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Abstract 
 
Malicious network traffic, including widespread worm 
activity, is a growing threat to Internet-connected 
networks and hosts. In this paper, we propose a 
network intrusion detection system (NIDS) with 
semantics-aware capability. Our NIDS segregates 
suspicious traffic from the regular traffic flow, extracts 
binary code from the suspicious traffic, and performs 
semantic analysis on it to identify potential threats. Our 
contributions in this work are threefold: (a) we believe 
our prototype is the first NIDS that provides semantics-
aware capability, (b) our implementation is more 
efficient than what is reported in [5], (c) our designed 
templates can capture polymorphic shellcodes with 
added sequences of stack and mathematic operations. 
 
 
1. Introduction 
 
 In recent years, computer intrusion has been on 
the rise. The popularity of the Internet and the 
widespread use of homogeneous software provide an 
ideal climate for infectious programs. The cost of 
viruses and worms in 2002 was estimated to be 45 
billion dollars [1]. In 2003, this number jumped to 55 
billion dollars [1]. Much money has to be spent on 
researching techniques that can fend off intrusion 
attempts such that computer systems can operate 
effectively. A popular technology called the Intrusion 
Detection System (IDS) has emerged to identify and 
block intrusion attempts. Popular network IDS (NIDS) 
systems such as Snort [2] and Bro [3] utilize a signature-
based approach to detect malicious network traffic. In 
these systems, static signatures of known attacks are 
used to identify attack packets. A major drawback of 
this approach is that unknown attacks cannot  
be detected – the ones, which conceivably will cause the 
most damage. 

 
  
 Typically, new attacks are detected in an ad hoc 
fashion through a combination of intrusion detection 
systems alerting potential attacks, and skilled security 
personnel manually analyzing traffic to generate attack 
characterization. Such an approach is clearly not 
sufficient since it may take hours to generate a new 
worm signature. In recent studies [4], the authors 
suggest that if the attack traffic is indicative of a worm 
outbreak, effective containment may require a reaction 
time of well under sixty seconds. Thus, new techniques 
that can help to identify threats from unseen worms or 
exploit packets need to be devised. 
 In this paper, we describe a prototype system 
with semantics-aware capability that we have built to 
automatically identify threats from some unknown 
malicious network traffic. This work is an extension of 
the approach presented in [5]. The semantics-aware 
malware detection algorithm of [5] is an extremely 
powerful tool for program profiling. Based on the 
observation that certain malicious behaviors appear in 
all variants of a certain kind of malware, the authors 
propose using template-based matching to detect 
malware. Their approach looks for a match of program 
behaviors rather than program syntax matching. In this 
manner, polymorphic and metamorphic code instances 
can be identified right along with their static 
counterparts. However, in [5], the authors only perform 
experiments on a non-networked host with standalone 
virus samples as well as evaluating their templates 
against a set of benign programs. As most threats to 
end-systems now emanate from the Internet, much in 
the form of self-propagating network code, network 
enabled detection is critical. Thus, in this work, we 
have built a full-featured network intrusion detection 
system with semantic-aware capability that can detect 
not only viruses, but remote exploits,  including worm 
traffic. Through rigorous testing, we show that 
semantic detection is an extremely powerful tool for 
identifying static and polymorphic network exploits. 



Our system can perform more efficiently than the 
system presented in [5].  
 The rest of the paper is organized as follows: In 
Section 2, we describe some related work and discuss 
how one particular work motivates this research. In 
Section 3, we describe the motivation for the semantic 
analysis of malicious code, and discuss how binary 
exploits work. In Section 4, we present the system 
architecture of the NIDS we have built and describe in 
detail how different stages of the system work. We 
describe our experiments and the results we obtained in 
Section 5. Finally, we summarize our findings and 
discuss some future work that we intend to explore in 
Section 6.         
 
2. Related Work  

 
 Much research has been devoted to intrusion 
detection in recent years. Two enormously popular 
open source tools, Snort [2] and Bro [3], have shown 
that static signature based IDSs can be quite successful 
in the face of known attacks. Combined with automatic 
monitoring and incident response, system 
administrators have a powerful tool against network 
attacks. In [13], the authors present the case for 
collaborative intrusion detection system where 
intrusion detection nodes cooperate to determine if a 
network attack is taking place and take corrective 
actions if it does. Others have sought to use statistical 
approaches to detect worm outbreaks. In [10], the 
authors propose a method to identify a worm victim by 
observing if the number of scans per second it performs 
exceeds a certain threshold. The numbers of worm 
victims observed in successive windows are then 
compared to the numbers predicted using a typical 
worm spread model and if they match, then a worm 
outbreak is declared.  
 In [7], [8], the authors show that byte-level 
analysis of packet payloads can yield useful signatures 
for worm detection.  The premise being some portions 
of the worm code will be invariant. At first glance, 
these approaches looked promising, however, in 
practice, they generate far too many signatures, with a 
sometimes-undesirable accuracy rate. A recent paper 
[12] also addresses the polymorphic worm detection 
problem in a similar manner. They advocate using 
disjoint data signatures. With [14], we begin to see a 
research trend towards using semantics knowledge for 
potential worm detection. Here, the authors observe 
that invariant byte positions may be disjoint (a result of 
advanced polymorphic techniques), but will be present 
nonetheless as they are integral to functionality. With 
[5] and [6], the application of semantics is introduced. 
Non-binary attacks, such as URL based web server 
exploits, are analyzed and clustered in a data-mining 

scheme in [6]. In this work, we built upon the approach 
described in [5]. Our contributions are three fold: (a) 
our prototype is a complete NIDS that provides 
semantic aware capability, (b) our implementation is 
more efficient than what is reported in [5], (c) our 
designed templates can capture polymorphic shellcodes 
with added sequences of stack and mathematic 
operations. 
 
3. Semantics-Aware Malware Detection 
Methodology 
 
 Current IDSs often use static signatures. 
However, new malware or worms that have appeared 
recently indicate that the authors of such malicious 
code often use code obfuscation to evade IDSs that use 
static signatures. There are two forms of code 
obfuscation: polymorphism and metamorphism. 
Traditional polymorphism has taken the form of an 
encrypted body of code with an attached (and often 
obfuscated) decryption routine. The encryption 
technique used is good enough to fool pattern-matching 
IDSs. Metamorphic code relies on the obfuscation of 
the entire code base, including code transposition, 
equivalent instruction substitution, jump insertion, 
NOP insertion, garbage instruction insertion, and 
register reassignment. Figure 1 shows a simple 
decryption routine and two obfuscated variants of that 
same decryption routine. The decryption routine shown 
in Figure 1(a) consists of a loop that performs an xor of 
a memory location against a static key, followed by an 
increment of the memory address to the next location. 
Figure 1(b) makes several changes to the code in 
Figure 1(a), including obscuring the key by adding mov 
and add instructions that work with a register. The inc 
instruction is also substituted with an add instruction.   
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 1. Three equivalent code routines. 

decode:
  xor byte ptr [eax], 95h
  inc eax
  loop decode

   (a) Simple xor based decryption routine

decode:

  mov ebx, 31h

  add ebx, 64h
  xor byte ptr [eax], ebx
  add eax, 1
  loop decode

   (b) 2nd instance of xor decryption routine

decode:

  mov ecx, 0

  inc ecx

  inc ecx

  jmp    one

 two:      add eax, 1

  jmp three

 one:   mov ebx, 31h

  add ebx, 64h
  xor byte ptr [eax], ebx
  jmp two

 three:   loop decode

   (c) obfuscated instance of xor decryption



These seemingly minor changes are good 
enough to fool a pattern matching IDS. Figure 1(c) 
improves on 1(b) by adding garbage instructions, and 
changing the code order while preserving the execution 
sequence with jmp instructions. One can think of a 
plethora of equivalent programs – thus, we must rely 
on the meaning of the code, and not its syntax, for 
reliable detection. 
 The authors of [5] reduce the problem of 
semantic equivalency to a template matching problem. 
In essence, if we can create a template describing the 
expected behavior of a piece of code, we can match it 
to an actual code routine to see if the tested code 
exhibits the same behavior. Stated formally in [5], “A 
program P satisfies a template T (denoted as P = T) iff 
P contains an instruction sequence I such that I 
contains a behavior specified by T.” A template will 
consist of a sequence of instructions, along with its 
associated variables and symbolic constants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A template and matching assembly 
code segment. 

 
 In Figure 2, we show an instance of a template 
on the left, and a matched assembly code segment on 
the right. The template shown is designed to match the 
decryption routine described in Figure 1. Each template 
is simply a description of the behavior we expect from 
a known routine – not the exact syntax that will show 
up in a code fragment. By looking at the assembly code 
segment on the right, we see that the code segment 
does not have a one-to-one correspondence with the 
template but the behavior defined by the template is 
present in the code routine. Thus, we can construct an 
algorithm to locate patterns defined in templates in real 
assembly code segments. 
           While [5] formalizes the template matching 
problem rather nicely, it presents a somewhat limited 
engineering approach to intrusion detection. The 
system that the authors built currently assumes that 
malware samples are available as inputs to their 
system. In order for the semantics-aware approach to 

be useful in a NIDS, a classifier needs to be provided 
so that semantic analysis is only performed on a small 
percentage of suspicious traffic. In addition, we believe 
that false positives are bound to emerge unless a good 
classifier is provided. For example, during the course 
of this research, we identified several legitimate 
programs (Crypkey [18], ASProtect [19]) that obscure 
binaries with simple encryption routines as a form of 
copy protection. Locating a decryption loop (the 
primary test in [5]) within a program protected by one 
of these applications will signal a false alert. As copy 
protection schemes begin to incorporate methods 
reminiscent of code circulating in the computer 
underground, we expect the false positive rate of the 
detection scheme based on purely checking installed 
binary programs on an end-host as described in [5] to 
grow accordingly. However, it is highly unlikely for 
copy protected program to be embedded in a web 
request sent by a scanning source, thus, one can easily 
differentiate between the two scenarios using a smart 
traffic classifier. Thus, we incorporate (a) a traffic 
classifier, and (b) a binary data identification and 
extraction module in our prototype. The combination of 
these features, and the semantic analysis allow the 
NIDS system we have built to be more effective than 
other NIDSs that are based on syntactic pattern 
matching approaches. In addition, our NIDS is more 
efficient than that reported in [5]. 
 
  4. NIDS with Semantic-Aware Capability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The semantic-aware NIDS 
architecture. 

 
In this work, we develop a full NIDS that 

segregates suspicious traffic from regular traffic flow, 
extracts binary data from suspicious traffic and 
performs semantic analysis on the binary data in order 
to identify potential threats. Such a NIDS does not rely 
on fingerprints or other syntax based methods. Figure 3 
shows the system architecture of our NIDS. It consists 
of five major components, namely (a) traffic classifier, 



(b) binary data identification and extraction module, (c) 
disassembler, (d) intermediate representation generator, 
(e) semantic analyzer. This NIDS can be deployed on a 
standalone machine connected to the network. 
 
4.1. Traffic Classification 
 
 Traffic classification is necessary to determine 
which packets are “interesting” and require further 
analysis. While it is possible to pass all traffic directly 
to the “Binary Detection and Extraction” module, it is 
more efficient to prune the traffic sent to the later 
stages, as they are very CPU-intensive. Currently, two 
classification schemes are implemented in our 
prototype system. The first is a simple and effective 
honeypot scheme. When the system is initialized, it is 
given a list of decoy hosts that exist for no other 
purpose than to attract unsolicited traffic (the 
effectiveness of honeypots has been explored in-depth 
by [16]). Any sending host emitting traffic destined for 
a honeypot address is considered suspicious; and any 
packets sent by such a host will be analyzed. 
 The second scheme is a bit more complicated, 
and is useful for the detection of widespread worm 
traffic. Initially, we note the un-used IP address space 
in our network, with the premise that any traffic 
repeatedly destined to the un-used address space may 
be indicative of malicious scanning. If a host sends an 
initial packet to an un-used address, a count n is 
initialized. If we continue to observe this host sending 
additional packets to other un-used addresses, the count 
will be incremented until it reaches a threshold t, at 
which point, packets emanating from that suspicious 
host will be considered for further analysis. 
 
4.2. Binary Detection and Extraction 
 
 In this work, we are interested in examining 
binary threats primarily in the form of buffer overflow 
exploits (we do not currently support detection of 
textual web attacks, brute force password attacks, etc.). 
Thus, we need a way to identify binary data within 
packet payloads. To accomplish this task, we need to 
understand how buffer overflow exploits are 
constructed and presented to a victim host. 
 
 
 
 
 
 
     Figure 4. Format of buffer overflow exploits. 

 
 

Traditional buffer overflow exploits (Figure 4) 
have taken the following form: a region of NOP 
instructions at the lowest address region on the stack, 
followed by the instructions the attacker wishes to 
execute, followed by a series of return addresses that 
will overwrite the return pointer of the subroutine and 
point back into the stack. Historically in IDS, it has 
been easy to detect the NOP region, as it was only 
composed of a repeating series of the same instruction 
(i.e. 0x90 for the x86 architecture). However, this is no 
longer the case – polymorphic exploit generators can 
use a whole host of instructions that have “NOP-like” 
behavior, thus making the NOP region variant. This 
leaves us with the return address region as a possible 
place to observe some invariant data. Only the least 
significant byte can be varied, since the return address 
must point back to a valid address in the buffer. 
 In practice, we observe network buffer 
overflow exploits to consist of a well-formed initial 
application layer protocol request, with exploit content 
usually resembling (but not necessarily matching 
exactly) Figure 4 encapsulated within it. By noting 
what is expected in a protocol request, and what is 
abnormal, we can often locate malicious binary 
content. Figure 5 displays the content of the Code Red 
II worm exploit. Here, a well-formatted HTTP GET 
request is made to a module of the IIS webserver. A 
stream of repeated ‘X’ characters initiates the overflow, 
and these characters are followed by the Unicode data. 
Our module has the ability to distinguish between 
acceptable protocol usage and suspicious repetition. 
Thus, we can locate the approximate region where we 
believe the binary content is located, and extract it. In 
the case of Unicode data (as is observed in Figure 5), 
we translate it into an appropriate binary form, for 
further analysis. This process will yield some binary 
data that is benign, but it dramatically cuts down on the 
amount of data that must be processed by the 
disassembler which is the slowest stage in our system. 
This binary identification and extraction process can be 
bypassed but it will result in a system with much 
degraded performance. 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.Code Red II exploit portion. 

 

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX%u9090%u6858%cbd3

%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u

cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b

00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0



4.3. Semantic Analysis 
 
 Because we have chosen a specific commercial 
product, IDA Pro [17], for our disassembler stage, our 
NIDS can only disassemble x86 code at the present. 
The binary detection and extraction stage produces 
special binary frames (binary data extracted from 
network packets) in a format that can be processed by 
the disassembler. Once an assembly code 
representation is generated by the disassembler, we 
prune the code to include only the instructions we are 
interested in. Any excess code from the program frame 
is discarded. 
 At this point, we have a sequence of instructions 
that we can analyze semantically. The semantic 
analyzer uses the template matching scheme [5] that we 
have described in Section 3. The templates that we 
built have the ability to handle out of order code, NOP 
insertion, junk instruction insertion, and register 
reassignment. If a piece of code matches one of our 
templates, an alert is generated, and further action may 
be taken against the offending IP address.  
 
5. System Evaluation 
 
 We have conducted an extensive evaluation of 
our semantic NIDS, against real malware samples and 
captured network traffic. All of our tests were 
performed on an Intel P4 2.8Ghz system with 512MB 
of memory. One of our primary goals with this work is 
to establish a reliable method for detecting 
polymorphic exploit instances. Thus, we evaluate two 
popular toolkits for polymorphic exploit generation, 
along with a publicly available exploit known to 
contain polymorphic shellcode. We also test a month’s 
worth of benign traffic, with classification disabled (all 
packet payloads are analyzed). Our preliminary results 
are extremely promising: we observe no false positives 
when we analyzed the benign traffic and we can nearly 
detect all polymorphic versions of malicious contents 
generated using ADMmutate [11] and Clet engine [9]. 
 
5.1. Linux Shell Spawning 
 
 In this first test, we selected eight different 
remote exploits, which can spawn a shell in a machine 
running the Linux operating system. A template was 
created (Figure 6) to match the relevant system calls 
associated with this behavior. It can detect shells 
created as an immediate instance of the exploit, and, 
with an extension, those that are bound to a separate 
network port. In our experiment, we built an exploit 
generator tool that sends exploit packets to a honeypot 
machine registered with the NIDS. All eight exploits 
are successfully detected as spawning a shell, while the 

two that bind the shell to a different port are also noted 
as such.  
  

                            

 
  

Figure 6. Template for Linux shell spawning 
code. 

 
 The results for this first set of experiments are 
tabulated in Table 1.  The running time for these eight 
instances ranges from 2.36 seconds to 3.27 seconds. The 
average binary code size is less than 10Kbytes for these 
exploits. As a comparison, we ran two variants of the 
Netsky virus with an average code size of 22 Kbytes 
through our program and it takes about 6.5 seconds each 
time. The time reported in [5] is about 40 seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Linux shell spawning buffer overflow 

exploits. 
 

5.2. Polymorphic Shellcode Detection 
 
 To detect polymorphic code, we created a 
template that captures the decryption loop 
functionality described in Section 3. Then, we created 
a tool that can generate numerous exploits towards a 
honeypot machine that was registered with the NIDS. 
The first test we perform is to verify that our system 
can detect the iis-asp-overflow.c exploit based on the 
template we designed. This particular exploit has a 



decryption routine prefixed to an encoded shell-
spawning region of code. The shellcode is encoded to 
evade detection by IDSs that employ pattern-matching 
techniques. Using the template we designed, our 
system was able to detect the decryption routine. The 
running time for this test is 2.14 seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Template for alternate ADMmutate 

decryption loop. 
 

The ADMmutate kit [11] is a popular 
polymorphic shellcode generation toolkit. It 
incorporates NOP-like instruction insertion, garbage 
instruction insertion, equivalent instruction 
replacement, and out-of-order code sequencing to 
obscure its decryption routine. For testing, 100 
instances of polymorphic payloads were generated, 
and inserted into a generic network buffer overflow 
exploit. The first test yielded only a 68% detection 
rate. Further manual inspection of the assembly code 
generated by our NIDS led us to establish that 
ADMmutate incorporates one of two distinct methods 
for its decryption routine. The first is the xor 
decryption our template can match, while the second is 
a decoding scheme involving a sequence of mov, or, 
and, and not instructions that perform operations on a 
single memory location and register pair. Once we 
developed a template that can match such behaviors, 
we achieved 100% detection of all shellcodes 
generated by ADMmutate. 
  
 
           
    
 

 
 
 
 

Table 2. Polymorphic shellcode detection. 

The Clet engine [9] is another popular tool for 
generating polymorphic shellcode. It relies on 
obscuring an xor based decryption routine in a fashion 
that will defeat data mining approaches to IDS. Thus, it 
incorporates many of the same features as ADMmutate, 
but Clet can also score the feature distribution 
probabilistically, so that the packet can appear to be 
“normal traffic.” Our xor decryption template matched 
all 100 shellcode instances that Clet generated. 
 
5.3. Code Red II Worm Detection 
 
 A template was devised to match the initial 
exploitation vector of the Code Red II worm. We tested 
this template against 12 5-minute traces collected from 
two Class B production networks, each with a total 
packet count of over 200,000. Before evaluation, we 
noted the correct number of instances of Code Red II 
within each capture. The results are tabulated in Table 3. 
From Table 3, one can note that every instance was 
classified and matched correctly by our NIDS.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Detection of the Code Red II Worm. 
 

5.4. False Positive Evaluation 
 
 For a final test, we disabled traffic 
classification on the NIDS, and examined every 
packet’s payload in a month’s worth of traffic captured 
from two Class C networks (a total capture of 566MB). 
Most of the packets in this trace are legitimate web 
traffic. The traffic was examined beforehand, to ensure 
none of the threats we are attempting to detect with our 
current template set (decryption routines, shell 
spawning, Code Red II memory addressing) were 
present. No false positives were reported from our 
template matching module; this is consistent with the 
findings of [5], though now confirmed in the network 
scenario. 

 
 
 



6. Conclusion 
 
 We have designed and built a NIDS with 
semantic analysis capability. We have performed 
extensive tests on our prototype system. Our results 
show that using high quality templates, our system is 
able to detect a wide variety of code exhibiting the same 
behavior, as opposed to the same formal syntax. Our 
experimental evaluation shows that our system does not 
produce any false positives when tested against a 
network trace of benign traffic. In the near future, we 
intend to classify more exploit behaviors so that we can 
generate additional useful templates that can be used in 
our NIDS to detect additional families of malicious 
traffic (i.e. email worms). We also intend to optimize 
our implementation so that it can run even faster than 
what has been achieved.  
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