analysis. This process will yield some binary
data that is benign, but it dramatically cuts down on the
amount of data that must be processed by the
disassembler which is the slowest stage in our system.
This binary identification and extraction process can be
bypassed but it will result in a system with much
degraded performance.

Figure 5.Code Red II exploit portion.

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX%u9090%u6858%cbd3

%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u

cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b

00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0

4.3. Semantic Analysis

 Because we have chosen a specific commercial
product, IDA Pro [17], for our disassembler stage, our
NIDS can only disassemble x86 code at the present.
The binary detection and extraction stage produces
special binary frames (binary data extracted from
network packets) in a format that can be processed by
the disassembler. Once an assembly code
representation is generated by the disassembler, we
prune the code to include only the instructions we are
interested in. Any excess code from the program frame
is discarded.
 At this point, we have a sequence of instructions
that we can analyze semantically. The semantic
analyzer uses the template matching scheme [5] that we
have described in Section 3. The templates that we
built have the ability to handle out of order code, NOP
insertion, junk instruction insertion, and register
reassignment. If a piece of code matches one of our
templates, an alert is generated, and further action may
be taken against the offending IP address.

5. System Evaluation

 We have conducted an extensive evaluation of
our semantic NIDS, against real malware samples and
captured network traffic. All of our tests were
performed on an Intel P4 2.8Ghz system with 512MB
of memory. One of our primary goals with this work is
to establish a reliable method for detecting
polymorphic exploit instances. Thus, we evaluate two
popular toolkits for polymorphic exploit generation,
along with a publicly available exploit known to
contain polymorphic shellcode. We also test a month’s
worth of benign traffic, with classification disabled (all
packet payloads are analyzed). Our preliminary results
are extremely promising: we observe no false positives
when we analyzed the benign traffic and we can nearly
detect all polymorphic versions of malicious contents
generated using ADMmutate [11] and Clet engine [9].

5.1. Linux Shell Spawning

 In this first test, we selected eight different
remote exploits, which can spawn a shell in a machine
running the Linux operating system. A template was
created (Figure 6) to match the relevant system calls
associated with this behavior. It can detect shells
created as an immediate instance of the exploit, and,
with an extension, those that are bound to a separate
network port. In our experiment, we built an exploit
generator tool that sends exploit packets to a honeypot
machine registered with the NIDS. All eight exploits
are successfully detected as spawning a shell, while the

two that bind the shell to a different port are also noted
as such.

Figure 6. Template for Linux shell spawning
code.

 The results for this first set of experiments are
tabulated in Table 1. The running time for these eight
instances ranges from 2.36 seconds to 3.27 seconds. The
average binary code size is less than 10Kbytes for these
exploits. As a comparison, we ran two variants of the
Netsky virus with an average code size of 22 Kbytes
through our program and it takes about 6.5 seconds each
time. The time reported in [5] is about 40 seconds.

Table 1. Linux shell spawning buffer overflow

exploits.

5.2. Polymorphic Shellcode Detection

 To detect polymorphic code, we created a
template that captures the decryption loop
functionality described in Section 3. Then, we created
a tool that can generate numerous exploits towards a
honeypot machine that was registered with the NIDS.
The first test we perform is to verify that our system
can detect the iis-asp-overflow.c exploit based on the
template we designed. This particular exploit has a

decryption routine prefixed to an encoded shell-
spawning region of code. The shellcode is encoded to
evade detection by IDSs that employ pattern-matching
techniques. Using the template we designed, our
system was able to detect the decryption routine. The
running time for this test is 2.14 seconds.

Figure 7. Template for alternate ADMmutate

decryption loop.

The ADMmutate kit [11] is a popular
polymorphic shellcode generation toolkit. It
incorporates NOP-like instruction insertion, garbage
instruction insertion, equivalent instruction
replacement, and out-of-order code sequencing to
obscure its decryption routine. For testing, 100
instances of polymorphic payloads were generated,
and inserted into a generic network buffer overflow
exploit. The first test yielded only a 68% detection
rate. Further manual inspection of the assembly code
generated by our NIDS led us to establish that
ADMmutate incorporates one of two distinct methods
for its decryption routine. The first is the xor
decryption our template can match, while the second is
a decoding scheme involving a sequence of mov, or,
and, and not instructions that perform operations on a
single memory location and register pair. Once we
developed a template that can match such behaviors,
we achieved 100% detection of all shellcodes
generated by ADMmutate.

Table 2. Polymorphic shellcode detection.

The Clet engine [9] is another popular tool for
generating polymorphic shellcode. It relies on
obscuring an xor based decryption routine in a fashion
that will defeat data mining approaches to IDS. Thus, it
incorporates many of the same features as ADMmutate,
but Clet can also score the feature distribution
probabilistically, so that the packet can appear to be
“normal traffic.” Our xor decryption template matched
all 100 shellcode instances that Clet generated.

5.3. Code Red II Worm Detection

 A template was devised to match the initial
exploitation vector of the Code Red II worm. We tested
this template against 12 5-minute traces collected from
two Class B production networks, each with a total
packet count of over 200,000. Before evaluation, we
noted the correct number of instances of Code Red II
within each capture. The results are tabulated in Table 3.
From Table 3, one can note that every instance was
classified and matched correctly by our NIDS.

Table 3. Detection of the Code Red II Worm.

5.4. False Positive Evaluation

 For a final test, we disabled traffic
classification on the NIDS, and examined every
packet’s payload in a month’s worth of traffic captured
from two Class C networks (a total capture of 566MB).
Most of the packets in this trace are legitimate web
traffic. The traffic was examined beforehand, to ensure
none of the threats we are attempting to detect with our
current template set (decryption routines, shell
spawning, Code Red II memory addressing) were
present. No false positives were reported from our
template matching module; this is consistent with the
findings of [5], though now confirmed in the network
scenario.

6. Conclusion

 We have designed and built a NIDS with
semantic analysis capability. We have performed
extensive tests on our prototype system. Our results
show that using high quality templates, our system is
able to detect a wide variety of code exhibiting the same
behavior, as opposed to the same formal syntax. Our
experimental evaluation shows that our system does not
produce any false positives when tested against a
network trace of benign traffic. In the near future, we
intend to classify more exploit behaviors so that we can
generate additional useful templates that can be used in
our NIDS to detect additional families of malicious
traffic (i.e. email worms). We also intend to optimize
our implementation so that it can run even faster than
what has been achieved.

Acknowledgements

We would like to thank Vinod Yegneswaran,
Dr. Paul Barford, and the Wisconsin Advanced Internet
Laboratory for their willingness to share several
network traces that we have used in this paper.

7. References

 [1] Reuters. Virus damage estimated at $55 billion in
 2003. Jan. 2004,
 http://msnbc.msn.com/id/3979687/.
 Last accessed on 6 Jan. 2006.
 [2] M. Roesch, Snort - lightweight intrusion detection
 for networks. LISA ’99: Proceedings of the 13th
 USENIX conference on System administation,
 Seattle, Washington, 229-238, 1999.
 [3] V. Paxson. Bro: a system for detecting network
 intruders in real-time. Computer Networks,
 Amsterdam, Netherlands, 31 (23-24): 2435-2463,
 1999.
 [4] H.D. Moore, C. Shannon, G. Voelker, and S.
 Savage. Internet quarantine: requirements for
 containing a self-propagating code. Proceedings of
 the 2003 IEEE Infocom Conference, April 2003.
[5] M. Christodorescu, S. Jha, S. Seshia, D. Song and R.
 Bryant. Semantics-aware malware detection. IEEE
 Security and Privacy Symposium, May 2005.
 [6] V. Yegneswaran, J. Griffin, P. Barford and S. Jha.
 An architecture for generating semantic-aware
 signatures. 14th USENIX Symposium on Security,
 August 2005.
 [7] H. Kim and B. Karp. Autograph: toward automated,
 distributed worm signature detection. Proceedings of
 the 13th Usenix Security Symposium, 2004.
 [8] S. Singh, C. Estan, G. Varghese, and S. Savage.

 Automated worm fingerprinting. Proceedings of the
 6th USENIX Symposium on Operating Systems
 Design and Implementation, 2004.
 [9] CLET Team. Polymorphic shellcode engine using
 spectrum analysis. Phrack Magazine, 11(61), 2003.
[10] L. Gao, J. Wu, S. Vangala, and K. Kwiat. An
 effective architecture and algorithm for detecting
 worms with various scan techniques. Proceedings of
 NDSS, 2004.
[11] K2. ADMmutate 0.8.4. Published online at
 http://www.ktwo.ca/ADMmutate-
 0.8.4.tar.gz. Last accessed on 6 Jan. 2006.
[12] S. Stolfo and K. Wang. Anomalous payload-based
 network intrusion detection. Proceedings of Recent
 Advances in Intrusion Detection (RAID), Sept.
 2004.
[13] M. Locasto, J. Parekh, S. Stolfo, A. Keromytis, T.
 Malkin, and V. Misra. Collaborative distributed
 intrusion detection. Tech Report CUCS-012-04,
 Department of Computer Science, Columbia
 University, 2004.
[14] J. Newsome, B. Karp, and D. Song. Polygraph:
 automatically generating signatures for polymorphic
 worms. Proceedings of the IEEE Sysmposium on
 Security and Privacy, 2005.
[15] R. Pang, V. Yegneswaran, P. Barford, V. Paxson,
 and L. Peterson. Characteristics of internet
 background radiation. IMC '04: Proceedings of the
 4th ACM SIGCOMM conference on Internet
 measurement, Oct. 2004.
[16] The Honeynet Project. Project homepage.
 http://project.honeynet.org. Last accessed on 6 Jan.
 2006.
[17] DataRescue. IDA Pro – interactive disassembler.
 Published online at
 http://www.datarescue.com/idabase.
 Last accessed on 6 Jan. 2006.
[18] CrypKey. Published online at
 http://www.crypkey.com. Last accessed on
 6 Jan. 2006.
[19] ASPack Software. ASProtect. Published online at
 http://www.aspack.com. Last accessed on 6
 Jan. 2006.

