
Verifiable Credit Based Transfers in Wireless Ad Hoc Networks

Bogdan Carbunar, Brett Lindsley, Michael Pearce and Venu Vasudevan
Motorola Labs

Pervasive Platforms and Architectures Lab
Schaumburg,IL 60196 USA

{carbunar,brett.lindsley,michael.pearce,cvv012}@motorola.com

Abstract

Encouraging cooperation between users of mobile de-
vices operating in ad hoc mode is a difficult task mostly be-
cause the scarce battery and bandwidth resources of devices
suggest that selfish behavior may be most beneficial. The
insecure usage of credits to reward cooperation can easily
provide an incentive for cheating, thus, on the long term
only leading to selfishness. In this paper we propose sev-
eral secure credit based mechanisms enforcing fairness in
a hybrid wireless content retrieval system operating both
in cellular and ad hoc connectivity modes. Our solution
consists of mechanisms for securely and privately discover-
ing desired content on neighboring devices, simultaneously
exchanging credit and content shares in a verifiable man-
ner and for generating and expiring non-forgeable credits.
We present experimental results of a partial prototype of
our system implemented on MPx and E680i cellular phones
and HP iPaq hx4700 PDAs, along with extensive simulation
results showing that our solution significantly reduces the
effectiveness of selfish behavior, making it an unattractive
strategy.

1 Introduction

There is an explosive demand for portable media prod-
ucts that provide mobile users with access to their per-
sonal/commercial media ”on the go”. Products such as
ipod, iRadio and ROKR show how the traditional concepts
of jukebox, radio programming and DVR are being en-
hanced in the mobile media context to provide greater va-
riety, portability and choice. The media and storage capa-
bilities of cellphones combined with their global penetra-
tion, make them a promising ”converged” media device that
combines both a networked media player and a communi-
cations device. If done right, such a device can provide the

1-4244-0910-1/07/$20.00 c©2007 IEEE.

user with transparent access to a large, distributed media li-
brary of both stored (e.g. media files on your PC) as well as
dynamically recorded content (e.g. tv programs recorded on
your home DVR), and a compelling playback experience. A
networked player goes beyond portable media players such
as the ipod video in leveraging the network to providing
timely access to dynamic content (such as news, shows, or
sport events).

Building a cost-effective networked media player that
supports dynamic content markets presents a challenge -
that of being able to pro-actively and cheaply pre-cache
media so as to provide users the illusion of a large ”vir-
tual” media library on a device that has a large (order of 1
GB) but not infinite storage capacity. Naive usage of the
cellular network can rack up large cellular bills and drain
the battery, thus saddling the user with a large wireless bill
while degrading the communication function of the device.
A more elaborate solution could take advantage of the exist-
ing alternate, cheaper 802.11b [4] based communication ca-
pabilities of devices (present on Motorola MPx or CN620,
Nokia 6136 or 9500 Communicator, Siemens SX66 or Fu-
jitsu Siemens LOOX T800 series cellphones to mention just
a few) in order to complement cellular service whenever
Wi-Fi hotspots are available.

While hybrid use of cellular and Wi-Fi networks can re-
duce the operational expenses of participants, user mobility
coupled with insufficient access point deployment provide
significant space for improvement. An interesting attempt
at filling this gap, requiring no infrastructure changes, con-
sists in using communities of iRadio [2] type service users,
where participants use their wireless 802.11b interfaces to
search for and transfer desired content from each other, in
cases where access points are unavailable. However, the
functionality of proximity based wireless peer-to-peer com-
munities relies on the willingness of users to cooperate, that
is, to consume resources such as battery and bandwidth. In
such instances, individual reasoning suggests selfishness as
the most effective strategy for maximizing personal satis-
faction, at the expense of global welfare. Selfish behavior

may not only reduce the levels of satisfaction achieved by
participants but more importantly, reduce the trust of coop-
erating participants in the system and ultimately affect their
willingness to cooperate.

A popular mechanism for encouraging cooperation con-
sists in rewarding resource consumption with credits. Par-
ticipants share their content with others only when offered
credits in return and earned credits can later be used to en-
able similar transactions benefiting them. By regulating
transactions, credits discourage selfishness, however, the
use of insecure mechanisms for managing credits may gen-
erate malicious behavior, such as repeatedly spending the
same credits, fraudulent minting of credits or cheating dur-
ing transactions.

In this paper we study mechanisms for detecting mali-
cious behavior and identifying attackers in the context of
the Cache-and-Carry (CnC) system [8] developed in our lab
(see Section 3 for a detailed description). CnC is designed
to operate on Wi-Fi equipped cellphones and enables their
users to efficiently retrieve desired content from their home
computers through a multitude of connections (USB, cel-
lular, Wi-Fi hotspots). We extend CnC to support ad hoc
transfers of content from nearby devices in exchange for
credits. For this we propose a secure decentralized mecha-
nism that prevents cheating during transfers of content and
credits. Selfish users have little reason to consume their bat-
tery power by sending erroneous content. However, the net-
work may contain purely malicious users that do not have
battery concerns and whose sole purpose is to cheat.

We propose an offline protocol for simultaneously trans-
ferring content and credits, where the participant receiving
content blocks can verify not only that the blocks are in-
deed part of content signed by the other party, but also that
they are part of the content expected. The other participant
can verify that the received credit shares are part of a valid
credit message signed by the other party and at the com-
pletion of the protocol can also efficiently reconstruct the
credit message, which can then easily be transferred to other
participants. Our solution uses Merkle trees to efficiently
authenticate content, error correcting (erasure) codes to re-
construct corrupted content blocks and a publicly verifiable
secret sharing scheme to authenticate and reconstruct signed
credits. Moreover, we provide mechanisms for securely and
privately discovering content on neighboring devices, track-
ing the usage of credits and detecting attacks such as forgery
and double spending, all employing common cryptographic
primitives. Our solution takes advantage of the occasional
free of charge centralized operation mode of devices (wire-
less hotspots for instance) to bootstrap trust and verify the
correctness of past transactions. We implement and test the
computation and communication efficiency of the discov-
ery and simple transfer component of the presented proto-
col on Motorola MPx cellphones and HP iPaq hx4700 PDAs

and also extensively simulate the performance of the credit
based mechanisms.

The paper is organized as follows. Section 2 discusses
related work. Section 3 presents the architecture of the sys-
tem, Section 4 details our solution and Section 5 describes
the defenses provided against known attacks. Section 6
presents our experimental results and Section 7 draws the
conclusions.

2 Related Work

Incentives. Yang and Garcia-Molina [24] proposed PPay,
a secure and scalable payment scheme designed for peer-to-
peer networks. The solution allows participants to purchase
coins from a broker and the coins can be transferred be-
tween participants in a scalable manner. A coin encodes the
identities of both its owner (the participant that bought it ini-
tially) and its holder (the participant that is currently able to
spend it). The transfer of a coin requires the involvement of
the coin’s owner. Wei et al. [14] propose a payment protocol
that provides the additional feature of anonymity. Both pro-
tocols address only the side of the transfer involving coins.
While not providing anonymity, our protocol ensures that
the other part of the transfer, involving the content, also
takes place securely and correctly.

Vishnumurty et al. [22] propose KARMA, which uses
global credits (karma) associated with each participant in
the system to motivate cooperation in transferring content
from other participants. The karma of each participant is
stored on a set of other participants (banks) chosen us-
ing a distributed hash table (DHT) mechanism. Similar
to our work, this solution also relies on the certified mail
scheme [9], however, the content transferred cannot be au-
thenticated before the completion of the protocol, when it
is too late. Moreover, the secure exchange mechanism pro-
posed requires for each protocol run an additional commu-
nication burden between the participating parties and their
respective banks.

Golle et al. [13] use a game theoretic approach to model
peer-to-peer systems and study the effects of payment
mechanisms (money, micropayments, points) on reaching
an equilibrium where uploads are rewarded and downloads
are penalized. Feldman et al. [10, 11] study mechanisms
for encouraging cooperation and punishing free-riders (self-
ish users) and whitewashers (change of identity) in peer-to-
peer systems. In [10] they propose to use the generalized
prisoner’s dilemma to model the system and use reciproca-
tion as the basis for several incentive mechanisms. In [11]
they model the behavior of users based on a local parame-
ter emulating the willingness of users to cooperate. A user
decides its contribution dynamically, based on the relation-
ship between the value of the local parameter and the cost of
cooperation. While game theoretic mechanisms seem to en-

cellular
base station

Wi−Fi AP

CnC
userCnC

server

CA

ad hoc network
home computer

HRS

wired net

Figure 1. System Model. When connected to
a Wi-Fi access point a cellphone connects to
the home computer through the HRS server
to bypass existing firewalls. When discon-
nected, but in the vicinity of other devices
running the same application, cellphones es-
tablish an ad hoc network and locally search
for desired content.

courage the overall cooperation of the system participants,
none of these works address the issue of purely malicious
behavior and its effects on the cooperation of victims.

Fair Electronic Exchange. Several solutions for the fair
exchange problem exist, either online, involving a trusted
third party in each transaction [25, 7] or offline. The so-
lutions requiring the existence of a trusted third party can-
not be used in the environment assumed in this paper, since
participants want to keep the protocol local. Schneier and
Riordan [19] propose online and offline versions of a pro-
tocol where the trusted third party is a public publishing
location. Ateniese and Nita-Rotaru [6] propose an offline
certified e-mail system using verifiable encryption of digi-
tal signatures. We make the observation that the participants
in these protocols cannot verify the correctness of the trans-
ferred content. Asokan et al. [5] propose a protocol allow-
ing users to exchange digital signatures in a fair way and
adapt the protocol to exchange encrypted data.

3 System Model

Our work is built on the Cache-and-Carry (CnC) sys-
tem [8], which was designed to improve the availability
of personal content on memory constrained mobile devices
(cellphones). The CnC architecture consists of home com-
puters, storing the personal content of users and mobile de-
vices carried by users and equipped with both cellular and
wireless 802.11b interfaces. The home computers store a
superset of the content items desired by users. Each content
item c has associated a unique identifier, Id(c), accessible

to any application that knows c. Each mobile device ini-
tially synchronizes with the home computer over the home
network to obtain a comprehensive list of identifiers of de-
sired content, called the wish list. Later, when content con-
sumed by the user is garbage collected, a scheduler running
on the device decides which item from the wish list needs
to be downloaded first. Based on its location, the mobile
device has several different connection modes to the home
computer, including USB, Wi-Fi access point mode or cel-
lular. The desired item is then downloaded from the opti-
mum connection. In the CnC design home connectivity is
preferred, followed by Wi-Fi managed mode. The cellular
connectivity is used only when the previous connections are
unavailable and a ”wanted-by” timestamp of the content to
be fetched approaches its deadline.

In this paper we extend the basic CnC design with the ad
hoc functionality of 802.11b wireless cards, allowing users
to retrieve content from other co-located mobile devices, in
exchange for credits. In the new design, mobile devices are
bootstrapped with the identities and public key certificates
of two trusted entities, a certification authority (CA) and a
CnC server (CnCS). The CA is used to establish trust in the
network and each mobile device stores its own public key
certificate, signed by the CA. Each mobile device user A
has a cellular account, which uniquely identifies it during
its operation [1, 15]. We denote the unique identifier of A
with Id(A).

As shown in the next section, the CnCS performs various
administrative tasks, such as secure credit management. For
each content item c, a Merkle tree [17] having blocks of the
item as leaves is built. The value stored in the root of the
Merkle tree, mroot(c), is stored on CnCS along with Id(c).
Moreover, for each item c in its want list, a mobile device
stores both the Id(c) and the mroot(c) value.

In the following, we use H(M) to represent the crypto-
graphic hash of message M, SX(M) to denote message M
signed by participant X, EX(M) to represent message M en-
crypted with the public key of X and Cert(X) to denote the
public key certificate of X signed by the CA.

4 Credit Based Content Ecosystem

In this section we describe the mechanisms pro-
posed to encourage cooperation and ensure verifi-
able fair transfers in the ad hoc operation mode
of CnC. The three main components of our solu-
tion are the content handling, credit management and
verifiable simultaneous transfer component. The credit
management component consists of mechanisms for gener-
ating and transferring credits (described in Section 4.1) and
for expiring unused credits (described in Section 4.6). The
content handling component addresses the issues of con-
tent storage (see Section 4.2) and content discovery (Sec-

tion 4.3). Finally, the secure transactions component en-
closes mechanisms for simultaneous transfer of content and
credits, verification of partially received information and re-
covery of lost or tampered with information (Section 4.4).

4.1 Credit Minting and Transfers

All credits are issued by CnCS, either initially, when de-
vices join the CnC system or later, upon request and pay-
ment. For illustrative purposes, assume that device A pur-
chases credits from CnCS. CnCS issues credits by sending
A the following message, one for each unit of credit

cr(A) = Id(A), SN, SCnCS(H(MA)),

where SN is a serial number uniquely identifying the credit
unit. We use MA to denote (Id(A), SN). A can then transfer
this credit to device B by appending B’s identifier in cleartext
to the message and also its own signature

cr(B) = Id(A), Id(B), SN, SCnCS(H(MA)), SA(H(MB)),

where MB denotes (Id(A), Id(B), SN). That is, the credits
accumulate the unique identifiers of the devices traversed
as well as their signatures. When B receives a credit mes-
sage from A it verifies only the last signature in the list, the
one belonging to A. The credit message is not valid unless
the signature verifies. That is, B is interested only in A’s
honest behavior and not the correct behavior of all the de-
vices traversed by the credits. In order for B to transfer this
credit unit to C, it similarly has to add C’s identifier as well
as append its own signature of all the identifiers of devices
traversed by the credit message.

In the following, we make the simplifying assumption
that a user is charged one credit unit for each content item
transferred from another user. The protocol can be eas-
ily extended to transfer multiple units of credit, by han-
dling each signed credit message separately. Secure auc-
tion mechanisms [12, 23, 21] can be used, allowing each
content storer to set its own price for sharing a requested
content item.

4.2 Content Storage

When a content item identified by c is initially gener-
ated, CnCS splits the content into 2n blocks of equal length
b1, b2, .., b2n and constructs a Merkle tree [17] having the
blocks as leaves. When presented with a request containing
Id(c), CnCS makes public the signed value stored in the
root of c’s Merkle tree, mroot(c), using the message

Id(c), mrootId(c), SCnCS(H(Id(c), mrootId(c))),

Thus, the mroot(c) value can be either statically down-
loaded and stored along with content c on user home com-
puters and then transferred in want lists on mobile devices,

or requested later from CnCS by mobile devices in need of
fresh content, not yet stored in their want lists.

In the CnC system, a user stores the bulk of the content
on her home computer. Before the user begins to down-
load content from the home computer to her mobile de-
vice, the home computer performs the following simple and
fast computation. It first generates a key K ∈ {0, 1}∗ uni-
formly at random. K is later stored also on the user’s mo-
bile device. Then, for each content item c, it generates key
Kc = H(K, Id(c)) which it uses to seed a pseudo-random
number generator, G. Using G, it generates q pseudo-random
bit positions in content c, pc1, .., p

c
q. When the user’s mobile

device downloads the want list, along with the identifier of
each item c it also stores H(c(pc1), .., c(p

c
q)), where c(p) de-

notes the bit of content c at position p. We make the obser-
vation that for the same user but different content items, the
sets of positions p1, .., pq are different. Moreover, for dif-
ferent users and the same content item the sets of positions
are different. The bits at the selected positions are used later
(see Section 4.3) to force other devices prove their knowl-
edge of content c.

4.3 Content Discovery

We describe a privacy-preserving protocol allowing
users to determine the presence of content items on co-
located devices, without leaking the identity of the desired
items to devices not storing it. The protocol works in the
following way. When device A cannot find Wi-Fi access
points to connect to its home computer and download de-
sired items, it switches the wireless card to operate in ad
hoc mode, spawns a new thread and listens on a prede-
fined port pn for incoming queries. In parallel, it reads the
first content identifier, Id(c), from its want list, generates
a fresh pseudo-random number NA to act as challenge and
constructs the following message

Cert(A), Q = {NA, Id(c), Kc, q}, SA(H(Q))
where Kc = H(K, Id(c)) is the random number associated
with content c (see Section 4.2) and q is the number of
query bits. A sends this message periodically as a broadcast
on port number pn. We make the observation that while
A could optimize the broadcast process by including more
than one item identifier in the above query, we prefer to
keep it simple for clarity purposes. Moreover, after A trans-
fers content item c from one of its neighbors, it removes
Id(c) from the want list.

When a device B receives the above broadcast message,
it discards it if it has already processed the same (Id(A), NA)
pair. Otherwise, B checks for the presence of c in its local
content store. If the search is successful B uses Kc to seed
a pseudo-random number generator and compute q bit po-
sitions pc1, .., p

c
q. It then generates a fresh pseudo-random

number NB as its own challenge and produces the message

Cert(B), NB, NA, Id(c), EA(H(c(pc1), .., c(p
c
q), NB, NA)),

SB(H(NB, NA, Id(c))),

and sends it back to A. We use the notation c(pc1) to
denote the pc1th bit of content c. Note that only the
neighbors of A that store c can produce the bits at the
queried positions (pc1, .., p

c
q). Without knowing the key K

belonging to the home computer of the owner of device
A, the chance of guessing all q query bits is 1/2q . The
H(c(pc1), .., c(p

c
q)), NA, NB field is sent encrypted in order to

prevent malicious neighbors, not knowing c, from learning
the value of the bits queried and then replaying it as if know-
ing c. Note that a neighbor M, who does not store content c,
could try pretending it has it, by querying one of its neigh-
bors for the hash of the bits requested by A. However, this
message would be overheard by A, that would then interrupt
the protocol.

When A receives the above reply it first authenticates it
by verifying the signature of the CA on B’s certificate, by
checking that the third field of the message is indeed its
own nonce, then by encrypting the sixth field of the mes-
sage with the public key stored in Cert(B) and comparing
the result with the hash of the concatenation of the second,
third and fourth fields (NA, NB and Id(c)). Then, A decrypts
the fifth field and verifies that it equals the hash stored in the
want list corresponding to Id(c) (see Section 4.2), concate-
nated with the second and third fields of the message (NA
and NB). If any of these verifications fails, A stops the pro-
tocol. Otherwise, A is convinced that the origin of this reply
is B and that B knows c with probability 1 − 1/2q . Then, A
generates the message

NB, SA(H(NB)),

and sends it to B. When B receives this messages, it similarly
verifies that its origin is A, using the public key certificate
of A, Cert(A), received in the previous message. The fresh
nonces NA and NB are used in this protocol to prove knowl-
edge of the private keys corresponding to the public keys
contained in the certificates exchanged. We make the ob-
servation that while the broadcast messages of A are sent
over UDP, potentially requiring multiple explicit retrans-
missions, the remaining messages are unicast over TCP, en-
suring their correct reception. At the completion of this step
A and B are convinced of each other’s identity and may pro-
ceed with the exchange of content and credits.

In the following, to save space, we assume without ex-
plicitly mentioning, that all the messages sent between A
and B are signed, since A and B have already exchanged their
public key certificates.

4.4 Verifiable Simultaneous Transfer

Participant A knows the value mroot(c) stored in the
root of the Merkle tree associated with the desired con-
tent c. The value might have been uploaded on the want
list from the home computer but also dynamically retrieved
from CnCS, that publishes it as specified in Section 4.2. A
initiates the transfer by sending B part of the credit message,
Id(A), Id(B), SN, SCnCS(H(MA)), leaving out the last part, its
own signature. The protocol completes when A has the de-
sired content and, continuing the example in Section 4.1, B
has A’s credit signature SA(H(Id(A), Id(B), SN)).

Following the transmission of the above message, A and
B begin a simultaneous exchange of content and credits, us-
ing the solution of Even et al. [9]. B splits content c in
2n equal sized blocks, builds their Merkle tree, generates n
pairs of keys, encrypts each block with a different key and
sends all the resulting data, except the keys, to A. Simultane-
ously, A generates n copies of a credit message for B, splits
each into two halves, generates n key pairs, encrypts each
of the 2n resulting blocks with a different key and sends the
encrypted blocks to B.

A and B use an oblivious transfer protocol (OT) to ex-
change exactly one key in each key pair, without any of
them knowing which key the other has received. A uses the
Merkle tree received in the previous step and the mroot(c)
value it stores, in order to verify the authenticity of the re-
covered blocks. If all the blocks verify, A and B exchange
bit by bit all their keys. During each step, both A and B ver-
ify that half of the bits belong indeed to the keys exchanged
during the previous OT step. At the end of this step, A re-
trieves all the blocks, concatenates them and obtains content
c. B is able to retrieve the left and right halves of at least one
pair of signed credits, but is able to use only one such pair
at a later time. In Section 5 we show how double spending
of credits is detected and the perpetrator caught.

Publicly Verifiable Credit Sharing. In the above proto-
col, since A splits its signature, B can prove to other parties
the knowledge of A’s signature but it cannot reconstruct it,
thus unnecessarily doubling the size of the credit message.
We solve this issue through the use of a publicly verifiable
secret sharing scheme PVSS [20], that allows B not only
to verify any decrypted share of A’s signature after the OT
protocol but also, at the end of the transfer, combine the two
shares of any signed credit instances received, into A’s valid
(and publicly verifiable) signature.

To achieve this, in the above protocol, before sending
the credit message, A splits each of the n signed credit in-
stances SA(H(Id(A), Id(B), SN, i1..n)) for B into two shares,
such that each signed credit instance can be reconstructed
only if both shares are available. A then pre-commits to each
credit instance and its shares as described in [20]. We make

the observation that instead of using two different public
keys, A uses only the public key of B to precommit to the
shares. The precommitments are signed with A’s private
key. However, B cannot retrieve the shares from the pre-
commitments. A annotates one share with L and the other
share with the R symbol. A follows then the protocol above,
that is, encrypts each share of the secret with a different key.
For each such share A also sends a proof of correctness, as
described in [20]. After the execution of the OT subprotocol
for the simultaneous exchange protocol, B can retrieve ex-
actly one share of each secret and can verify its correctness
using the corresponding proof. At the end of the protocol, B
retrieves the other share of each secret and can reconstruct
each secret SA(H(Id(A), Id(B), SN, i1..n)).

Block Recovery. In the above protocol, the chances of
cheating for A and B are unbalanced. B has only to correctly
retrieve both shares of the same signed credit instance in
order to successfully complete the protocol, whereas A can-
not reconstruct the content without recovering all 2n blocks.
For example, if B cheats by corrupting a single block out
of the 2n blocks, its chance of not being caught in time
is 1/2, whereas A will not be able to reconstruct the con-
tent. We solve this issue through the use of error correct-
ing codes such as the ones proposed in [18, 16]. Instead of
dividing the encrypted content c into 2n sequential blocks
such that all the blocks are required to construct the con-
tent, the CnCS divides the content into 2n larger blocks,
such that only 2n− k blocks are required to reconstruct the
content, where 0 < k < n is a small parameter. The CnCS
constructs the Merkle tree and mroot value using the 2n er-
ror correcting blocks. Note that k has to be strictly smaller
than n, otherwise A can reconstruct the content immediately
following the oblivious transfer of the encryption keys.

4.5 Alternatives

The solution presented in Section 4.4 is computation and
communication intensive. We propose several simple alter-
natives to remedy this problem. The solutions rely on break-
ing the content on blocks of predefined length (for instance
256KB) and on changing the payment infrastructure to re-
quire one credit per transferred block. The first alternative
consists in extending the solution of Section 4.4 to work on
a per block basis instead of the whole content. In the second
alternative, the involved participants exchange one credit
for one block in a serial fashion. That is, either the credit
or block transfer takes place first. The block is encrypted
with a key precomputed by the two participants. The mes-
sage carrying the content block contains also the block’s
authentication information, from the Merkle tree [17]. We
remind the reader that this information consists of the val-
ues stored on the Merkle tree in the siblings of the nodes

on the path from the block’s leaf to the root of the tree. If
one of the participants cheats, the next transfer does not take
place. In a third, hybrid alternative, both participants main-
tain a reputation of the other participant. The protocol starts
the transfer of a content item using the first solution, that
is, of simultaneously exchanging one block for one credit.
Successful transfers lead to an incremental increase of the
reputations of the participants. Once the reputation reaches
a predefined threshold the participants switch to the cleart-
ext transfer strategy. A failure leads to a drastic decrease in
reputation (halving it for instance) and switches the transfer
strategy back to simultaneous transfer.

4.6 Credit Expiration

Too many credits in the system can prevent cooperation,
since a device with enough credits will only want to use
them to get content and will have no reason to outsource
content. In order to control the amount of credit units in
the system, we propose to use the following mechanisms.
Upon creation, credits are timestamped and given a time-
to-live (TTL) and expiration date parameters. Credits can
only travel over a number of hops equal to the TTL pa-
rameter and the TTL is decreased at each hop. Once the
TTL of a credit reaches 0, the current application storing
it (A) has to send the credit to the CnCS (over the cellular
or WLAN link). The CnCS verifies the authenticity of the
credit (see Section 5) and generates a new valid credit for A
with fresh TTL and expiration date values. Credits whose
expiration date is reached become invalid, however, appli-
cations can first spend the credits closer to expiration or can
contact CnCS to renew the expiration date.

5 Attack Resilience

The goal of the credit based ecosystem proposed above
is to ensure a fair exchange environment for mobile devices
operating in ad hoc mode. We describe now several at-
tacks both against participants in the system and against the
mechanisms proposed and then show the defenses offered.

Double Spending. Malicious colluding devices may try
to spend the same credit more than once. We prevent this by
allowing credits to traverse up to TTL devices before being
checked back with CnCS. Moreover, CnCS locally stores a
table, mapping for each sequence number SN, associated to
a credit, the path of devices traversed by the credit before
being reported to CnCS.

Let us extend the example from Section 4.1, consider-
ing a TTL value of 3 and that the credits from A are later
traded by B to a third device C. When CnCS receives a re-
port for a credit message originating at A, from device C, it
first verifies the validity of all the signatures contained in the

message, against the public keys of device identifiers listed
in cleartext in the credit message (CnCS locally stores cer-
tificates of all participating devices). If any signature does
not verify, CnCS contacts all the devices listed in the credit
message and queries them with the serial number SN from
the credit message. Each device is required to send back
its own view of the queried SN value. For instance, device
A needs to send CnCS both the signature of the credit re-
ceived from CnCS, SCnCS(H(Id(A), SN)) and the signature
of the same credit given to B, SA(H(Id(A), Id(B), SN)).

Using this procedure over at most TTL iterations, CnCS
is able to find the correct set of devices traversed by
the credit message SN. A cannot be framed, since it
is the only device that can generate a valid signature
SA(H(Id(A), Id(B), SN)). Moreover, if A generates an in-
valid signature, it will be detected either by B or by CnCS.
While more expensive, this procedure is seldom necessary.

After this verification, the server looks in its local ta-
ble for the serial number SN contained in the credit mes-
sage. If the entry is empty, CnCS stores the ordered iden-
tifiers of all devices traversed by the credit, under the
heading SN. It then generates a new signed credit for
C cr(C) = Id(C), SN′, SCnCS(H(Id(C), SN′)), where SN′ is a
newly generated unique serial number.

If the entry is not empty, a double spending attack has
been discovered. CnCS identifies the attacker by retriev-
ing from its local table the identities of all the devices that
have previously signed the credit unit and compares them
against the ones contained in the newly received credit mes-
sage. The comparison is performed starting with the sec-
ond signature, since the first signature is its own. The first
match denotes the device that has duplicated the credits. If
no match exists, the culprit is the first device listed in the
second credit message, that cannot produce a valid credit
signature received from another device. The CnCS can then
contact the cellular provider of the culprit, which can then
punish it by charging it enough to make this attack econom-
ically unfeasible or by closing its account if repeated viola-
tions occur.

Forgery. When a device B receives credits from a device
A, it only verifies the authenticity of the last signature (A’s),
instead of verifying all the signatures of devices traversed
by the credits. This reduces both the verification time for
B and the length of messages carrying credits. This is be-
cause to verify all the signatures, the credit message should
also contain the public key certificates of all the intermedi-
ate devices making a credit message unnecessarily long. We
make the observation that when B receives A’s signature of
the credits, it has already received the public key certificate
of A (see Section 4.3).

Since only the last signature on the credit message is ver-
ified, a malicious host M could generate new credits, that is,

forge the signature of CnCS, sign them and distribute them.
While M can succeed in transferring content for fake cred-
its, when the credit message reaches the CnCS, the server
can easily detect that it has never generated the serial num-
ber contained in the credits. Moreover, the identity of M can
be revealed since M’s signature is the first to occur on the
credits.

Cheating During Transfers. If after the OT protocol one
of the participants detects that at least one of the 2n shares
received from the other does not verify, it can stop the proto-
col immediately. At this stage no participant can construct
the information desired. If during the second transfer, A
tampers with any of the second shares of its credit signa-
ture, the cheating will be detected by B at the end of the
protocol. However, B needs only two shares of the same
credit instance in order to reconstruct A’s signature. Simi-
larly, if B corrupts up to k content block during the second
transfer, A will still be able to reconstruct the entire content,
using erasure codes.

Stopping in the Middle of a Transfer. During the pro-
posed protocol, A could attempt to stop participating after
receiving the keys enabling it to decrypt half of the blocks
from B. A could then initiate the same protocol with other
devices storing c. If each queried device gives A half of the
blocks of c in clear, after log n half-executed protocols, A
can have the entire content c, with high probability, without
actually giving credits to any other device. However, the
requirement of consuming log n times more battery power
can act as a counter incentive for this attack.

6 Experimental Results

In this section we experimentally analyze our credit
based ecosystem. In Section 6.1 we measure the overhead
of the secure content discovery part of our secure transfer
protocol, using a prototype implementation. In Section 6.2
we study the impact of the credit based sharing strategy
in encouraging cooperation between CnC applications in a
larger scale ad hoc environment.

6.1 Security Overhead

We investigate the security overhead introduced by the
credit based exchange protocol presented in Section 4. For
the transfer of content and credits we used the second al-
ternative of Section 4.5, where the transfer takes place in
clear but authenticity of content is verified using Merkle tree
information. The protocol was implemented on Motorola
MPx cellular phones (Texas Instruments OMAP 733 at 200
MHz processor and 32 MB of RAM) and HP iPAQ hx4700

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1 10 100 1000

tim
e

file size

Security overhead

payload transfer
total transfer

Figure 2. Authentication overhead of the
credit based exchange protocol. For small
items the overhead is high (more than 90%
for 10KB items) but it is small for large items
(less than 5% for a 5MB file).

(Intel PXA270 at 624 MHz processor and 64 MB of RAM).
Both devices have integrated 802.11b network cards. The
prototype implementation is written in C# for Microsoft’s
.Net Compact Framework and uses security primitives pro-
vided by the Bouncy Castle [3] library.

In our experiment we transfer files of size between 10KB
and 5MB and measure the time taken by the secure discov-
ery of the content versus the time taken by the entire proto-
col. For each file size, we perform the transfer 5 times and
represent only the average values. Figure 2 shows the re-
sults of our experiment. While for small files the overhead
is significant (94% for a 10KB file) for relatively large files
it becomes negligible (4.41% for a 5MB file).

We are currently porting our C# on Compact Frame-
work implementation to C/C++ on Linux based E680i
phones (312MHz Intel XScale Bulverde (PXA270) proces-
sor, 32MB RAM and Fujitsu Wi-Fi card). Initial experi-
ments show that the content discovery phase and a sim-
ple transfer of a 2.5MB file takes 7 seconds between a
E680i phone and a Dell Latitude E600 laptop and 12 sec-
onds between two E680i phones, a significant improvement
over the previous implementation. The difference between
12 and 7 seconds is due to the overhead of writing to the
phone’s flash card.

6.2 Strategy Evaluation

We evaluate the credit based sharing strategy by ran-
domly placing 500 devices in a 900 × 900 m2 area, where
each device has a transmission range of 115 m. We divide
time into epochs such that a device can perform a single
transfer during each epoch, acting either as content client or
server. Each device has an initial battery level of 50 units,
where a single battery unit is consumed by a participant,
acting either as server or as client, during a transfer. We as-
sume a total population of 5000 content items, where each

item is uniquely identified. Each device stores initially 100
items randomly chosen from the content population and a
want list of 400 desired content items, ordered in decreas-
ing order of relevance. In the following experiments the
content of the want list and its order are randomly chosen.
During each epoch, a device sends to its neighbors a broad-
cast query containing identifying information for the top
100 items in its want list. Our simulation ends when the
network reaches a stable state. A stable state occurs at the
end of a time epoch during which no transfer takes place.
When the network reaches stable state, no device stores and
is willing to share an item that other device wants and both
devices have enough battery to perform the transfer. This
ensures that in subsequent time epochs no other transfer will
take place.

We measure the performance of sharing strategies
using three metrics, transfer rate, satisfaction level and
battery level. The transfer rate measures the number of
transfers performed during each time epoch. The satisfac-
tion and battery levels denote the number of items acquired
by devices and their battery level at a given time.

Effects of Selfishness. In the first experiment, 50% ran-
domly chosen devices exhibit a selfish behavior whereas
the remaining 50% are altruistic. A selfish device will act
only as a client, but only when one of its neighbors stores
an item desired and agrees to cooperate. An altruistic de-
vice will choose to act as a server whenever it can satisfy
a query from one of its neighbors and it receives the query
of its neighbors before an answer to its own queries. Fig-
ure 3(a) shows the evolution of transfer rates in time, both
for selfish and for altruistic devices. At the beginning of the
experiment, the number of altruistic devices able to acquire
content is half the number of selfish devices that success-
fully complete transfers. This is because, on average, half
of the altruistic devices will interact with selfish devices and
half will cooperate among themselves. In time, the number
of transfers of altruistic devices remains almost constant,
with a quick decrease to 0 when most devices run out of
battery. However, the number of transfers of selfish devices
declines in time, at the 50th time epoch being almost the
same as the transfers of altruistic devices. This decrease
can be explained by selfish devices gradually downloading
all desired items stored by their altruistic neighbors.

Figure 3(b) displays the distribution of satisfaction when
the system reaches stable state. The mean number of items
acquired by selfish devices is 21.81, with a standard error
of 0.39, whereas the mean number of items acquired by al-
truistic devices is 13.35 with a standard error of 0.17. Thus,
selfish devices get more than 63% more items than coop-
erating devices. Figure 3(c) shows in logarithmic scale the
distribution of remaining battery power of selfish and coop-
erating devices at stable state. 210 out of 250 cooperating

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

nu
m

be
r

of
 tr

an
sf

er
s

time

Transfer evolution in time

selfish nodes
cooperating nodes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

−10 0 10 20 30 40 50

nu
m

be
r

of
 n

od
es

satisfaction

Distribution of satisfaction at the end of simulation

selfish nodes
cooperating nodes

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 n

od
es

battery level

Battery distribution at end of simulation

selfish nodes
cooperating nodes

(a) (b) (c)

Figure 3. Performance of selfish and cooperating participants in an environment containing 50%
selfish and 50% altruistic devices. Altruistic devices download 63% less content than selfish ones
and are left with almost no battery. The average battery left in selfish devices is above 28 units, out
of the initial 50 units.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

nu
m

be
r

of
 tr

an
sf

er
s

time

Transfer evolution in time

selfish nodes
cooperating nodes

 0

 50

 100

 150

 200

 250

−10 0 10 20 30 40 50

nu
m

be
r

of
 n

od
es

satisfaction

Distribution of satisfaction at the end of simulation

selfish nodes
cooperating nodes

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 n

od
es

battery level

Battery distribution at end of simulation

selfish nodes
cooperating nodes

(a) (b) (c)

Figure 4. Performance of selfish and credit based cooperating devices in an environment containing
50% selfish 50% credit based cooperating devices. The average number of items downloaded by
cooperating devices is above 20, whereas selfish devices only get 1 item. Moreover, the average
battery left in cooperating devices is above 6 units, much improved over altruistic behavior.

devices are left without any battery and the remaining ones
have very little battery left. In contrast, no selfish devices
are left without battery. The mean battery power left on
selfish devices is 28.18 units, with a standard error of 0.39.
Thus, in this scenario, selfishness pays off. Selfish devices
get both more items and are left with more battery at the end
of the protocol.

In the following we experiment again with a 50% self-
ish population. However, the other half of the population
is cooperating as long as it receives credits for its cooper-
ation. We assume that each device, including selfish ones,
has initially only 1 credit, allowing the device to acquire
exactly one item from another device. However, once a de-
vice consumes its credits, any other device will refuse to
share items with it. Thus, a device without credits can ei-
ther become a server, share its items and earn credits, or
choose to be selfish and starve. A cooperating device that
has at least one credit, can choose to either act as a client
or as server. Figure 4(a) shows the evolution in time of the
number of transfers initiated by selfish and cooperating de-

vices. The selfish devices manage to transfer items only
during the first 6 time epochs but are isolated from then on
both by their selfish and their cooperating neighbors. The
cooperating devices are performing much better this time,
though. Until the 50th epoch, marking the battery depletion
of most devices, more than 80 cooperating devices manage
to download an item in each epoch.

The distribution of satisfaction when the system reaches
stable state is shown in Figure 4(b). While each selfish de-
vice gets exactly one item during the entire simulation, 189
cooperating devices get more than 20 items each, out of
which 79 get 25 items each. The mean number of items
downloaded by a cooperating device is 21.16 with a stan-
dard error of 0.32. Figure 4(c) depicts the distribution of
battery at the end of the simulation, where the number of
devices is shown in logarithmic scale. The selfish devices
all have 49 units of battery left, since each has participated
in exactly one transfer. The mean battery level of cooperat-
ing devices is 6.68 with a standard error of 0.61, which is
a significant improvement over the previous experiment. In

conclusion, when devices take into consideration the global
credit levels of neighbors, before deciding to transfer con-
tent, their level of satisfaction and also remaining battery
are much improved over an altruistic strategy. In contrast,
selfish devices conserve their battery, however, are able to
acquire only a few items, using their initial amount of cred-
its.

7 Conclusions

In this paper we study several security issues associated
with the use of credit based systems to enable cooperation
in environments where devices use their cellular and ad-hoc
communication capabilities to effectively transfer desired
content from their home computer or neighboring devices.
We propose an efficient offline mechanism for simultane-
ously exchanging content and credits that allows the partic-
ipants involved to verify at each step the validity of the par-
tially exchanged content. We provide mechanisms for se-
curely generating, managing and tracking the correct spend-
ing of credits in an offline manner. Our solution does not
require the permanent availability of a trusted server medi-
ating transactions. We prove through extensive simulations
that our credit based exchange mechanisms are effective in
protecting cooperating devices from selfish devices.

References

[1] Generic authentication architecture (gaa). http://www.
3gpp.org/ftp/Specs/html-info/33220.htm.

[2] iRadio. URL http://broadband.motorola.
com/iradio/.

[3] The Legion of the Bouncy Castle. URL http://www.
bouncycastle.org/.

[4] IEEE Std 802.11b-1999. 1999. URL http://
standards.ieee.org/.

[5] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair ex-
change of digital signatures. IEEE Journal on Selected Ar-
eas in Communications, 18(4):593–610, 2000.

[6] G. Ateniese and C. Nita-Rotaru. Stateless-recipient certified
e-mail system based on verifiable encryption. In CT-RSA
’02: Proceedings of the The Cryptographer’s Track at the
RSA Conference on Topics in Cryptology, pages 182–199,
2002.

[7] A. Bahreman and J. D. Tygar. Certified electronic mail. In
Proceedings of the Internet Society Symposium on Network
and Distributed System Security, pages 3–19, 1994.

[8] R. Chaudhri, M. Pearce, and J. Almaula. Cache and Carry:
Seamless Content Consumption in an Intermittently Con-
nected World. In Proceedings of IEEE Consummer Com-
munications and Networking Conference (CCNC), 2007.

[9] S. Even, O. Goldreich, and A. Lempel. A randomized pro-
tocol for signing contracts. Commun. ACM, 28(6):637–647,
1985.

[10] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust in-
centive techniques for peer-to-peer networks. In EC ’04:
Proceedings of the 5th ACM conference on Electronic com-
merce, pages 102–111, 2004.

[11] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica.
Free-riding and whitewashing in peer-to-peer systems. In
PINS ’04: Proceedings of the ACM SIGCOMM workshop
on Practice and theory of incentives in networked systems,
pages 228–236, 2004.

[12] M. Franklin and M. Reiter. The design and implementation
of a secure auction service. In Proceedings of IEEE Confer-
ence on Security and Privacy, 1995.

[13] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives for
sharing in peer-to-peer networks, 2001.

[14] A. J. S. Kai Wei, Yih-Farn Chen and B. Vo. WhoPay: a
Scalable and Anonymous Payment System for Peer-to-Peer
Environments. Technical Report UCB/CSD-05-1386, EECS
Department, University of California, Berkeley, 2005.

[15] P. Laitinen, P. Ginzboorg, N. Asokan, S. Holtmanns, and
V. Niemi. Extending cellular authentication as a service. In
IEE 3rd Annual Forum on Secure Mobile Communications,
2005.

[16] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman. Efficient erasure correcting codes. In ACM Sym-
posium on Theory of Computing (STOC), 2001.

[17] R. C. Merkle. Protocols for public key cryptosystem. In
Proceedings of IEEE Symposium on Security and Privacy,
pages 122–134, 1980.

[18] M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. J. ACM, 36(2):335–348,
1989.

[19] B. Schneier and J. Riordan. A certified e-mail protocol. In
ACSAC ’98: Proceedings of the 14th Annual Computer Se-
curity Applications Conference, page 347, 1998.

[20] B. Schoenmakers. A simple publicly verifiable secret shar-
ing scheme and its application to electronic. In CRYPTO
’99: Proceedings of the 19th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages 148–164,
1999.

[21] F. Stajano and R. Anderson. The cocaine auction protocol:
On the power of anonymous broadcast. In Third Interna-
tional Workshop on Information Hiding, 1999.

[22] V. Vishnimurthy, S. Chandrakumar, , and E. Gun Sirer.
Karma: A secure economic framework for p2p resource
sharing. In Proceedings of the 1st Workshop on Economics
of Peer-to-Peer Systems, 2003.

[23] Y. Watanabe and H. Imai. Reducing the round complexity
of a sealed-bid auction protocol with an off-line ttp. In CCS
’00: Proceedings of the 7th ACM conference on Computer
and communications security, pages 80–86, 2000.

[24] B. Yang and H. Garcia-Molina. PPay: micropayments for
peer-to-peer systems. In CCS ’03: Proceedings of the
10th ACM conference on Computer and communications sec
urity, pages 300–310, 2003.

[25] J. Zhou and D. Gollmann. Certified electronic mail. In ES-
ORICS ’96: Proceedings of the 4th European Symposium on
Research in Computer Security, pages 160–171, 1996.

