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Abstract

Operating a cluster on a single IP address is required
when the cluster is used to provide certain Internet services.
This paper proposes SAPS, a new method to assign a single
IP address to a cluster. The TCP/IP protocol is handled at
a single node called the I/O server. The other nodes, called
application nodes, provide the socket interface to applica-
tions. The I/O server and applications nodes are connected
using a cluster-dedicated network, such as the Myrinet net-
work. The key benefit of the proposed method is that the
TCP/IP protocol does not care about congestion and packet
loss in the cluster, which often happens if multiple nodes
send packets to the bottleneck router. Instead, the cluster-
dedicated network manages the packet congestion more ef-
ficiently than the TCP/IP protocol. The result of the band-
width benchmark shows SAPS fully utilizes the bandwidth
of the Gigabit Ethernet. The result of the SPEC Web bench-
mark shows SAPS handles 7.9% more requests than the ex-
isting method.

1. Introduction

In recent years, Web or FTP services are often provided
using clusters if the number of users is so large that a single
computer cannot handle all the requests. Such systems pro-
vide a single IP address from the user’s point of view, while
the server consists of physically separated computers.

The most traditional way to realize the single IP address
is the Round-Robin DNS method[6, 8, 3]. In this method, a
Round-Robin DNS server maps a single host name to mul-
tiple IP addresses whose hosts handle services. When the
DNS server receives a query from a client, it selects one of
the IP addresses and returns the address to the client. By
selecting the IP address in the round-robin manner, requests
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are distributed to the servers that provide the actual services.
This method leads to load imbalances because clients may
cache the IP address, and they then send requests to a spe-
cific server.

Another way to provide a single IP address is called the
Virtual Server method[20, 13]. This system consists of a
load balancer and backend servers. The load balancer re-
ceives all the data from clients and forwards it to one of the
backend servers. By distributing the requests to multiple
backend servers, the load of the servers are balanced. Un-
like the Round-Robin DNS method, Virtual Server balances
the requests, but in turn, it has an issue with the network
performance. Usually, all the cluster nodes share a single
Internet connection and the router is the bandwidth bottle-
neck. When multiple backend servers send data back to the
clients, packets congest the router. The traffic pattern from
the Internet servers is so irregular that the congestion avoid-
ance mechanism of the TCP protocol cannot avoid losing
packets[5]. The resulting issue is that a TCP connection
stays in the slow-start mode, or burst traffic causes heavy
packet loss and re-transmission of many packets[18]. Both
cases lead to limited network bandwidth. This performance
issue caused by the nature of the TCP protocol is a major
drawback of Virtual Server.

This paper proposes a new method that assigns a single
IP address to a cluster, while overcoming the network per-
formance issue found in a cluster using the TCP/IP proto-
col. The proposed method is called SAPS (Single Address
Protocol Stack). A cluster with SAPS consists of two kinds
of nodes: an I/O server and the applications nodes. The
I/O server has the TCP/IP protocol stack so that it handles
all TCP packets. An applications node provides the nor-
mal TCP socket interfaces which use the TCP/IP protocol
stack at the I/O server. The I/O server and the applications
nodes communicate with each other using a reliable high-
performance communication protocol called PM[16] in the
Myrinet network.

SAPS overcomes the network performance issue with
the TCP protocol by not using the TCP protocol inside a



cluster. Because the communication between the I/O server
and the applications nodes is handled by the PM high per-
formance library, the TCP protocol does not encounter the
packet loss caused at the bottleneck router. Although PM
may encounter the congestion instead of the TCP proto-
col, PM is more tolerant to heavy traffic and congestion
in a cluster than the TCP protocol[16]. Thus, all the data
from the applications nodes is sent to the I/O server with
sufficient bandwidth, which overcomes the network perfor-
mance issue with the TCP/IP protocol in a cluster.

In order to evaluate the performance of SAPS, the net-
work bandwidth and the web server performance bench-
marks are used. The result of the bandwidth benchmark
shows SAPS fully utilizes the bandwidth of the Gigabit Eth-
ernet. The result of the web server benchmark shows SAPS
handles 6.6 to 7.9% more requests than Virtual Server.

2. Design

The design goals of SAPS as summarized here provide
the following three features:

• The SAPS cluster has a single IP address to provide
Internet services.

• SAPS does not use the TCP/IP protocol for commu-
nication among the cluster nodes in order to avoid the
network performance issue of the TCP protocol in a
cluster.

• SAPS provides an application programming interface
that is compatible with the existing TCP/IP socket.

To achieve these goals, SAPS is designed as shown in Fig-
ure 1.
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Figure 1. Design of SAPS

SAPS consists of two types of cluster nodes: an I/O
server and applications nodes. The I/O server is the only
node that has an Internet connection. It has an IP address

known to clients. This address is the single IP address as-
signed to the cluster. The main role of the I/O server is
to perform TCP/IP protocol handling. When it accepts a
new connection from a client, it selects one of the appli-
cations nodes that handles this connection. Incoming TCP
packets are handled at the I/O server and the stream data is
re-assembled. Then it is sent to the applications node using
the internal cluster network. As for outgoing data, the I/O
server makes TCP packets when it receives data sent by the
applications node.

An applications node provides the socket interface to ap-
plications. This socket is called a Virtual TCP-Socket. An
application such as a web server program runs using this
socket interface without any modification to the program.

The high-speed network, in this case, the Myrinet net-
work, is used to connect the I/O server and applications
nodes. We will call this network the Forwarding Net-
work. Using this network, the Forwarding Protocol pro-
vides a connection-oriented communication mechanism be-
tween the I/O server and applications nodes. The Forward-
ing Network and the Forwarding Protocol provide a conges-
tion tolerant communication method inside a cluster. Al-
though the Myrinet network is currently used, SAPS is de-
signed to be capable of using other cluster interconnects,
such as Infiniband[4], as the Forwarding Network.

We describe the overall behaviour of SAPS. In the rest
of this paper, we call the connection provided by the For-
warding Protocol the “SAPS connection.” If we say simply
“connection,” this means a connection on the TCP/IP pro-
tocol.

• Socket creation

When an application running on an applications node issues
the socket() system call, a Virtual TCP-Socket is created.
The Forwarding Protocol on the applications node makes a
request to the I/O server to make a new SAPS connection.
The I/O server accepts the SAPS connection and creates the
TCP socket associated with the new SAPS connection.

• Initiation of an active connection

When an application issues the connect() system call, the
request is forwarded to the I/O server using the SAPS con-
nection. The I/O server establishes the TCP connection be-
tween the I/O server and the peer of the TCP connection.

• Acceptance of a new connection

The application issues bind() and listen() system calls.
These requests are forwarded to the I/O server using the
SAPS connection. The application issues the accept() sys-
tem call and waits for a new connection. This system call
does not make a request to the I/O server, but waits for a
new SAPS connection from the I/O server. When a new
TCP connection is requested to the I/O server by a client,



the I/O server establishes the TCP connection. Then the
I/O server makes a new SAPS connection with the applica-
tions node. The applications node accepts the SAPS con-
nection and makes a new Virtual TCP-Socket. The applica-
tions node returns the new Virtual TCP-Socket to the user
program as a return value of the accept() system call.

On normal TCP/IP, it is prohibited for more than two
programs to listen on a single TCP port. On the other hand,
SAPS allows this multiple listening if these programs are
running on different nodes. In this case, the I/O server se-
lects one of the listing processes that accepts the new con-
nection in a round-robin manner.

• Transmission of messages

An application issues the send() or write() system call. The
data is transmitted to the I/O server using the SAPS connec-
tion. The I/O server makes the TCP packets and sends them
to the other end.

• Reception of messages

When the I/O server receives data on the TCP connection,
the data is transmitted to the applications node using the
SAPS connection. The applications node receives the data
and stores it in the receive buffer. The data is copied to the
application on the recv() or read() system calls.

2.1. Design Details

2.1.1 Forwarding Protocol

The design of the Forwarding Protocol is shown in Figure
2.
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Figure 2. Forwarding Protocol of SAPS

The Forwarding Protocol provides the following three
functions.

• MakeConnection()

This function makes a new SAPS connection.

• CloseConnection(connection)

This function closes the connection.

• SendMessage(connection, message)

This function sends the message to the peer of the SAPS
connection.

When these functions are called, the appropriate mes-
sage is sent to the other end. On the receiver side, the fol-
lowing callback functions are defined.

• ConnectionAccepted()

This function is called by the Forwarding Protocol when a
new SAPS connection request is received. If this request
succeeds, an ack message is sent back to the sender. Other-
wise, an exception message is sent back to the sender.

• ConnectionClosed()

This function is called by the Forwarding Protocol when
the SAPS connection is closed by a peer. No reply or ack
message is sent back to the sender because it is assumed that
the action always succeeds.

• MessageReceived()

This function is called by the Forwarding Protocol when a
message is received. The amount of empty buffer space is
sent back to the sender.

Another callback function is defined on the sender side.

• BufferAvailable()

A message is sent from the receiver when enough buffer
space is available on the receiver side. This function is
called when the message arrives at the sender side.

The Forwarding Protocol is implemented in a suitable
way for the underlying Forwarding Network. A high-speed
network such as the Myrinet network or Infiniband is sup-
posed as the Forwarding Network. The interface between
the Forwarding Network and the Forwarding Protocol is not
defined in SAPS. Although it is possible to use a generic
interface such as kDAPL[7], it will perform better if it is
implemented using a hardware specific interface.

2.1.2 I/O Server

The I/O server performs the protocol conversion between
the Forwarding Protocol and the TCP/IP protocol. The
easiest way to realize the protocol conversion is to use a
user process that receives data from the TCP/IP socket and
sends it to the applications node, or vice versa. However, in
this design, the transmitted data is copied twice: from one
socket to the user process, and from the user process to an-
other socket. It is obvious that this user process becomes a
bottleneck.



In order to avoid copying data in the I/O server, we have
designed it so that the protocol conversion is performed in
the operating system kernel. As shown in Figure 1, this
protocol converter is called the SAPS Forwarder. The SAPS
Forwarder forwards the data transmitted on TCP connec-
tions, handles the system call requests from the applications
nodes, and notifies the events on the TCP connection to the
application node associated with the connection.

The SAPS Forwarder uses the interfaces of the Forward-
ing Protocol as follows:

• MakeConnection

When a new TCP connection is accepted, the SAPS For-
warder calls this function to make a new SAPS connection
that corresponds to the accepted TCP connection.

• CloseConnection

The SAPS Forwarder calls this function when the TCP con-
nection goes to the CLOSE or TIME WAIT state and the
SAPS connection is no longer used.

• SendMessage

The SAPS Forwarder calls this function to send data or
events to the applications node.

• ConnectionAccepted

This function is called when the socket() system call is is-
sued on the applications node. SAPS Forwarder makes a
new TCP socket corresponding to the socket on the appli-
cations node.

• ConnectionClosed

This function is called when the applications node closes
the socket. The SAPS Forwarder disconnects the TCP con-
nection and destroys the TCP socket.

• MessageReceived

This function is called when the applications node sends a
message. There are two types of messages, a system call re-
quest to the socket, and the data to be transmitted to the peer
of the TCP connection. The SAPS Forwarder takes the ac-
tion appropriate for the TCP socket layer in response to the
received message. If the message is a system call request,
the SAPS Forwarder will send the result of the request back
to the applications node.

• BufferAvailable

This function is called when new receive buffer space be-
comes available on the applications node. The SAPS For-
warder picks up a packet from the receive queue of the TCP
connection and sends it to the applications node.

2.1.3 Applications Node

The Virtual TCP-Socket is provided at the applications
node. The Virtual TCP-Socket exchanges the transmitted
data or system call requests with the SAPS Forwarder.

The Virtual TCP-Socket uses the interfaces of the For-
warding Protocol as follows:

• MakeConnection

The Virtual TCP-Socket calls this function when it is cre-
ated.

• CloseConnection

The Virtual TCP-Socket calls this function when the socket
is closed by the application.

• SendMessage

The Virtual TCP-Socket calls this function to send data writ-
ten by the application or system call requests to the I/O
server.

• ConnectionAccepted

This function will eventually be called after the I/O server
calls MakeConnection. The Virtual TCP-Socket makes a
new socket that handles the new connection.

• ConnectionClosed

This function will eventually be called after the I/O server
calls CloseConnection. If this function is called, the Virtual
TCP-Socket goes into the error state. If the application pro-
gram calls a system call of the socket in the error state, the
error is reported.

• MessageReceived

This function is called when a message arrives from the I/O
server. If the message is the result of a system call request
sent previously, the system call is completed. If the data is
received, it is enqueued in the receive buffer.

• BufferAvailable

This function is called when new send buffer space becomes
available for the TCP connection on the I/O server. When
this function is called, the Virtual TCP-Socket wakes up the
applications that are waiting for the new buffer space on the
write() or poll() system call.

2.2. Flow Control on a SAPS Connection

As the Forwarding Network, a cluster-dedicated network
such as the Myrinet[12] network is used. Because such net-
works provide reliable communication, SAPS does not need
to care about the reliability of the communication. A prob-
lem exists with the flow control on SAPS connections. As
described above, one SAPS connection is made for one TCP



socket(φ : status) → request(φ) | wait(status)
connect(address, port : status)

→ request(address, port) | wait(status)
bind(port : status) → request(port) |wait(status)
listen(backlogsize : status)

→ request(backlogsize) | wait(status)
accept(φ : peeraddr) → Φ | wait(peeraddr)
shutdown(how : status)

→ request(how) | wait(status)
close(φ : status) → request(φ) | wait(status)
write(message, len : len)

→ request(message, len) | Φ
read(φ : message, len) → Φ | wait(message, len)
setsockopt(type, val : status)

→ request(type, val) | wait(status)
getsockopt(type : val) → request(type)| wait(val)

Figure 3. Protocol to Handle System Calls

socket. Because thousands of TCP sockets may be used at
the same time, the number of active SAPS connections may
reach several thousands. On the other hand, the Forward-
ing Network is usually not designed to handle thousands of
independent communication channels at the same time, due
to the limited memory space on the network interface card.
Thus, it is impossible to map one SAPS connection to one
channel on the Forwarding Network.

In order to keep many SAPS connections on any kind of
Forwarding Network, we use only one channel of the For-
warding Network. All the data is transmitted on this single
channel with a tag that identifies which SAPS connection
the data belongs to. This method requires a flow control
mechanism that is independent of the one provided by the
Forwarding Network. Without this flow control mechanism,
some SAPS connections may block other SAPS connec-
tions. For example, suppose two independent sockets exist
on an applications node and both of them are receiving data.
If the application of one socket stops receiving while data is
being transmitted, its receive queue will soon become full.
If the I/O server continues to send data for this socket, the
flow control mechanism of the Forwarding Network will
stop sending all the data, including the data that belongs
to another connection. In order to avoid such a situation,
we have defined a flow control mechanism which works on
each SAPS connection. The algorithm is described in Ap-
pendix A.

2.3. System Call Handling

Using the protocol stack described above, SAPS handles
the system call requests as shown in Figure 3. In this figure,

let us define
connect(address, port : status) →

request(address, port) | wait(status)
means “The connect system call takes the arguments
address and port and returns status. When this system
call is issued on the applications node, it sends the request
to the I/O server with the parameters address and port.
Then it waits for the I/O server to reply. The replied value
is status and it is the return value of this system call.” The
symbol φ means “no parameter” and Φ means “no mes-
sage.” If some error happens on the I/O server, this error
is reported asynchronously to the applications node. This
error is returned the next time the application issues any
system call. All the system calls perform this error check at
the beginning of the system call handler, thus it is not shown
in Figure 3.

3. Implementation

SAPS is currently implemented as kernel modules of
Linux 2.6.14. This section describes the implementation of
SAPS.

3.1. I/O Server

This section describes an efficient way to implement the
protocol conversion mechanism between the Forwarding
Network and the TCP/IP protocol.

In the original Linux kernel, when a network interface
card (NIC) receives a TCP/IP packet, the interrupt handler
invokes a software interrupt handler. The software interrupt
handler picks the packet from the NIC and delivers it to
the TCP/IP protocol stack. The TCP/IP protocol stack per-
forms a procedure to guarantee the reliability of the com-
munication, that is, it requests the peer to resend the lost
packets, reorder the packets, and so on. Then, it enqueues
correctly received packets in the receive queue. In SAPS,
the procedure mentioned above is identical. The following
steps differ. The next step in the original kernel is that the
TCP/IP protocol stack wakes the receiving process. Then,
the process picks up the packet in the receive queue and
copies the payload of the packet to the buffer of the applica-
tion. On the other hand, in SAPS, the TCP/IP protocol stack
calls the SAPS Forwarder. It picks up the first packet in the
receive queue and rewrites the header of the packet with
the header of the Forwarding Protocol. The payload of the
packet is preserved. Then, the SAPS Forwarder sends the
packet off to the Forwarding Network. As for the data from
applications nodes, the software interrupt handler picks up
a packet from the Forwarding Network and delivers it to the
SAPS Forwarder. Then the SAPS Forwarder sends it to the
TCP/IP protocol stack. The TCP/IP protocol stack rewrites



Table 1. Specifications of cluster nodes and clients
I/O server Applications Node Client Type 1 Client Type 2

CPU Opteron 248 × 2 Xeon 2.8GHz × 2 Opteron 2.2GHz ×2 Pentium4 3.0GHz
PCI PCI-X (64bit 133MHz) PCI-X (64bit 100MHz) PCI-Express PCI-X (64bit 66MHz)
Ethernet Broadcom BCM5703X Intel Pro/1000 Server Broadcom BCM5703X Intel Pro/1000 Server
Myrinet Myrinet XP Myrinet XP

Table 2. Ethnernet Switches
Model Cisco Catalyst 3750 24-T-S Dell PowerConnect 2716
Queue 75 for input, 40 for output unknown
Buffer 12MBytes shared unknown
Flow Control Not Supported Off

the header of the packet with the one of the TCP/IP proto-
col.

3.2. Applications Node

Because the existing TCP/IP socket interface is imple-
mented assuming that the TCP/IP protocol stack is also im-
plemented on the same node, the existing implementation
of the TCP/IP socket cannot be used for SAPS. Thus, a new
implementation of the socket interface, Virtual TCP-Socket,
was made. The Virtual TCP-Socket is implemented so that
it provides a socket interface which is fully compatible with
the existing TCP socket. In order to provide a compatible
interface, the Virtual TCP-Socket replaces the whole imple-
mentation of the socket of the PF INET protocol family.
Thus, SAPS and the original TCP/IP sockets cannot be used
at the same time. The processes on the cluster may commu-
nicate with each other by connecting to “localhost.”

3.3. Forwarding Network

As the Forwarding Network, we currently use the
Myrinet network. PM/Myrinet[16] is used as the commu-
nication library. In order to use PM/Myrinet in SAPS, we
made extensions to PM/Myrinet.

Because PM/Myrinet is designed to be used for high-
performance applications, PM/Myrinet provides its com-
munication API only to the user mode application. Thus,
the kernel mode interfaces must be added to PM/Myrinet.
PM/Myrinet realizes the user mode communication by
mapping the memory of the network card to the virtual ad-
dress space of the user application and writing communica-
tion requests to this memory space. In order to add a kernel
interface, this memory area is also mapped in the kernel
space. The kernel level driver writes the communication re-
quests to this memory space.

We also add an interrupt driven receive handler to the
original PM/Myrinet library. In order to eliminate the over-
head of the interrupts, PM/Myrinet polls the receive buffer
while it waits for the arrival of messages. This is not al-
lowed in the kernel because polling may lock the whole
kernel. Thus, we modify the firmware of PM/Myrinet to
raise an interrupt when it receives a message. This interrupt
is handled by the driver and the received packet is passed to
the Forwarding Protocol handler.

3.4. Forwarding Protocol

The Forwarding Protocol is implemented as a new pro-
tocol layer in the Linux kernel. This is implemented as an
independent kernel module from the SAPS Forwarder or the
Virtual TCP-Socket. This implementation is used both in
the I/O server and applications nodes. Currently, the For-
warding Protocol is implemented on Myrinet using the ker-
nel interface of the PM/Myrinet library, which is described
above.

If another cluster interconnect, such as Infiniband, is
used as the Forwarding Network, another implementation
of the Forwarding Protocol must be made using the inter-
face of this Forwarding Network.

4. Evaluation

In this section, we evaluate the performance of SAPS.
First, the basic network performance is measured. Then, as
a benchmark of the real applications, the web server perfor-
mance is measured using the SPEC Web benchmark[15].
All results are compared with those of Virtual Server via
direct routing[13].
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Figure 5. Virtual Server Network Topology

4.1. Evaluation Environment

SAPS is evaluated using a 5-node cluster, one is the I/O
server and the others are applications nodes. As client com-
puters that communicate with the cluster, nine computers
are used. The specification of the computers and the net-
work switches are shown in Tables 1 and 2, respectively.

The network topologies for SAPS and Virtual Server are
shown in Figures 4 and 5. As for Virtual Server, the data
transmitted from a client to a server is forwarded by the
load balancer while the reply packets from the server are
sent directly to the client. In those figures, a special com-
puter marked ”BeSim” is installed to run the SPEC Web
benchmark. The role of this computer will be shown later.
Using the port mirroring facility of the Ethernet switch, all
the packets going into the clients are captured by the com-
puter marked “Bandwidth Analyzer.” This computer mea-
sures the aggregated bandwidth of all the streams from the
servers to the clients.

4.2. Basic Performance

First, the point-to-point round trip time is shown. It was
measured at both the user and TCP levels. User level one
is the time from sending a 4-byte message and receiving its
echo at the application level. In order to measure the end-to-
end latency in the TCP level, the time elapsed from sending
the SYN packet and receiving the SYN-ACK packet was
measured at the connection establishment phase. The re-
sults are shown in Table 3. The user level round trip time of
SAPS is longer than that of Virtual Server, on average. But
SAPS performs more stably than Virtual Server. The TCP
level round trip time of SAPS is shorter than that of Virtual
Server. This is because all packets, including ACK packets,
detour in Virtual Server, while ACK packets are handled in
the I/O server without forwarding in SAPS.

The point-to-point bandwidth is shown in Figure 6. This
is the bandwidth of a single burst stream from the server to
the client. SAPS performs better than Virtual Server with
short messages. This is because the TCP level round trip
time is shorter in SAPS, and thus the TCP congestion win-
dow grows faster than Virtual Server. Both SAPS and Vir-

Table 3. Round Trip Time (µs)

User
Min. Max. Avg.

SAPS 210 217 213
Virtual Server 162 236 173

TCP
Min. Max. Avg.

SAPS 92 106 96.6
Virtual Server 105 187 134.8

tual Server utilize the available bandwidth of the Gigabit
Ethernet at their peak bandwidth.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09

B
an

dw
id

th
 (

M
pb

s)

Message Size (bytes)

SAPS
Virtual Server

Figure 6. Point-to-Point Bandwidth

Figure 7 shows the bandwidth of four burst streams.
These streams flow from four servers to four clients. The
bandwidth is measured every 10 milliseconds at the “Band-
width Analyzer.” This result shows the SAPS behaviour is
more stable than that of Virtual Server.
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4.3. Web Server Performance

As the benchmark of a real application, the performance
of the web server was measured using the SPEC Web 2005
benchmark[15]. The SPEC Web 2005 benchmark provides
three kinds of benchmarks: e-Commerce, Banking, and
Support. The e-Commerce and Banking benchmarks simu-
late web sites that provide online shopping and online bank-
ing, respectively. In these benchmarks, the web server has
files that keep information about users who are currently
logged on to the web site. In order to run these bench-
marks, these files must be shared among all cluster nodes
using a network file system. Because this file sharing be-
comes a bottleneck for performance, the e-Commerce and
Banking benchmarks do not reflect the network behaviour.
The Support benchmark simulates a vendor’s support web
site. Users search for a product, or for available downloads.
Some users may download a large file (up to 30 MBytes).
This benchmark requires enough network performance to
reply to the users’ download request. Thus, this benchmark
is suitable for comparing the network performance of SAPS
with Virtual Server.

The network topology used for the SPEC Web bench-
mark has already been shown in Figure 4. In Figure 4,
a special computer marked ”BeSim” is the simulator of a
database server required to run the SPEC Web benchmark.

The network topology of Virtual Server has also already
been shown in Figure 5. No special software is required to
set up a computer as a load balancer. It is implemented in
the standard Linux 2.6 kernel. As the web server program,
the Apache httpd server version 2.0.54[1] and PHP version
5.1.2 are used. The basic configuration parameter of the
Apache httpd server is shown in Table 4.

For a fair comparison between SAPS and Virtual Server,
the same buffer size (128kb) is set for all the socket buffers,

Table 4. Apache Configuration
Keep Alive On
Keep Alive Time unlimited
Keep Alive Requests unlimited
# of server process 1500 at startupx

2500 max

including the TCP/IP buffer on the I/O server, the Virtual
TCP-Socket buffer on the applications node, and the TCP
socket buffer used for Virtual Server.

4.3.1 Results

We ran the benchmark for five minutes, excluding the start
up and warming up time. Although five-minutes runtime is
enough to compare SAPS with Virtual Server, it is too short
to be used for formal results of the SPEC Web benchmark.
Thus, the results shown in this section are not compared
with the ones on the web page of the SPEC benchmark.

Our results are shown in Table 5. Simultaneous Sessions
means the number of users supposed to be accessing the
web site. The benchmark ran three times. As for Virtual
Server, the second trial failed because no response was re-
turned for a request within one minute. On the other hand,
SAPS worked well three times. The Requests field in the
table represents the number of requests handled during the
benchmark. SAPS handled 6.6% to 7.9% more requests,
than Virtual Server.

The benchmark also measures the time required to re-
ply to the users’ request. If the response time is shorter
than three seconds, the TimeGood value is incremented. If
the response is returned within five seconds, the request is
counted in TimeTolerable. Comparing TimeGood and Time-



Table 5. SPEC Web Results
Simultanious Run Requests TimeGood TimeTolerable Error

Sessions
1 75569 88.5% 97.6% 0

SAPS 2800 2 75777 88.8% 97.7% 0
3 75307 87.8% 97.7% 0
1 70227 73.6% 93.0% 13

Virtual Server 2800 2 Failed - - -
3 70641 74.8% 93.3% 2

Tolerable, SAPS handled 25% to 30% more requests in
TimeGood and 11% to 13% more requests in TimeTolera-
ble than Virtual Server.

The Error field shows the number of failed requests. An
error is reported when a time out happens. The difference
from the second trials of Virtual Server, in which the bench-
mark aborts, is that partial responses were received for the
requests. SAPS handled all the request without errors while
Virtual Server failed to reply to some requests. These re-
sults show that SAPS performs better than Virtual Server as
a network system of Web servers.

Table 6 shows the detailed statistics. These values were
taken during the first one minute of each run and the aver-
age values are shown. The Retransmission column shows
the number of retransmitted packets per second. This value
is gathered using the SNMP facility of the Linux kernel
(i.e. reading /proc/net/snmp). For SAPS, it was taken at the
I/O server. For Virtual Server, it was taken at each server,
and the aggregated value is shown. The Bandwidth col-
umn shows the bandwidth of the transmitted data from the
servers to the clients. This value was taken at the “Band-
width Analyzer.” This value includes the bandwidth of the
retransmitted data. The CPU usage column represents the
load of the I/O server or the load balancer. This value is
taken by reading the /proc/stat file. It is shown that Virtual
Server drops many packets and does not utilize the avail-
able bandwidth. On the other hand, SAPS retransmits fewer
packets. According to the detailed SNMP statistics, the re-
transmissions of SAPS are caused by the timeout of retrans-
mission timer, which should not happen. We are investi-
gating the reason of this time out. SAPS consumes more
CPU resources at the I/O server than Virtual Server. This
may affect the scalability of SAPS. However, at least for
this benchmark, both SAPS and Virtual Server will not per-
form better even if more servers were available because the
available bandwidth is already consumed by four servers.

5. Related Work

The Kerrighed[10, 11] project makes a single system im-
age cluster for high-performance computing. This system

provides many features that make a cluster a single sys-
tem, such as software distributed shared memory. In order
to provide the single IP address, a head node receives all
the packets and distributes them to cluster nodes. Because
TCP/IP protocol handling is performed on each node, the
TCP performance is influenced by packet congestion just as
it is with Virtual Server.

OSF/1 AD TNC[19] is a UNIX operating system pro-
viding a single system image on multicomputers. SAPS
is similar to the protocol stack of this operating system in
that the network protocol is handled on a different node
from the one where the socket interface is provided. Al-
though OSF/1 AD TNC has similar functions to those of
SAPS, it is reported that its base system, OSF/1 AD, does
not perform well and cannot utilize the bandwidth of the
high-speed interconnect[14].

TCP pacing [9, 17, 2] is an important technique to avoid
network congestion. In this method, the bandwidth of the
TCP stream is limited in order not to exceed the bandwidth
of the bottleneck link. TCP pacing is effective if the avail-
able bandwidth is known or precisely estimated. However
at the cluster of web servers, it is impossible for each node
to estimate the bandwidth that can be consumed by the node
because the web traffic is so random. Thus, TCP pacing
cannot be applied to avoid the congestion that happens in
the cluster of web servers.

6. Conclusion

This paper has proposed SAPS, a new method that en-
ables a cluster to run on a single IP address. In this sys-
tem, the TCP/IP protocol is handled at the I/O server, and a
socket interface is provided at the applications nodes. The
I/O server and the applications nodes are connected by a
cluster-dedicated network. This design avoids using the
TCP/IP protocol inside a cluster, in order to overcome the
network performance issue on the existing method. The
issue is that the irregular pattern of traffic from servers
breaks the congestion control mechanism of the TCP pro-
tocol, which causes the loss of many packets at a bottleneck
router and results in limited bandwidth.



Table 6. Detailed Statistics
Retransmission Bandwidth CPU usage
(packets/s) (Mpbs) (%)

SAPS 103 930.0 45
Virtual Server 11984 917.8 6

We have implemented SAPS using the Linux operating
system. In the evaluation using the bandwidth benchmark,
it was shown that SAPS utilizes the available bandwidth of
Gigabit Ethernet, which means the I/O server does not be-
come the performance bottleneck. The result of the SPEC
Web benchmark showed that SAPS has handled 30% more
requests in TimeGood, 13% more requests in TimeTolera-
ble, and 7.9% more requests in total, than Virtual Server.
During testing this benchmark, more than five thousand
TCP connections were established at the same time. The
benchmark result shows not only that SAPS performs well,
but also that the implementation is stable.
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Flow Control Algorithm

The sender has the following variables:
As : The number of octets that have already been sent
Ls : The upper limit that the sender may send
The receiver has the following variables:
Ar : The number of octets that have already been received
Br : Size of the receive buffer
Er : Current free space of the receive buffer
Lr : The upper limit that has been reported to the sender
The flow control mechanism works as follows.
1. The receiver initializes Lr with Br at the beginning of the
connection
2. The receiver reports Lr to the sender.
3. The sender updates Ls with the received value Lr .
4. The sender may send while As < Ls

5. if Ar + Er > Lr + Br/2, the receiver updates Lr with
Ar + Er

6. goto 2.


