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Abstract

This paper presents a comprehensive statistical analysis

of workloads collected on data-intensive clusters and Grids.

The analysis is conducted at different levels, including Vir-

tual Organization (VO) and user behavior. The aggregation

procedure and scaling analysis are applied to job arrival

processes, leading to the identification of several basic pat-

terns, namely, pseudo-periodicity, long range dependence

(LRD), and (multi)fractals. It is shown that statistical mea-

sures based on interarrivals are of limited usefulness and

count based measures should be trusted instead when it

comes to correlations. We also study workload characteris-

tics like job run time, memory consumption, and cross cor-

relations between these characteristics. A “bag-of-tasks”

behavior is empirically proved, strongly indicating tempo-

ral locality. We argue that pseudo-periodicity, LRD, and

“bag-of-tasks” behavior are important workload properties

on data-intensive clusters and Grids, which are not present

in traditional parallel workloads. This study has important

implications on workload modeling and performance pre-

dictions in data-intensive Grid environments.

1. Introduction

Grid computing is rapidly evolving as the next-

generation platform for system-level sciences and beyond.

The participating clusters serve as the main horse power in

a data-intensive Grid and performance evaluation studies in

such an environment require better understandings on its

workload dynamics. The goal of this paper is to study the

statistical properties of Grid workloads at different levels,

which serve as the basis for workload modeling and perfor-

mance predictions.
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The contribution of this work is four-folds. Firstly, to

our best knowledge this is the first comprehensive workload

characterization on production clusters and Grids, at differ-

ent levels including VO and user behavior. Secondly, point

processes are introduced to describe job arrivals and several

representations are studied. It is shown that statistical mea-

sures based on interarrivals are of limited usefulness when it

comes to autocorrelations and count based measures should

be trusted instead. Thirdly, the aggregation procedure and

scaling analysis on job count processes enable us to under-

stand the autocorrelation structures better. Together with the

cross-correlations between characteristics, we obtain an im-

proved understanding towards workload dynamics. Last but

not least, we identify several basic patterns, such as pseudo-

periodicity, long range dependence, and “bag-of-tasks” be-

havior. These are important properties which are not present

in previous studies on parallel workloads [7]. Further re-

search on workload modeling on Grids should potentially

capture these salient properties, which could have signifi-

cant implications on performance evaluation studies.

The rest of this paper is organized as follows. Section 2

describes workloads in a broader perspective. Related work

on parallel supercomputer workloads, network traffic, and

cluster workloads are reviewed and discussed. Section 3 in-

troduces the definition and methodology used for the anal-

ysis. Section 4 presents the empirical studies on the real-

world workload data. We analyze a variety of workloads

at the Grid, cluster, and supercomputer level. VO and user

behavior are investigated in depth. In Section 5 the nature

and origin of workload dynamics are explained and impli-

cations on modeling and predictions are discussed. Conclu-

sions and future work are presented in Section 6.

2 Workloads in a Broader Perspective

The most closely related workload studies are from par-

allel supercomputers. On single parallel machines a large



amount of workload data has been collected, character-

ized [18, 25, 7], and modeled [6, 18, 24]. These are solid

research results and they are being used extensively for

performance evaluation on parallel machines [1]. How-

ever, it should be noted that previous work focus mainly

on marginal and first order statistics while correlations and

second order statistics receive far less attention. The rea-

son could be that characteristics on parallel workloads are

inherently weakly-autocorrelated or short range dependent

(SRD). For instance, our analysis is conducted on a rep-

resentative parallel workload and it is shown that the job

arrivals at larger scales are indeed short range dependent.

Data-intensive workloads on clusters and Grids, on the

other hand, exhibit pseudo-periodic and long range depen-

dent behavior. Therefore second order statistics and beyond

are crucial in the analysis and new methodologies should be

investigated for workload analysis/modeling in Grids.

Network traffic studies are reviewed here because it in-

cludes a rich collection of advanced statistic tools for an-

alyzing and modeling self-similar, long range dependent

(LRD), and (multi)fractal behavior. The self-similar nature

of Ethernet traffic is discovered in [12] and consequently a

set of exact self-similar models such as fractional Brown-

ian motion and fractional Gaussian noise are proposed as

traffic models [20, 26]. Network traffic is also shown to

be long range dependent, exhibiting strong temporal bursti-

ness [23, 2]. Both self-similar and LRD processes are most

well-known examples of general scaling processes, charac-

terized by the scaling and power law behavior [3]. Due to

its inherent multi-resolution nature, wavelets is proposed as

an important tool for analysis and synthesis of processes

with scaling behavior [4, 27, 3]. Multifractal models and

binomial cascades are proposed for those processes with

rich fractal behavior beyond second-order statistics [22, 9].

These methodologies enable us to conduct scaling analysis

on Grid job arrivals and identify several important patterns.

Workload characterization on clusters with marginal

statistics can be found in [14, 19]. In [19] an ON-OFF

Markov model is proposed for modeling job arrivals, which

is essentially equivalent to a two-phase hyperexponential

renewal process. The major modeling drawback using re-

newal processes is that the autocorrelation function (ACF)

of the interarrival times vanishes for all non-zero lags so

they cannot capture the temporal dependencies in time se-

ries [11]. A more sophisticated n-state Markov modulated

Poisson process is applied for modeling job arrivals at the

Grid and VO level [16], making a step towards autocorre-

lations and second order statistics. Nevertheless, only lim-

ited success is obtained by MMPP because of the rich be-

havior and patterns hidden in Grid workloads at different

levels. This paper reveals those patterns of job arrivals on

Parallel Workload Archive: http://www.cs.huji.ac.il/

labs/parallel/workload/.

clusters and Grids. Moreover, more workload characteris-

tics are studied and the cross-correlations between them are

further investigated.

3 Definition and Methodology

3.1 Point Processes

Job traffic can be described as a (stochastic) point pro-

cess, which is defined as a mathematical construct that rep-

resents individual events as random points at times {tn}.

There are different representations of a point process. An

interarrival time process {In} is a real-valued random se-

quence with In = tn − tn−1 and it completely describes

the point process. The sequence of counts, or the count pro-

cess, on the other hand, is formed by dividing the time axis

into equally spaced contiguous intervals of T to produce

a sequence of counts {Ck(T )}, where Ck(T ) = N((k +
1)T ) − N(kT ) denotes the number of events in the kth in-

terval. This sequence forms a discrete-time random process

of non-negative integers and it is another useful representa-

tion of a point process. A closely related measure is a nor-

malized version of the sequence of counts, called the rate

process Rk(T ), where Rk(T ) = Ck(T )/T .

In general, forming the sequence of counts loses infor-

mation because the interarrival times between events within

interval T are not preserved. Nevertheless, it preserves the

correspondence between its discrete time axis and the abso-

lute “real” time axis of the underlying point process. We

can readily associate correlation in the process {Ck(T )}
with correlation in the point process. The interarrival time

process, on the other hand, eliminates the direct corre-

spondence between absolute time and the index number so

it only allows rough comparisons with correlations in the

point process [17]. As we will show later, measures based

on interarrival times are not able to reliably reveal the fractal

nature of the underlying process and count based measures

should be trusted instead.

3.2 Statistical Measures

No single statistic is able to completely characterize a

point process and each provides a different view and high-

lights different properties. A comprehensive analysis to-

wards a better understanding requires many such views.

The marginal properties we study includes the moments

E[Xm] (mean and variance), the probability density, and

the probability distribution. The second order statistics con-

tains the autocorrelation function (ACF) and its Fourier

transform called power spectral density or power spec-

trum. Scatter plot, correlation coefficients, and the cross-

correlation function are used to study correlations between

distinct characteristics. The wavelet-based analysis using



Trace Location Architecture Scheduler #CPUs Period #Jobs

LCG1 Grid wide clusters Grid Broker ∼30k Nov 20-30, 2005 188,041

LCG2 Grid wide clusters Grid Broker ∼30k Dec 19-30, 2005 239,034

NIK05 NIKHEF, NL PC cluster PBS/Maui 288 Sep - Dec, 2005 63,449

RAL05 RAL, UK PC cluster PBS/Maui 1,000 Oct - Nov, 2005 332,662

LPC05 LPC, FR PC cluster PBS/Maui 140 Feb - Apr, 2005 71,271

SBH01 SDSC, US IBM SP LoadLeveler 1152 Jan - Dec, 2001 88,694

Table 1. Summary of workload traces used in the experimental study.
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Figure 1. Plots of first and second order statistics for the interarrival time process of lhcb, LCG1.

Logscale Diagram and Multiscale Diagram [3] is applied to

job arrivals for identifying the scaling behavior, including

fractal and long range dependence. Due to space limits we

refer to [13] for a detailed discussion on various statistical

measures and the scaling behavior.

4 Application to Workload Data

In this section we conduct experimental studies on real

world workload data from production clusters and Grids.

Table 1 presents a summary of workload traces under study.

LCG1 and LCG2 are two traces from the LHC Comput-

ing Grid. The LCG production Grid currently has approx-

imately 180 active sites with around 30,000 CPUs and 3

petabytes storage, which is primarily used for high energy

physics (HEP) data processing. There are also jobs from

biomedical sciences running on this Grid. Almost all the

LCG is a data storage and analysis infrastructure for the high en-

ergy physics community that will use the Large Hadron Collider (LHC)

at CERN. http://lcg.web.cern.ch/LCG/.

jobs are massively parallel tasks, requiring one CPU to pro-

cess a certain amount of data. The workloads are obtained

via the LCG Real Time Monitor for two periods: LCG1

consists of jobs of eleven consecutive days from Novem-

ber 20th to 30th in 2005, while LCG2 is from December

19th to 30th in the same year. At the cluster level we use

traces from three data-intensive clusters. They are located

at the HEP institutes in the Netherlands, UK, and France,

respectively, and all participate in LCG. It should be noted

that these clusters are involved in multiple different col-

laborations and have their own local user activities. Grid

jobs from LCG only account for a part of the whole work-

loads, depending on the local policies. The trace SBH01 is

from ”Blue Horizon” in San Diego Supercomputer Center

(SDSC) and it is included for comparison studies.

In the Grid community Virtual Organization (VO) is an

The Real Time Monitor is developed by Imperial College London and

it monitors jobs from all major Resource Brokers in LCG therefore the data

it collects are representative at the Grid level. http://gridportal.

hep.ph.ic.ac.uk/rtm/.
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Figure 2. Plots of the scaling analysis and aggregation procedure for lhcb, LCG1.

important concept [10] and one can consider a VO as a col-

lection of entities (users, resources, etc) that belong to mul-

tiple organizations but have common goals or shared poli-

cies. In the LCG Grid VOs are mostly named after major

HEP experiments, collaborations, or scientific disciplines.

It is shown that the top VOs and users often dominate the

workload, which means analyzing the limited number of top

VOs or users could cover most of the workloads. Moreover,

as we will show later, patterns emerge by simply using the

nominal VO names for categorization without any sophisti-

cated clustering treatment. From a performance evaluation

perspective it is also desirable to include VO or users in the

synthetic traces since most of the policy rules are based on

their names. Given these motivations, our analysis mainly

focuses on the VOs. Some of the VO names appeared in

this paper are briefly explained here. lhcb, atlas, and cms

are major HEP experiments in the LCG Grid. dteam is a VO

mostly consisting of software monitoring and testing jobs in

the Grid. hep1 is a HEP collaboration between institutes in

UK and US, part of which is also involved in LCG. biomed

is the VO with biomedical applications and it contributes to

∼65% of LPC05 jobs.

Our analysis is to apply the statistical measures dis-

cussed in Section 3.2 to each level of workloads for dif-

ferent characteristics. This has generated a large number of

data and figures. Our interest, on the other hand, is to dis-

cover some basic pattern or patterns of the workload char-

acteristics. Therefore the presentation of analytic results

are categorized by the revealed patterns and only represen-

tative figures of each pattern are shown. In the following

sections, we present the job arrival patterns first, followed

by run time, memory and cross-correlations between char-

acteristics. Interesting readers are directed to [13] for the

complete results including different levels on all traces.

4.1 Job Arrivals

There are three basic patterns discovered for job ar-

rivals: pseudo-periodicity, long range dependence (LRD),

and (multi)fractals, which are presented subsequently in the

following sections.

4.1.1 Pseudo-Periodicity

There are a number of VOs at the Grid and the cluster level

which exhibit pseudo-periodic patterns and lhcb on LCG1

is used as the example. Figure 1 shows the first and second

order statistics of job interarrival times of lhcb-LCG1. We

can see that the marginal distribution of interarrival times is

not heavy-tailed, resembling exponential behavior in the y-

log plot. A strong deterministic component of around 20
seconds is observed in the histogram plot, which is also

evidenced in the pair-correlation plot. As to the second-

order properties like the ACF and DFT certain periodicity

is detected. Long-lag decaying peaks in the ACF plot cor-

respond to the multimodals in the low frequency domain

of the DFT. Nevertheless, periodicity for interarrival times

does not hold for all processes belonging to this pattern.

This is in accordance with the fact that interarrival based

measures eliminate the direct relation with the real time axis

so count based measures should be examined.
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Figure 3. Plots of first and second order statistics and scaling analysis for biomed, LPC05.

The next step naturally goes to the aggregation proce-

dure which uses count based measures. Figure 2 plots the

count process together with its ACF and power spectrum

for scale = 6. Periodicity is clearly detected by the equally-

spaced peaks in the ACF plot and the multiple harmonics in

the power spectrum. Stochastic fluctuations (noise) are also

present in the count processes. This pattern holds for all the

VOs in the same category with different base frequencies.

Scaling analysis with the aggregated variance and the

Logscale Diagram are shown in Figure 2. In the variance

plot the slope from scale 6 to 12 is estimated to be β ≈ −0.3
(H ≈ 0.85). This corresponds to the Logscale Diagram

with octave j from 5 to 11, showing a scaling alignment

with the estimated exponent α = 1.23 > 1. However, the

scaling analysis in this case proves to be of limited useful-

ness because of the strong deterministic nature of the under-

lying point process.

A dyadic scale is used so scale j means T = 2
j seconds in the count

process. This applies to all the scales in the count based measures used

throughout this paper.

4.1.2 Long Range Dependence (LRD)

biomed-LPC05 is used as a representative example for il-

lustrating long range dependence. As is shown in Figure 3,

the interarrival time distribution is heavy-tailed and ampli-

tude burstiness is observed. The ACF of interarrival times,

on the other hand, is short range dependent. This is in ac-

cordance with the scaling exponent estimate α = 0.164
in the Logscale Diagram in Figure 3. In the count based

Logscale Diagram the scaling region is from the octave 8

(corresponding to scale 10 in the variance plot) up to the

largest scale with an estimated scaling exponent α = 0.96.

This type of scaling strongly suggests long range depen-

dence behavior [3]. Plotting the count processes from sev-

eral scales and their second order statistics further confirm

LRD. We can see from Figure 3 that the ACF and the spec-

trum of scale 8 decay very slowly. It should be noticed that

the scaling and LRD behavior has a certain lower bound

beyond which scaling is not obeyed.

Data from real production systems is highly complex and

different patterns can be observed within one process. Long
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Figure 4. Plots of the first and second order statistics for atlas, LCG2.
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Figure 5. Plots of the first and second order statistics for LCG1.

range dependence, for instance, can be mixed with periodic

components. There are two types of periodic components

added to a LRD process. The first type is LRD plus high-

frequency periodic components and the results for atlas-

LCG2 are plotted in Figure 4. In the pair-correlation plot

a high peak around (10, 10) − seconds is clearly observed

for job interarrival times. The ACF and the Logscale Dia-

gram suggest that the interarrival time process is short range

dependent, though. The count process, on the other hand,

show a scaling region from scale 6 and above that indicates

LRD (see the variance and LD plot). The aggregated count

plot for scale = 6 shown in Figure 4 further confirm the LRD

argument. There is also an interesting finding of high fre-

quency periodic components in the power spectrum. As is

shown in the scale = 6 ACF plot those periodic fluctua-

tions are nicely aligned with the power law decay. The high

frequency components can be related to the strong deter-

ministic peak in the pair-correlation plot.

The second type of periodic behavior contains multiple

components, mostly concentrated in the lower frequency

domain. This type is usually found in the aggregated whole

trace with mixed deterministic and stochastic components.

The Grid level LCG1 and LCG2 are examples of this pattern

and LCG1 count plots are shown in Figure 5. The count pro-

cess (scale = 6) is LRD along with multiple low frequency

peaks. We can even relate these peaks with the major VOs.

Remember that we discussed the periodic patterns to which

lhcb belong. If we cross-refer the ACF plots we can find that

the 240-minute peak is contributed by lhcb. This indicates

that the count/rate processes are formed by aggregations of

VO processes. For larger scales periodic patterns become

dominant mostly due to hourly or daily cycles.

4.1.3 Fractals

Figure 6 show hep1 on RAL05 as an example for

(multi)fractals. The interarrival time process is short range

dependent. The Logscale Diagram of the count process ex-

hibits biscaling [3]. The scaling concentrated at the lower

scales indicates the fractal nature of the sample path. The

alignment at higher scales, on the other hand, resembles that

of a stationary SRD process. This is further visualized in

Figure 6 for scale = 6 with quickly vanishing ACF lags

and a white-noise like spectrum. For testing multifractality

we plot the Multiscale Diagram of the count process (“blue

circle”, middle-right in Figure 6). A simulated fractional

Gaussian noise (fGn) with H = 0.8 is also shown as a

monofractal reference (“red cross”). On the left we can see

that the ζq of fGn (star-dotted line) is linear to q while the

hep1-RAL05 count process (circle-dashed line) is nonliear,

indicating multifractal scaling. This corresponds to the plot

on the right: the hq of the count process departs heavily

from the horizontal line-like fGn. A multifractal model is

needed to capture the scaling behavior of such patterns [22].
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Figure 6. Plots of first and second order statistics and scaling analysis for hep1, RAL05.

4.2 Job Run time, Memory, and Cross
Correlations

In this section we turn our focus into characteristics such

as run time and memory. On one hand, first order statis-

tics is plotted to see how data values are distributed. On the

other hand, autocorrelations are used to examine second or-

der properties in the sequence of data when ordered ascen-

dantly by the arrival times. Figure 7 plots the marginal dis-

tributions and autocorrelations for job run time and memory

of lhcb on NIK05. The distributions of run times are highly

multimodal with specific values, meaning that the applica-

tions within one VO are more similar to each other with

clustered values of running times. Similar results are ob-

served for memory consumption. Physically we can inter-

pret that these jobs belong to multiple applications within a

certain large scale scientific experiment or discipline. Run

times and memories with similar values also turn to appear

subsequently in time, which is evidenced by the fluctuating

horizontal lineups in the sequence plot. It is not surpris-

ing to see the strong autocorrelations in the sequences of

run times or memories. One explanation of these observa-

tions is that the computing environment at the cluster level is

more homogeneous compared to the Grid so less variations

are expected on job run times and memories. The nature of

data-intensive applications (bags of tasks) and similarity re-

sulted by VO categorization should lead to an even stronger

degree of temporal locality [8].

It is also interesting to see how the interarrival times are

jointly distributed with the sequences of similar values. This

helps to correlate arrivals and run times/memories and iden-

tify the ”bag-of-tasks” phenomenon on data-intensive envi-

ronments. Figure 7 shows the scatter plots of run times and

memories against interarrival times for lhcb-NIK05. We can

see that job run times and memories are heavily clustered in

the ranges of small interarrival times. This is to say that not

only similar values appear in a sequence, but also times be-

tween arrivals in a sequence are relatively small, indicating

the “bag-of-tasks” behavior. Figure 7 also contains a scatter
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Figure 7. Plots of the first and second order statistics for run time and memory as well as cross-
correlations between them for lhcb, NIK05.

plot of run time against memory and its cross-correlation

function for lhcb-NIK05. Correlation coefficients calcu-

lated by Pearson’s as well as by Spearman’ rank are given

in Table 2. Among the three VOs lhcb-NIK05 shows the

strongest correlation between run time and memory. We

can see it from the clustering in the scatter plot and the

slow-decaying cross-correlation function, confirmed by a

high correlation coefficient. For the other two VOs weak

to moderate correlation coefficients are obtained, however,

correlation coefficients are used only in combination with

other measures due to their inherent limitations (especially

Pearson’s). Referring to the complete results [13] we can

conclude that temporal locality and “bag-of-tasks” behavior

are clearly evidenced for VOs on data-intensive clusters. At

the Grid level this behavior is not clearly observable for all

the VOs due to heterogeneity, but it is present in the work-

loads. For the parallel supercomputer SBH01 no bags of

tasks can be identified, even for uses whose marginal distri-

bution of run times shows strong multimodality.

5 Discussions

In this section we discuss the nature and origin of the dis-

covered patterns. One of the primary purposes for statistical

studies is to inspire and assist workload modeling and per-

Trace Pearson’s Spearman’s Rank

biomed-LPC05 0.173 0.695

lhcb-NIK05 0.756 0.826

hep1-RAL05 0.013 0.456

Table 2. Correlation coefficients (CC) for run
time against memory of VOs on clusters.

formance predictions. We will cover these topics in greater

detail as well.

5.1 The Nature of Workload Dynamics

Our focus in this paper is on data-intensive comput-

ing environments whose workloads consist of flows of

massively-parallel single-CPU tasks. By looking at the cur-

rent workload structure of production clusters and Grids,

together with the booming factor of computing-oriented so-

lutions to system-level sciences such as bioinformatics, we

can envision that data-intensive applications will contribute

to a majority of workloads running on current and future

Grids. This type of applications is also well suited to run on

a heterogeneous Grid environment because of its loosely-



coupled and data-parallel nature. Truly parallel applica-

tions like those on traditional parallel supercomputers, on

the other hand, are more tightly-coupled with inter-process

communications which make them more difficult moving

from one architecture to another. Based on the different na-

ture of applications and domain properties, it is expected

that data-intensive workloads possess structures and pat-

terns which are departed from those based on parallel su-

percomputers. We start our quest on the origin of job arrival

dynamics.

There are three patterns that we discovered for data-

intensive job arrivals. The first one exhibits strong period-

icity, which suggests certain deterministic job submission

mechanisms. lhcb is a large HEP experiment in the LCG

Grid with the largest portion of production jobs. If we take

into account that close to 90% of lhcb jobs (around 60,000)

are from a single “user” during the eleven consecutive days

in LCG1, we can assume that scripts are used to submit

those jobs, which are deterministic in nature. It can also

be interpreted that automated tasks need to be implemented

to process such a huge amount of scientific data. Periodicity

can also be originated from testing and monitoring jobs in

the Grid such as those from dteam. dteam stands for “de-

ployment team” and it is dedicated for a continuously func-

tioning and operating Grid. Mostly testing and monitoring

jobs are initiated automatically by software in a periodic

fashion. The periodic pattern is also observed for VOs at the

cluster level. We consider it as one basic pattern that origi-

nates from automated submission schemes, which is shown

to be present in large-scale data processing environments.

The second pattern is long range dependent (LRD) and it

applies to many production VOs. This can be partially ex-

plained by the repetitive executions of several main applica-

tions from major users in the VO. A typical user would sub-

mit sequences of tasks with a heavy-tailed inter-submission

time. This behavior shows temporal burstiness, which is

argued in [5] that it essentially originates from a priority se-

lection mechanism between tasks and non-tasks waiting for

execution. LRD forms the second basic pattern that char-

acterizes data-intensive job arrivals. If we combine peri-

odicity and LRD, some interesting patterns emerge. The

process can be long range dependent with high frequency

oscillations, rooting from the short-period repetitions of job

arrival rates at small time scales. The process can also be

LRD with multiple lower frequency components, which is

mainly due to the addictive nature of aggregation at the Grid

level. There are limited data-intensive traces that show rich

fractal behavior at small scales and are short range depen-

dent at large scales. Most of the parallel supercomputer

traces belong to this category.

When we take more characteristics like run time and

memory into account, a “bags-of-tasks” behavior is evident

for data-intensive jobs. The marginal distributions for run

time and memory are highly multimodal at the VO level on

clusters. Certain values not only occur subsequently, but

also turn to appear within one burst period. This is again

due to the nature of data-intensive applications. On paral-

lel supercomputers, on the other hand, no such behavior is

observed in the workloads.

5.2 Modeling and Predictions

Effective scheduling algorithm design both at the Grid

and the cluster level requires experimental studies based on

simulations, in which representative workload models play

a crucial role. There are many modeling work being done

for parallel workloads [1], but on Grids it is still emerg-

ing [16]. This paper is particularly useful for the modeling

research because a set of basic patterns are identified for

job arrivals on clusters and Grids, which points out direc-

tions for selecting models to fit distinctive patterns. More-

over, cross correlations between job characteristics are in-

vestigated and illustrated. As we have shown these patterns

and correlation structures on Grids are very different from

those which have been studied and modeled on parallel su-

percomputers. There is a strong need to build models that

are able to capture the dynamics both within and between

job characteristics for data-intensive workloads.

Another important perspective on workload analysis is

how to help the research on performance predictions. Pre-

dictions of performance metrics, such as application run

times and queue wait times on clusters, serve as impor-

tant information for scheduling decision making at the Grid

level. The main patterns that we identify for data-intensive

clusters, namely periodicity, long range dependence, and

temporal locality, suggest that prediction techniques based

on historical data modeling would most likely work on real

production systems [21, 15]. The Grid-level scheduling

strategies can also take advantages of specific VO job ar-

rival patterns. For instance, if periodicity is detected for

a large production VO, scheduling heuristics can be opti-

mized specifically for this strong deterministic behavior.

6 Conclusions and Future Work

In this paper we study comprehensively the first and sec-

ond order statistics of workloads on clusters and Grids at

different levels, including VO and user behavior. We iden-

tify several basic patterns for job arrivals and these pat-

terns provide important clues from a modeling perspective.

The sequences of job run times or memory on clusters are

strongly autocorrelated and their cross-correlations are also

significant. Moreover, sequences of similar values turn to

appear in a burst with small interarrival times, leading to the

observation of “bag-of-tasks” behavior. To sum up, pseudo-

periodicity, long range dependent, and temporal locality



(“bag-of-tasks”) are important characteristic properties of

workloads on data-intensive clusters and Grids, which is not

present in the traditional parallel workloads.

Future work naturally extends to workload modeling that

tries to capture the correlation structures and patterns ob-

tained in this paper. Experimental performance evaluation

studies using simulations are needed to investigate their im-

pact and how to improve scheduling under such workload

patterns.
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