
Conserving Memory Bandwidth in Chip Multiprocessors
with Runahead Execution

Martin Karlsson and Erik Hagersten

Department of Information Technology, Uppsala University
P.O. Box 337, SE-751 05, Uppsala, Sweden
{martin.karlsson, erik.hagersten}@it.uu.se

Abstract

The introduction of chip multiprocessors (CMPs)
presents new challenges and trade-offs to computer archi-
tects. Architects must now strike a balance between the
number of cores per chip versus the amount of on-chip
cache and the cost-efficient amount of pin bandwidth. Tech-
nology projections indicate that the cost of pin bandwidth
will increase significantly and may therefore inhibit the
number of processor cores per CMP.

Runahead execution is a very promising approach to tol-
erate long memory latencies. In this paper we study the
memory access characteristics of runahead execution. We
show that temporal and data dependency aspects of runa-
head execution makes it possible to conserve bandwidth
through the use of smaller cache blocks in the cache. We
demonstrate, using execution-driven full system simulation,
that our method of fine-grained fetching can obtain signif-
icant performance speedups in bandwidth constrained sys-
tems but also yield stable performance in systems that are
not bandwidth limited.

1 Introduction

The continued decrease in transistor size combined with
the increasing delay of wires relative to transistor switching
speeds has led to the development of chip multiprocessors
(CMPs). As more and more transistors become available
per chip, it is possible to fit more and more cores per die.
However, the number of off-chip signal pins is not growing
nearly as fast leading to an increasing disparity between the
number of cores that fit on a die and the available chip band-
width. While chip and memory bandwidth since long have
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been a performance-sensitive resource, it has now surfaced
as one of the major performance limiters.

Large-scale chip multiprocessors are desirable due to
their low intra chip communication cost, enabled by shared
higher level caches. For many commercial applications
with an abundance of thread-level parallelism[25], adding
cores or threads yields a very appealing performance im-
provement per mm2. The number of cores per chip will
likely be scaled up as high as the chip power and bandwidth
will support. In this paper we target the CMP chip pin band-
width by conserving the bandwidth of each thread. By re-
ducing the bandwidth demands of each core, more cores
could be supported within the same packaging cost enve-
lope.

Increasing the on-chip cache reduces the bandwidth con-
sumption. However, the performance effect of adding more
cache is non-linear and for certain applications does not im-
prove performance at all. Hence increasing on-chip cache
can alleviate but not solve the bandwidth bottleneck.

As the memory wall problem has come to overshadow
other aspects of processing, various forms of runahead exe-
cution have been proposed[21][12][7][3][4]. Runahead ex-
ecution attempts to reduce the effect of the long memory
latencies by increasing the memory-level parallelism. The
strength of runahead execution is its ability to prefetch data
far ahead of the stall point. We will in this paper analyze
runahead execution from a memory system design perspec-
tive.

The contribution of this paper is three-fold:

• We highlight the trend of decreasing bandwidth per
transistor, which is likely to impact CMP scaling.

• We identify and analyze spatial and temporal aspects
of the data fetch pattern of runahead execution.

• We evaluate a scheme to exploit the runahead data
fetch characteristics to reduce bandwidth consump-
tion.
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Figure 1. The Semiconductor Industry Association’s prediction of bandwidth per transistor.

2 Technology Trends

The off-chip bandwidth of a chip is determined by the
number of signal pins and the off-chip frequency. Reliabil-
ity, power and especially cost restrict the number of pins per
chip[5].

The International Technology Roadmap for Semicon-
ductors published by the Semiconductor Industry Associ-
ation (SIA) contains yearly predictions of the cost-efficient
number of transistors and signal pins per chip for micro-
processor chip designs [24]. The 2003 edition reported an
annual growth in the maximum number of signal pins that
is deemed cost-effective per chip of 5% (Avg.) between
2003 and 2018. In the 2004 update, however, the projection
now predicts zero growth during the same time span. This
indicates a significant challenge ahead to increase the chip
bandwidth in a cost efficient way.

During the same period (2003-2018) SIA predicts the
number of transistors per chip to grow annually by 26%
(Avg.). Therefore the the number of signal pins per tran-
sistor will decrease considerably. As can be seen in Figure
1 the transistor count per signal pin ratio is projected to in-
crease 20 fold to the year 2018. When taking relative on/off
chip frequency development into account the increase is re-
duced to a factor of 7. This is due to the fact that signal pin
frequencies are predicted to grow faster than on-chip fre-
quencies. Several promising approaches, including optics
and proximity communication, lie on the pin technology
horizon. However in both cases such paradigm shifts are
likely to provide a one-time bandwidth increase, not funda-

mentally change the bandwidth growth rate. Therefore in
the long-term perspective, the off-chip bandwidth will de-
crease in relation to the number of transistors per chip. If the
number of processor cores and cache per chip is going to be
scaled linearly with the transistors made available by future
process generations, it will lead to bandwidth requirements
that will be hard to satisfy.

3 A Trend of Growing Cache blocks

The lack of growth in off-chip bandwidth will force
architects to reevaluate memory system design from a
bandwidth-centric view. This contradicts another trend we
have observed in processor design. A trend towards larger
and larger cache block sizes in the highest level on-chip
caches. Examples of this is observed in the Pentium, Ita-
nium and SPARC64 processor families. The L2 cache block
size increased from 32 byte to 128 between the Pentium III
and 4 processors. In Itanium it increased from 64 bytes per
on-chip L3 block to 128 byte per block between Merced
and McKinley. SPARC64 showed the largest increase be-
tween version V and VI, which went from 64 bytes to 256
bytes per cache block. These increased L2 cache block sizes
were undoubtedly chosen to amortize the cost of longer and
longer memory latencies. However, unless all of the fetched
data are used, larger cache blocks leads to some data being
unnecessarily brought on chip consuming the scarce band-
width.
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4 Runahead Execution and Hardware Scout

Runahead execution has been proposed as a viable path
to tolerating the ever increasing memory latencies. A runa-
head processor enters speculative runahead mode upon en-
countering a stall condition. Before runahead mode is en-
tered, a checkpoint of the architected register state is taken.
The execution then continues in the hope of finding inde-
pendent memory operations further down the instruction
stream. A memory operation is considered independent if
its address computation is not dependent of the destination
register of the load causing the launch into runahead mode
or a previous cache miss. Throughout this paper we refer
to the memory operation causing runahead execution as the
launch point. Once the data of the launch point load miss
has arrived, execution is resumed from the checkpointed
register state. We will use the term re-execution to refer to
normal mode execution of instructions that previously have
been executed in runahead mode.

In runahead mode each register that is dependent on the
destination register of the launch point load is marked by a
Not-A-Thing bit. The effective address of memory opera-
tions whose source registers are not marked by the corre-
sponding Not-A-Thing bit, can be computed and forwarded
to the memory system as non binding prefetches. If such
a prefetch misses in the cache, the destination register is
marked by a Not-A-Thing bit. Similarly for stores where
the effective address is known, a prefetch is forwarded to
the memory system. Runahead can therefore be viewed as
an intelligent prefetcher that operates when the processor
would otherwise have been stalled.

Hardware Scouting, described by Chaudhry et al.[7], is
an extension of runahead execution, that includes several
optimizations to previous runahead proposals. In hardware
scouting, launching and exiting out of runahead is a zero-
latency operation and runahead mode is also entered on low
latency misses (L2 hits). This can be contrasted to the pro-
posal by Mutlu et al. where runahead mode is entered first
when an L2 miss has been detected[21]. In addition to en-
tering runahead mode on a load miss, the hardware scouting
proposal also identifies the case of a pending store when the
store buffer is full as a stall event on which to launch into
runahead mode. To execute a dependent instruction, i.e. an
instruction with a source register marked as Not-A-Thing,
simply requires an OR operation of the Not-A-Thing bits as-
sociated with the source registers. Therefore, by providing
specialized Not-A-Thing functional units, runahead mode
enables a faster execution than normal mode since the in-
structions producing a Not-A-Thing value will not consume
regular execution unit resources. In runahead mode the se-
rialization enforced by certain instructions (e.g. CASA) can
also be ignored, further speeding up the runahead mode ex-
ecution.

The ability of runahead execution to continue past stall
events and not being restricted by an Out-of-order window
size allows data to be prefetched further from the stall point
and also in more of the demand miss cases, than in con-
ventional out-of-order processors. Although runahead exe-
cution leads to a quite different data fetch pattern than ex-
hibited by in-order and ooo processors, this have not been
analyzed in depth in the literature. In the following section
we will start by characterizing this fetch pattern from a spa-
tial locality point of view.

5 Independent Spatial Cache Misses

Throughout this paper we use the term spatial miss(S,C)

to refer to a cache miss in a system with a fetch block size
of S that would have been avoided if the larger cache block
size C would have been used. To isolate from replacement
algorithm effects we use the metric in the context of sub-
blocked caches[23], where C bytes of data map to the same
cache tag and each sub-block is of size S. An example of a
spatial miss(16,64) is an access that leads to a cache miss in
a cache with 64 byte cache blocks divided into 16 byte sub-
blocks but that would hit if the cache was not sub-blocked.

One of the most common examples of spatial misses oc-
cur when traversing an array, which often demonstrates a
high degree of spatial locality. The address computation is
often based on a base register holding the base address of
the array and an offset based on a loop variable that is not
dependent on a memory access. Similarly for more com-
plex data structures, compilers often use fixed offsets to ac-
cess member variables. Since these accesses often are based
on address computations that are not dependent on previous
memory accesses, it leads us to the hypothesis explored in
this paper:

Spatial misses encountered in runahead mode are based on
address computations of independent registers.

Independent registers refers to source registers of a runa-
head mode memory operation that is not, directly or indi-
rectly, dependent on any previous cache miss, including the
launch point memory access. If we assume that a large frac-
tion of the cache misses are encountered in runahead mode
and that address computations of spatial misses are inde-
pendent, most spatial misses would lead to prefetches in a
runahead processor. If the assumption that many misses oc-
cur in runahead does not hold, it would imply that cache
misses are so far apart that the runahead thread launched
on a miss does not cover the next miss. If that is the case
it is unlikely that the performance of such applications are
limited by the memory system, and are therefore less inter-
esting for this kind of study.

Sometimes in runahead mode the effective address of a
memory operation can not be computed due to one of the
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Figure 2. Temporal Aspects of Runahead
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source registers being marked as Not-A-Thing by a previ-
ous instruction. One example of this behavior is a linked-
object list traversal. If the load of a list-item pointer misses
in the cache, runahead execution will not be able to prefetch
any of the subsequent list items since all items are depen-
dent on the launch-point load. From a spatial access point
of view, this case is not affected by the use of smaller cache
blocks unless multiple objects fit in the same cache block.
The reason for this is that the compiler usually uses register
plus offset based addressing for this kind of accesses and
if the register is Not-A-Thing, the accesses can not be sent
out in either way. If we assume that all address computa-
tions of spatial misses are independent, all spatial misses
will be found except for accesses of memory operations not
covered by the runahead thread. One such example is if
the runahead thread is terminated when only part of a cache
block’s spatial misses have been discovered.

It is worth noting that while runahead execution can be
very effective at prefetching instructions into the instruction
cache, runahead can not explore spatial instruction misses.
The reason is that once an instruction miss occurs, the runa-
head thread can not continue and is therefore not able to find
the spatial misses. Instruction misses are therefore costlier
than data misses and presents a challenge since a runahead
launch only can prefetch one cache block of instructions.

6 Temporal Aspects

In a system where spatial misses lead to separate data
fetches, there is a temporal aspect. Spatial misses occur-
ring in runahead mode are requested later than they would
be in a system with a larger cache block size. If we assume
that re-execution in normal mode is equally fast as runa-

head execution, then due to the runahead way of returning
to a checkpoint and re-executing instructions, the delayed
fetch of spatial misses should not incur any extra delay. The
reason for this is that by the time they are re-executed the
same amount of time has passed as the latency of the launch
point miss.

This is illustrated in Figure 2 where the first load into
r2 occurs in normal mode and triggers runahead execution.
Then the second load into r3 is a spatial miss(64,16) with
respect to the first load, i.e. the launch point load. The sec-
ond load is forwarded to the memory system t0 cycles after
the launch point load access is sent out. However the re-
execution will not occur until t1 + t2 + t0 cycles after it was
fetched, which is equal to the latency of the launch point
load access. The same reasoning holds if the first load is
not a launch point miss, but instead a regular cache miss
occurring in runahead mode. As mentioned in Section 4
runahead execution can be faster than normal mode execu-
tion since additional specialized functional units can exe-
cute instructions marked as Not-A-Thing and serialization
can be ignored. Therefore, despite the delayed request, the
data have a high probability of being available in a timely
fashion.

7 Architectural Proposal

The implications of our observations from a memory
system design point of view is that spatial misses in runa-
head mode to a much higher degree than in conventional
architectures can be identified and sent out as prefetches.
Therefore memory systems do not need to rely on the
prefetching effect of large cache blocks and instead allow
smaller pieces of data to be requested separately. To exploit
this observation we propose fine-grained fetching, which
saves bandwidth by avoiding fetching of unnecessary data.
Architecturally, this could be implemented by using a small
cache block size in the highest level cache. To avoid the in-
crease in tag overhead associated with small cache blocks,
we evaluate our system using a sub-blocked cache organi-
zation.

Fine-grained fetching will lead to an increased on-chip
address bandwidth. While on-chip bandwidth also is a re-
stricted resource we believe it to be a less constrained re-
source than off-chip bandwidth. The off-chip address band-
width consumption will also increase and we will discuss in
Section 10.1 how this can be mitigated.

Reducing the instruction fetch block size would not have
the same effect as for the data side, since runahead can not
find spatial instruction misses beyond an instruction miss.
Instructions often exhibit a high degree of spatial locality,
suggesting the use of larger cache blocks for instruction
caches. For unified second level caches, this leads to a
complication due to the complexity involved in maintain-
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ing coherence between a L1 cache with a larger cache block
size than the L2 cache. The fine-grained fetch solution pro-
posed in this paper is to use a small L1 cache block size for
both the L1 instruction and data cache, and automatically
prefetch multiple continuous cache blocks for each instruc-
tion miss into the L1 instruction cache.

8 Methodology

Our evaluation of runahead fine-grained fetch is based on
full system simulation using both commercial and scientific
workloads.

8.1 Simulation Setup

Simics is an execution-driven simulator that models
a SPARC V9 system accurately enough to run Solaris
unmodified[19]. To model the timing of a runahead pro-
cessor we have extended Simics with a processor model,
Headrunner, and a detailed memory hierarchy simulator
VASA[10]. While equally relevant for single thread perfor-
mance, we have opted to evaluate fine-grained fetching in
chip multiprocessor context due to the increased bandwidth
requirement.

8.1.1 Benchmarks

We use five multithreaded benchmarks. Two commer-
cial applications SPECJBB 2000 and APACHE. SPECJBB
2000 (JBB2000) is a commercial JAVA-based middleware
benchmark which evaluates the performance of server-side
JAVA [26]. APACHE is a benchmark modeling the Apache
open source Web server to which URL-requests are sent by
a client [1]. SPECJBB 2000 is run for 2000 transactions
after a warm-up period of 100 000 transactions. APACHE
was run for 800 transactions with a 1000 transactions warm-
up period.

In addition we used three randomly chosen applications
from the SPLASH2 benchmark suite, LU NC, WATER S
and WATER N. We ran the SPLASH2 benchmarks with
the default input sets specified in the SPLASH2 code and
warmed the caches according to Woo et al [27].

8.1.2 Processor and Memory System Configuration

We model a highly simplified non-pipelined, in-order and
single-issue processor model. Hence, no wrong path effects
are modeled. We believe that the exclusion of wrong-path
effects in this study is likely to lead to an underestimation
of the benefit of fine-grained fetch, since fetching smaller
blocks of data along the wrong path is likely to have posi-
tive performance effects. The simplified and fast processor
model allowed us to make longer and more realistic runs

Processor 16 cores per chip
Frequency 4 GHz
L1 data cache 64 KB, 8-way, 1 cycles
L1 block size 16 B
Shared L2 cache 2 MB, 8-way, 24 cycles
L2 block size 64 B sub-blocked 1, 2, 4 times
Memory Latency 200 cycles

Table 1. Simulated Target System Parameters

of the commercial workloads, something the speed of a de-
tailed processor model with full-system simulation would
not have allowed.

The CMP we are simulating contains 16 single-threaded
cores each capable of invoking a runahead thread. Each
core have separate L1 instruction and data caches, and a L2
cache which is shared among all the cores. We evaluate
fine-grained fetch with a sub-blocked L2 cache configura-
tion. To reduce interaction effects we have opted to simplify
our memory system by assuming an infinite storebuffer and
a perfect instruction cache.

We model separate unidirectional address and data buses
of varying bandwidth. We assume an address packet size
of 8 bytes, write packet header of 4 bytes and data packet
header of 4 bytes, where each bus packet includes control
state and ECC. We do not model any additional bus latency
instead only the queueing delay is added. Further details of
the simulated configuration can be found in Table 1.

8.1.3 The Headrunner Simulator

The Headrunner simulator is a simplified and idealized
model of an in-order runahead processor. Runahead mode
is entered on a data cache miss. We have assumed that a
checkpoint can be made without incurring any stall time.
The execution returns to normal mode when the cache
block associated with the launch point load is filled. If the
runahead thread comes across a memory access with side-
effects, an asynchronous trap or an external interrupt, the
execution stalls until relaunch into normal mode. Further-
more, if a miss is encountered in normal execution mode
and the application is in kernel mode, the simulator does
not enter runahead mode. The reason for this is simula-
tor simplicity. Many simulation-wise complicated corner
cases tend to happen when launching into runahead in ker-
nel mode.
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Figure 3. The fraction of unused 16 byte sub-
blocks at eviction with a 64B cache block.

9 Results

9.1 Spatial Usage

To measure the potential bandwidth savings achievable
by using a smaller cache block size, we have measured the
number of untouched 16 byte sub-blocks upon eviction, as-
suming a 64 byte cache block size. As can be seen in Figure
3 the untouched sub-blocks constitutes up to 40% of the al-
located sub-blocks, showing a very low spatial utilization.
Previous studies have reported that less than half of the allo-
cated data gets used before eviction even for a small cache
block size of 32 byte[18]. These unused pieces of data con-
sume bandwidth without contributing to performance. In a
bandwidth constrained system these extra sub-blocks lead
to increased queuing delay and therefore increases the la-
tency of other memory requests. If these blocks could be
identified ahead of time, the amount of data transferred and
therefore the memory access time, could be reduced.

NaT miss per NaT miss NaT miss per
1000 instrs per L2 miss L2 Access

Apache 2.04 0.07 0.01
JBB2K 13.52 0.73 0.14
Lu NC 0.00 0.00 0.00
Water N 0.06 0.13 0.00
Water S 0.00 0.00 0.00

Table 2. Number of Not-A-Thing misses.

We start our evaluating by using a sub-blocked L2 cache.
We use sub-blocking instead of just reducing the cache
block size to isolate the miss ratio effect from replacement
effects. In a sub-blocked cache the same replacements will
be made regardless of sub-blocking degree. Throughout this
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Figure 4. Distribution of memory accesses
with Not-A-Thing marked source registers (64
B cache block 4 sub-blocks)

paper we refer to the number of sub-blocks mapping to the
same tag as degree of sub-blocking, where a sub-blocking
degree of one corresponds to a non-sub-blocked cache.

One of the potential obstacles towards successful runa-
head fine-grained fetching is if spatial misses can not be for-
warded to the memory system due to source registers being
dependent (marked as Not-A-Thing). Due to the way the
headrunner simulator is implemented we can obtain the ef-
fective address also of memory operations where the source
register is Not-A-Thing. We are therefore able to send non-
intrusive probes to the memory hierarchy for Not-A-Thing
memory operations and count the number of accesses that
would have lead to a hit, block miss or a sub-block miss.
A sub-block miss is an access that leads to a tag match
but where the valid bit is not set for the sub-block. Table
2 shows the number of Not-A-Thing misses in relation to
(normal mode) instructions, L2 misses and L2 accesses.

Across all benchmarks the total number of Not-A-Thing
misses are relatively few compared to the number of nor-
mal mode instructions. JBB2000 shows the highest amount
which could be due to the object-oriented nature of the
workload with pointer-indirections etc. JBB2000 also
shows a very high number of Not-A-Thing misses per L2
miss fraction, indicating that the number of memory ac-
cesses that could not be forwarded to the memory system
due to dependencies are high. From the perspective of fine-
grained fetching, the question is however how many of these
misses are spatial misses.

Figure 4 shows a breakdown of the Not-A-Thing misses
into cache misses and sub-block misses for both loads and
stores. We find the fraction of load sub-block misses to be
low for both JBB2000 and APACHE. The store sub-block
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Figure 5. Performance effect of reducing fetch block size in a system with infinite bandwidth. The
64B cache block is divided into 1, 2 and 4 sub-blocks

misses are also fairly low although significantly higher than
the load sub-block miss fraction. This leads us to conclude
that the high number of Not-A-Thing misses observed for
JBB2000 in Table 2 includes relatively few spatial misses
that would penalize fine-grained fetching. The breakdowns
are less interesting for the SPLASH applications since they
barely have any Not-A-Thing misses.

10 Isolating Sub-block Miss Penalty

To isolate the miss penalty effect we start off by ignor-
ing bandwidth effects, i.e. a data fetch always takes a con-
stant number of cycles regardless if 64 bytes or 16 bytes
are fetched. This is a very conservative assumption, penal-
izing higher degrees of sub-blocking, since smaller blocks
often can be supplied faster than larger blocks. Figure 5
a, shows the performance effect of increasing the degree of
sub-blocking, i.e. using smaller and smaller sub-blocks, in
a conventional in-order processor. The performance cost for
fetching smaller sub-blocks is significant. Three out of the
studied applications suffer an overall performance degrada-
tion of 25% or more. Especially the commercial workloads,
APACHE and JBB2000 are negatively affected with up to
45% and 35% reduction respectively. Such a considerable
slowdown is unlikely to be acceptable in any design paying
attention to single-thread performance and workloads that
are not bandwidth bound. Since the performance effects of
scaling cacheline size and sub-blocking degree for in-order
processors have been thoroughly studied elsewhere, we will
focus on runahead enabled processors for the remainder of
this paper.

In an runahead processor, a cache miss can be overlapped
by additional fetches in runahead mode. Due to the overlap-

ping effect (memory level parallelism), the number of cache
misses can not entirely indicate overall performance. As
can be seen in Figure 5 b the isolated miss penalty is signif-
icantly lower than in the in-order case. Except for APACHE
none of the applications suffer more than 10% performance
degradation. In the case of APACHE the result is likely af-
fected by the kernel mode limitation of the headrunner sim-
ulator. Since we have observed that 70% of L2 cache misses
occur in kernel mode in APACHE, the simulator limitation
of not launching into runahead mode when encountering a
kernel mode stall condition, is likely to have a significant
effect.

10.1 Taking bandwidth effects into
account

Figure 5 b showed that from a miss ratio perspective the
performance cost of decreasing fetch block size is limited
for four out of the five studied applications. However reduc-
ing fetch block size also affects the bandwidth consumption.
In Figure 6 we show the normalized data bandwidth when
reducing the fetch block size. In the case of JBB2000 the
bandwidth is reduced by 51%, while APACHE show a 21%
reduction. The data bandwidth consumption of LU NC is
increased by 15%, which can be explained by very high
spatial locality in combination with additional data packet
header overhead. The data packet header size of 4 byte
which we have assumed leads to a four times as high over-
head for 16 byte fetches compared to 64 byte fetches. This
is somewhat exaggerated since the ECC does scale with the
data size. We find that the bandwidth savings correlates well
with Figure 3, since we see the largest effect in JBB2000
and the smallest effect for LU NC. Note that the bandwidth
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Figure 6. Normalized data bandwidth when
scaling the degree of sub-blocking for a
cache with 64 B cache blocks

savings shown in Figure 6 includes all fetched data, while
the Figure 3 only measured spatial utilization on the evicted
cache blocks.

Fine-grained fetching results in an address bandwidth in-
crease in applications with a high spatial utilization. We
have observed that the increase in address bandwidth, some-
times erases the savings made in data bandwidth. We have
found that for the SPLASH applications, the high spatial
utilization leaves few sub-blocks to be saved and can not
offset the increase in address bandwidth. Therefore, in
terms of total bandwidth, we only see a reduction for the
commercial workloads, APACHE and JBB2000.

While beyond the scope of this paper, we believe mul-
tiple techniques can be applied to reduce the address
overhead. We have observed that spatial misses often
are encountered sequentially, indicating that bus encod-
ing schemes may be very successful at reducing the ad-
dress overhead. Another possibility is to collapse multiple
sub-block requests into larger requests when requests are
queued up on-chip.

By adding a bus model to our experimental setup we can
evaluate the performance effect of conserving bandwidth
through reduced fetch block size. Our model includes both
an address and data bus, each providing the same band-
width. Figure 7 shows the normalized performance in a
system with 8 GB/s of dedicated data bandwidth (16 GB/s
in total). This can be compared with the total (address and
data) memory bandwidth of the Itanium 2 and Power4 pro-
cessors, which are 6.4 and 12.8 GB/s respectively[22]. For
the Power4 the bandwidth is divided equally in address and
data bandwidth, leading to a data bandwidth of 6.4 GB/s.

We can observe that for APACHE and JBB2000, the
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Figure 7. Performance Effect of increasing
the degree of sub-blocking in a system with
8 GB/s data bandwidth

miss ratio penalty is outweighed by the bandwidth effect
and reducing the fetch block size results in a speedup. For
APACHE the speedup is 22% and for JBB2000 the speedup
is 85%. The reason why we see such a large performance
increase, despite a fairly modest bandwidth reduction, is
likely due to burstiness in the memory requests. Since our
bandwidth measurements are made for the entire run it does
not reveal how much of the bandwidth is saved during the
performance critical periods of contention.

For the SPLASH applications we note a similar behav-
ior as observed in Figure 5 b, indicating that the SPLASH
applications are insensitive to bandwidth constraints. The
reason is that the working sets of our benchmark setups are
too small and fits in the relatively large L2 cache of 2 MB.
We have nevertheless chosen to include them in this study
in order to demonstrate the performance stability of fine-
grained fetching.

We have also simulated a system with 16 byte cache
blocks, in order to estimate the performance increase possi-
ble from using small cache blocks instead of sub-blocking.
We ignore the increase in tag overhead and simulate a 2MB
L2 cache with 16 byte cache block and 8 GB/s of data band-
width. For Apache and the SPLASH applications, the use of
a smaller cache block size does not yield any significant per-
formance improvement over the use of sub-blocking. How-
ever, for JBB2000 the speedup went from 85% with sub-
blocking to 115% with small cache blocks.

In Figure 8 we show how performance is affected when
scaling up the data bandwidth. As expected when we in-
crease the bandwidth the positive performance effect de-
creases. But also if we decrease the bandwidth to 4 GB/s the
speedup of APACHE and JBB2000 increases to 32% and
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Figure 8. Normalized Performance when us-
ing a sub-block size of 16 B (compared to 64
B) and scaling up the data bandwidth (4, 8,
12, 16 GB/s)

125% respectively. Since we are assuming a fixed DRAM
access latency regardless of fetch size, the only performance
contribution from smaller cache blocks are gained from a
reduction in bus queuing delay. Therefore when we scale
up the bandwidth the performance approaches the fixed la-
tency without bandwidth modeling result from Figure 5 b.
The interesting thing to note here is that we need to scale
up the bandwidth fairly high in order for the performance
improvement to diminish.

10.2 Power and Latency Implications of
fine-grained fetching

Chip power is one of the most constrained resources in
processor design today. A significant source of power con-
sumption are the inter-chip buses. Signal pin drivers can
consume 15 to 20 percent of the total chip budget [20].
Therefore by reducing the amount of data transferred by
using fine-grained fetching, substantial overall chip power
savings can be made.

In narrow channel memory technologies like RAMBUS
and DDR, a cache block request is divided into multiple
reads (bursts) of e.g. 8 bytes as in DDR. If burst-scheduling
is used, the bursts that make up a cache block, are read se-
quentially from a DRAM bank. In such systems the latency
of reading a cache block is linear with the number of bursts.
Therefore fine-grained fetching could also result in latency
reductions, further reducing the memory access cost.

11 Related Work

In a patent by Burger and Wood[6] they propose an dy-
namic number of sub-block fetching where the number of
sub-blocks fetched is determined by inspecting the usage
of previously allocated blocks. They also propose fetching
a pattern of discontinuous sub-blocks if an historical pat-
tern is discovered. Kumar and Wilkerson proposes the spa-
tial footprint predictor[18], that predicts how much data to
fetch for each cache miss. Other proposals on predicting or
adapting cache block size have been made by Gonzalez et
al.[14], Johnson et al.[17] and Chen et al.[8].

Several proposals have been made suggesting memory
compression to save bandwidth[2][15][13]. We deem these
approaches orthogonal to fine-grained fetch since compres-
sion of sub-blocks could further alleviate the bandwidth
problem. Proximity communication[11] appears to be a
very promising new technology. If proven successful it
could very well disrupt current bandwidth trends.

Spracklen et al. [25] presented latency and bandwidth
implications of Hardware Scouting and describes several
challenges involved in the design of chip-Multithreaded
(CMT) processors. Other work targeted at understanding,
exploiting or optimizing runahead execution have been pre-
sented by Sorin et al.[16] and Chou et al.[9].

12 Conclusions

Runahead execution is a very promising approach to tol-
erate long memory latencies. In this paper we have identi-
fied spatial and temporal aspects of the data fetch patterns of
runahead execution. We have also demonstrated how these
observations can in a very simple manor be exploited to
alleviate one of the most pressing memory system design
challenges, the pin bandwidth of a chip. Our proposal of re-
ducing bandwidth consumption by employing smaller fetch
blocks have been shown to lead to execution time speedups
of up to 125%.

Smaller cacheline sizes have in many studies been shown
to increase performance for certain workloads and under
certain bandwidth constraints. In this study we show that
with fine-grained fetching and runahead execution, stable
performance can be obtained across a wide range of band-
width constraints and workloads.

This is the first step towards exploiting the character-
istic of independent spatial misses in runahead execution
through fine-grained fetching. A first step leading to more
efficient bandwidth utilization, since the amount of unnec-
essary data brought on-chip is decreased. We believe that
future proposals can extend the method to reduce the in-
crease in address bandwidth and to reduce the performance
penalty for workloads with a high degree of spatial utiliza-
tion.
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