

RF
2
ID: A Reliable Middleware Framework for RFID Deployment

Nova Ahmed, Rajnish Kumar, Robert Steven French, Umakishore Ramachandran

College of Computing
Georgia Institute of Technology, Atlanta, GA 30332
{nova, rajnish, robert.steven, rama}@cc.gatech.edu

Abstract1

 The reliability of RFID systems depends on a number

of factors including: RF interference, deployment

environment, configuration of the readers, and placement

of readers and tags. While RFID technology is

improving rapidly, a reliable deployment of this

technology is still a significant challenge impeding wide-

spread adoption. This paper investigates system software

solutions for achieving a highly reliable deployment that

mitigates inherent unreliability in RFID technology. We

have developed (1) a virtual reader abstraction to

improve the potentially error-prone nature of reader

generated data (2) a novel path abstraction to capture

the logical flow of information among virtual readers.

We have designed and implemented an RFID

middleware: RF
2
ID (Reliable Framework for Radio

Frequency Identification) to organize and support

queries over data streams in an efficient manner.

Prototype implementation using both RFID readers and

simulated readers using an empirical model of RFID

readers show that RF
2
ID is able to provide high

reliability and support path-based object detection.

1. Introduction

RFID technology is rapidly becoming part of today’s
life through a variety of applications in smart homes,
airports, and supply chain management. With the ubiquity
of RFID deployments, there exists a growing amount of
data being generated from multiple sources that needs to
be processed in order to support user queries. However,
handling large volumes of sensor generated data streams
stresses even high performance computing resources and
broadband network bandwidth. It imposes several
challenges, especially when these streams are distributed
across multiple geographic locations. First, the amount of
data from different sources that needs to be organized
properly is very large; second, because of the nature of
RFID applications, the streamed data and possibly legacy

1-4244-0910-1/07/$20.00 ©2007 IEEE.

data must be fused together in a time-sensitive manner
(e.g. using timestamps); and finally, the overall system has
to be able to manage complexities in a scalable manner to
answer queries efficiently. These problems become more
severe in RFID systems where data is generated from error
prone devices like RFID readers [12, 13].

RFID readers use radio waves to communicate with
electronic tags which vary in type, capability and size.
Passive tags, in particular, are gaining considerable
amount of attention as a low cost solution for automating a
wide range of applications. However, one of the major
drawbacks of the readers using passive tags is their
unreliable behavior. Typical readers accurately detect tags
80-90% of the time, whereas readers with improved
performance have a detection rate of 95-99%.
Unfortunately, this rate is adversely affected by different
environmental factors such as the presence of metal
objects, objects containing liquids, interference from
multiple readers, or the presence of multiple tags within
close proximity of one another. For example, the detection
rate drops to 70% when a reader attempts to detect more
than five tags [11, 12, 13].

A middleware for RFID deployment requires careful
design considerations taking into account the inherent
vulnerabilities of these devices. We have designed a novel
system architecture that addresses different aspects of such
a middleware design. In designing this architecture, we
had the following goals:

• Reliability: Our primary challenge is to provide
system level reliability for inherently unreliable
components provide a certain Quality of Service
(QoS) as required by application queries.

• Load Balancing: System load should be
balanced across the computational elements when
handling a large amount of data.

• High Throughput: The system is expected to
provide extremely high update rates from the
readers and therefore requires high throughput to
handle the sheer numbers of items.

• Scalability: The system should be capable of
handling the addition of new readers or to

 2

dynamically ignore malfunctioning readers
without significantly impacting performance.

• Data Organization: For large amounts of data
there is a need to properly sort and organize data
for efficient query responses.

There have been several recent proposals involving
middleware systems for RFID deployment. Savant [9] is
designed to handle large amounts of data in a hierarchical
manner by constructing a tree of subsystems. Similarly,
the architecture defined in High Fan-in System [6] uses a
tree like structure for data and query propagation. The
problem is handled using a publish-subscribe model in the
work of RFIDStack [3]. WinRFID [11] is another
architecture that uses web services to ensure data
availability. All of these systems aim to provide a scalable
solution in distributed environments for filtering,
organizing, and providing query results to the end user.

The focus of our work is complementary to these
systems. In our work, we focus on the inherent
unreliability of RFID systems, and ask whether the
reliability can be improved using a middleware system.
We use the nature of the dataflow as our ally to improve
reliability. Further, the data flow can help in data
organization as well, which has been focus of earlier
systems. For example, consider a typical RFID
deployment scenario in a warehouse. RFID readers are
placed at appropriate locations, and they continuously read
tags associated with the moving items, e.g. palettes. Often,
palettes of a particular item type follow the same physical
path from an entry point to the designated destination in
the warehouse. Therefore, for many applications,
generated tag data can be categorized based on their
physical flow.

Most RFID middlewares support two major application
categories: object tracking and object location. Both
applications have an internal data flow that follows a path.
In a typical supply chain scenario, as an example of an
object tracking application [20], readers are placed along
conveyor belts for item detection. Airport baggage claim
systems are another example of object tracking
applications [21]. In both these scenarios, readers are
statically placed, and the tagged items detected by the
readers construct a path. Conversely, in the case of object
location applications, tagged items are placed randomly
and readers move along a path locating items in their
wake. Robots equipped with RFID readers looking for lost
objects in an environment is an example of object location.
Another scenario is using robots in a disaster situation:
tags deployed in the environment may guide the robot in
its recovery operation. As should be evident, a path
naturally gets created following the sequence of tags
acknowledged by readers. We have focused on the object

tracking scenario for the work presented in this paper2. A
middleware that has inherent support for this flow of data
considered as a path can be very useful for organizing,
filtering and thus responding faster to queries. Using the
intuition of data flow, we have designed a path based
distributed system architecture for RFID middleware
called RF

2
ID (Reliable Framework for Radio Frequency

Identification).
Our proposed scheme consists of (1) a virtual reader

abstraction to capture the static and potentially error-prone
nature of the physical readers and antennas in a scalable
manner; and (2) a novel path abstraction, called Vpath

(Virtual Path) to capture the logical flow of information
among the virtual readers as RFID-tagged objects move
throughout the environment. Using a notion of path at the
system level gives us several advantages. First, the system
load can be distributed among multiple virtual readers that
constitute a specific virtual path. Second, different QoS
attributes can be defined for a path, such as accuracy and
priority levels that the virtual readers use to operate on
data flowing through the corresponding path. Finally, as
there is an internal representation of data based on path
attributes, it becomes trivial to support path-related
operations on the data, e.g., searching for query results, or
making a future projection of data behavior based on
history.

The main contributions of this paper are as follows:

• Study of the unreliable behavior of RFID

devices: A middleware for RFID devices needs
to take into account the inherent unreliable nature
of these devices. We have done an extensive
study of these devices to identify the variety of
parameters that affect RFID reader performance.

• Design of a path based system architecture:
RF2ID uses Virtual Path (Vpath) to logically
distinguish the flow of data streams. Using
Vpaths, the system is able to provide higher
system reliability, provide a capability to
organize the data streams for efficient query
management, and offer a vehicle for load
balancing among the readers.

• Implementation of RF
2
ID system and its

evaluation: We have developed a prototype
implementation of the RF2ID architecture. The
implementation incorporates physical readers as
well as simulated physical readers to enable
controlled scalability experiments. Our
evaluations demonstrate the improved system
reliability and item detection capabilities of a
path based architecture.

The remainder of this paper is organized in the
following way. The system architecture is described in

2 However, it should be noted that the architecture is general and applies
to object location scenario as well

 3

Section 2. Section 3 provides the implementation of the
proposed scheme. The system evaluation is presented in
Section 4, followed by related work (Section 5) and
conclusions (Section 6).

2. System Architecture

Figure 1 shows a schematic diagram of the system
architecture. It is motivated by the design goals mentioned
in Section 1. While a centralized system may provide
reliability, it is not scalable, especially when the
deployment involves a large geographical area. Hence the
proposed system architecture is a distributed one, and
consists of virtual reader, name server and path server

components.

2.1 Virtual Readers

To achieve reliability in a scalable and distributed manner,
we have designed a novel abstraction called virtual reader

(VR). Virtual Paths (Vpaths) are logical channels across a
set of VRs. A Vpath is created dynamically taking into
account various VR-specific parameters described in later
subsections. Each VR is responsible for a set of physical

RFID readers (PR) within its vicinity.
For applications such as a warehouse wherein the

topology does not change very often, the PR to VR
mapping takes place during initialization (described in
next subsection). A VR is responsible for data

management, path management, and query management.
VRs use local variables and data structures to make
individual local decisions that affect global system
behavior. We use the following notations for describing
the functions carried out by a VR:

• {VR1, VR2, .., VRn} denotes the set of VRs
corresponding to a Vpath P

• {PR(i,1), PR(i,2), .., PR(i,m)} denotes the set of PRs
corresponding to a VRi

• Each VR maintains five lists and a variable for
each path P:

o observedTagList: list of tags detected by
the associated PRs

o receivedTagList: list of filtered tags
from the PRs eliminating duplicates

o expectedTagList: list of expected tags
based on information from neighbor
VRi-1 for a given path

o missingTagList: list of tags expected
from VRi-1 but not received from the
associated PRs

o spuriousTagList: list of tags received
from associated PRs but not expected
(based on information from VRi-1)

Figure 1: RF
2
ID architecture with Virtual Readers,

Vpaths connecting VRs, Name Server and Path
server for available information on Virtual
Readers and RFID readers (PR).

• A set of control parameters in a VR to make path
creation decisions:

o connin: maximum number of incoming
messages handled per unit time

o connout : maximum number of outgoing
messages handled per unit time.

2.1.1 Initialization

The VR to PR assignment is done during the
initialization phase. A PR is inherently unreliable; hence,
multiple PRs are associated with a given VR to reduce the
probability of errors. A VR is associated with a set of
PRs in its geographical region. Figure 2 shows an RFID
deployment in a warehouse. The figure shows a 2-
dimensional (plan) view of the physical space where the
system is deployed. The physical space is divided into
regions (dashed rectangles) and a VR is assigned to each
geographical region. The tracks show the belts along
which items will flow physically from source to
destination. Each VR is initially assigned to a disjoint set
of PRs that are in the geographical region covered by that
VR. The set of PRs used by a VR during system operation
is path specific. In Figure 2, VR1 uses upper set of PRs
for the path created between A and D; whereas, it uses
PRs from the bottom for the path from B to E.

Figure 2: A warehouse scenario showing

RFID reader (PR) and VR deployment.

 4

2.1.2 Data Management Data management consists of
two major tasks: filtering the data (from the PRs
associated with this VR, and from neighboring VRs), and
timestamping the data in a consistent manner. We assume
that VRi is able to send its information (expectedTagList
message) to VRi+1 in path P, before the items physically
reach the neighbor.

The data acquisition and processing phase by VRi is
the process of accumulating scanned data from all
PRs{PR(i,1), PR(i,2), .., PR(i,m)} contained in path P. A
corresponding observedTagList is generated for each PR
in order to compare them with one another. The result of
these comparisons is a concrete list of tags (eliminating
duplicates) which is recorded in receivedTagList,
timestamped with the current system time. In the data

comparison phase, every VRi (except the source VR),
receives a list of expected items from VRi-1 along path P
and stores it in expectedTagList. The timestamps in
expectedTagList and receivedTagList are then compared to
guarantee a consistent temporal ordering amongst these
VR-generated lists. The items of expectedTagList and
receivedTagList are also compared to create a list of items
expected but not acquired in missingTagList and received
items that are not expected in spuriousTagList..

2.1.3 Path Management Path management includes a
load estimation and path creation phase and an overload

management phase.
As shown in Listing 1, the load estimation and path

creation phase works as follows. Let us denote the VR
receiving the path creation request as VRreq, and the
requested path as P. VRreq first contacts the path server to
check if any existing path matches P. If a match is found,
the matching path is returned. If a match is not found,
VRreq contacts the name server for possible set of VRs that
can potentially belong to the path P. Each VRi in path P
estimates its current load wcurr from the number of existing
paths (total_Path) it is currently serving. The load
estimation takes into account the current load wcpu;
incoming and outgoing messages from VRi to VRj; and
messages from associated PRs. The numbers of incoming
and outgoing messages to VRi are bound, respectively, to
connin and connout to restrict the total number of messages
handled by a VR in a given time period. After estimating
wcurr, each VRi estimates the additional load west for the
new path using history data from previous paths. If the
combined workload of wcurr and west does not exceed a
predefined threshold wtr, then VRi sends a
participateNewPath message to VRi+1; otherwise it sends a
notparticipateNewPath message to VRi+1. Similarly, VRi+1
forwards the received messages and its own participation
intent to the next VR along P, and this step is repeated
until the destination VRn is reached. If the total number of
participating VRs is above a predefined system threshold
VRtr,VRn sends a pathCreation to its neighbor VRn-1 which

in turn sends it to its previous neighbor, and so on.
Otherwise a pathNotCreated exception is sent out to the
application.

Listing 1: Path creation algorithm

total_Path: Total number of paths associated with a given VR
total_PR: Total number of PRs associated with a given VR
total_VR: Total number of VRs in the system
Messagein (source): Incoming messages from source
Messageout (destination): Outgoing messages to destination
α: Per message CPU cost (%)
wcpu: Average per path CPU load on a VR (%)
wcurr: Current CPU load on a VR (%)
west: Estimated CPU load on a VR due to a new path P (%)
wtr: Threshold of maximum permissible CPU load on a VR (%)
VRtr: Minimum number of VRs needed for a new path P
VR_gCountPathID: Final count of number of VRs that are part of the
new path
VR_localCountPathID: Local copy of the final count in each
participating VR

//The following steps are executed at VRi, for i=1 to total_VR
//Computing current load on each VRi,
 wcurr = for each path j =1 to total_Path in VRi
 SUM(wcpu + α*(Messagein (VRi-1)+ Messageout (VRi+1))+
 for k=1 to total_PR SUM(α*Messagein (PRj));

//Computing estimated load on VRi due to new path creation
west = wcpu + α*(estimated Messagein (VRi-1)+
 estimated Messageout (VRi+1)) ;

if(wcurr + west ≤ wtr) // load is below threshold

 Send participatePathCreation (PathID,VRID) to VRdest;
else
 Send notparticipatePathCreation(PathID,VRID) to VRdest;
if(VRID == VRdest) { // it is the destination VR

 VR_gCountPathID=
 Total number of participatePathCreation messages received;

 if(VR_gCountPathID ≥ VRtr){
 Register (PathID, VR_gCountPathID) in Path Server;
 VR_ localCountPathID= VR_gCountPathID;
 Send pathCreation (PathID, VR_gCountPathID) to VRi-1;
 }
 else
 throw pathNotCreated exception to the Application;
}
else { // it is an intermediate VR

 Receive pathCreation (PathID, VR_gCountPathID) from VRi+1;
 VR_localCountPathID= VR_gCountPathID ;
 Send pathCreation (PathID, VR_gCountPathID) to VRi-1;
}

 5

The overload management phase works as follows:
although each VR makes an assumption of its future load,
at any point of time, one or more VRs in a given path may
become overloaded. An overload is detected through
comparing current system load wcurr with the threshold wtr.
The overloaded VRi will update VR_ globalCountPathID
which contains number of participating VRs and send
messages to the other VRs (in the path) to reduce their
local value VR_ localCountPathID for this path. Both the
global and local count of VRs keep total number of
participating VRs but the local values in different VRs
may be different at any execution point and any VR
changing its local value is responsible to update its global
value and pass that information along its neighbors. Any
VRi receiving the overloaded message updates its local
variable VR_ localCountPathID and checks if the updated
value for this path is below VRtr. The application is
notified about the path overload whenever the number of
participating VRs falls below the threshold VRtr.

2.1.4 Query Management. Any VR can respond to
queries from an application. Vpaths allow a VR either to
answer the query itself or to route the query to a VR that is
best able to answer the query. The set of queries include
aggregation operations such as:

• Information on all items

• Information on items along a specific path

• Information on items of a specific type or number
of items over a period of time

The real power of the path abstraction lies in its ability
to handle item location queries and troubleshooting
queries such as:

• Locate a missing or misplaced item

• Locate an item last recorded by a specific VR or
a specific PR in a VR

• Information about a malfunctioning reader (e.g., a
reader that is consistently missing items)

• Information about a specific conveyor belt (e.g., a
Vpath that is missing items below a threshold)

It is well known that the time to respond to a real time
query has to be very precise [25, 26]. The system is well
positioned to handle time specific queries since the readers
timestamp the information they gather as well as
disseminate. Thus for example, if a VR receives a query
that is in its immediate past, it will forward it to the
appropriate VR that is ahead of it in the Vpath.

2.2 Name Server and Path Server

The name server is responsible for keeping the
mapping between the topology of the warehouse and the
VRs assigned to different regions. It knows the physical
location of the PRs in the warehouse as well as the
physical routes via conveyor belts that exist in the
warehouse. In a scenario where the deployment is

reasonably stable such as a warehouse, all the information
in the name server are defined at initialization3. A lookup
request to the nameserver for a physical route between a
source, destination pair (Source(x, y), Destination(x, y)),

yields the set of VRs {VRsource, VR1, VR2,…..VRn, VRdest }

that are along that route.
The path server carries dynamic information about the

paths that exist in the system at any point of time. A path
is registered with the path server upon creation by the
destination VRdest, and contains the path id, participating
VRs in that path, and a lifetime associated with the path.
The path entry is deleted when the lifetime expires
allowing an automated garbage collection scheme. A new
request to use an existing path or a subpath increments the
path’s lifetime.

3. Implementation

We have implemented a proof of concept prototype of
the proposed system architecture. The prototype allows us
to perform controlled experiments to quantify the
reliability properties of the proposed architecture. It
embodies all the same distributed computing elements as
described in Section 2, albeit in a stripped down form. The
main difference is in the decision making components.
The implementation uses a centralized path controller
which works with a static route map instead of the path
server and name server, described in the previous section.
This structural difference does not affect our study on
system performance or reliability. On the other hand, our
prototype includes physical readers as well as simulated
physical readers. This feature of the implementation
allows us to perform controlled experiments far beyond
the limited scale of the real hardware at our disposal using
the same distributed architecture. In the next few
subsections, we describe the features of the prototype
system.

3.1 Virtual Readers

In a real deployment, a VR may be mapped to any PC
class machine (or even to one of the PRs in a given
region). Our implementation is in C, and fully implements
the functionalities outlined in Section 2.1. MPI is used for
inter-VR communication.

In the VR implementation, the path management and
creation mechanisms are considerably simplified to get a
prototype system up and running for experimentation.
Using a static route map, each VR knows its neighbors for
any desired source-destination pair. So, upon receiving a
path request, a source VR knows the neighbor to contact to

3 A dynamic scenario requires a PR discovery phase followed by a PR to
VR mapping process. Such dynamic configurations are outside the scope
of our paper.

 6

create a path. The path creation request is transmitted in a
chain-like fashion along the static route by the VRs until it
reaches the destination VR. When the message reaches the
destination VR, it broadcasts the successful path creation
message to all the VRs. This is clearly inefficient when
there is a large number of VRs in a Vpath. Further, this
can be a source of bottleneck if a specific destination VR
is “hot”. Since the primary purpose of the prototype
implementation is to study reliability, we decided to use
this simple minded path creation and management.
However, a full-fledged deployment will use the detailed
algorithms in Section 2.1 using parameters such as
computational and communication load on each VR.

3.2 Physical Readers

The physical reader used in our implementation is
ALR-9800 [22] from Alien Technology. We have done
extensive study of this reader with two antennas
supporting point to multipoint and multi static
architectures, operating at frequency range of 902.75 MHz
to 927.25 MHz, and including 50 hopping channels with
channel spacing of 500 KHz. We studied tag behaviors
using 6 passive RFID tags with reader power set to its
maximum level (31.5 dB).

Alien reader provides a rich set of APIs to access a
variety of reader and tag parameters. Reader discovery
methods such as setDiscoveryListener() and startService()
are used for network component discovery within the
same subnet. For a large system consisting of thousands of
readers, this auto discovery is very efficient. Various
reader methods are used to get and set different reader
parameters and observed tag information such as
getReaderType(), getAcquireMode(), getTagList(),
setRFAttenuation(), and setRFLevel().

A PR talks to its associated VR using Unix sockets.
The tags are placed by a PR in a queue abstraction
implemented using sockets. Thus the PR-VR
communication follows a producer-consumer model.

3.3 Simulated Physical Readers

We have implemented a simulated physical reader that
is designed to have the same interface and behavior as the
Alien readers. Thus a VR treats a simulated PR no
different from a true PR. These simulated physical readers
offer a powerful and transparent mechanism to study
system scalability. Different parameters that affect the
reader accuracy such as reader to tag distance, reader to
tag angular position, reader power level, etc., are defined
as input parameters to the simulated PRs. It also provides
provisions to set predefined reader accuracy level. They
can be set to be different for different simulated PRs to
study a heterogeneous deployment, or all the same for a
homogeneous deployment. In the experiments conducted

we have considered various reader accuracy levels. A
uniform distribution is used to define a set of items and the
simulated reader randomly misses items depending on the
predefined accuracy. The item detection behavior is
random that reflects the PR’s physical property studied in
section 4.2.2. It differs from other simulators concerned
with tuning device level components such as the work in
[28]; instead, our focus is on efficient and distributed
computations on reader generated data in order to support
scalability studies of the system.

3.4 Path Controller and Static Path Map

As we mentioned earlier, the path server and name
server are non-existent in our prototype implementation.
Instead, the system maintains a static route map (in lieu of
a name server) that contains for each potential source-
destination pairs the list of VRs. Upon a request to create
a new path, this static route map is consulted to determine
the set of VRs that could be participants for the new
Vpath. The VRs initiate the path creation as we detailed
in Section 3.1. The VRs that are potential participants may
elect to be part of the Vpath or not depending on their
current CPU load and memory utilization. Once a path is
created, the centralized path controller creates an entry in
its table with a unique ID for the new Vpath and the set of
participating VRs for that path.

4. Evaluation

Two different aspects of the deployment are studied in
this section. First, we conduct a study of the behavior
pattern of RFID devices: this study focuses on various
parameters that affect the reading of the tags such as
reader to tag distance, angular position of tag to reader,
number of readers on a palette, and RF attenuation. We
present a quantitative study of these aspects of physical
readers. Then, we present an evaluation of our prototype
system to demonstrate its effect on improving the
reliability. The study on RF2ID includes experiments with
real deployments of RFID devices as well as simulated
readers to expand the scope of our study.

4.1 Reliability Studies of RFID Devices

We have done an extensive study on the ALR-9800
[22] RFID readers. We studied tag behaviors using 6
passive RFID tags with reader power set to its maximum
level (31.5 dB). In the experiments, we vary the key
factors that affect the number of detected tags by a reader:
the reader to tag distance, reader to tag angle and RF
attenuation level. Lastly, we study how the tag reading
varies over time when the above parameters remain
unchanged.

 7

Figure 3(a) shows the impact of reader to tag distance
when varying the quantity and proximity of tags from the
antenna. For example, using five tags, 3 tags are detected
at a distance of 40 inches; whereas for 2 tags all the tags
are detected up to 40 inches away. Similarly, Figure 3(b)
exhibits how the angle of the antenna affects accuracy
while varying the total number of tags. For a fixed reader
to tag distance of 15 inches– it is observed that, when the
palette is placed +30° from perpendicular to the antenna,
most of the tags are detected; otherwise, the number of
tags detected begins to degrade.
 Reader attenuation level also has an impact on the
number of detected items, which is shown in Figure 4(a).
Considering a group of 6 tags placed 15 inches from the
reader at an angle of 90°, only 3 items can be detected
with a reader attenuation of 9dB. However, if the
attenuation is decreased to 0dB, the number of tags
identified by the reader is increased to 6. In Figure 4(b)
RFID reader behavior is observed over a period of 100
seconds when a palette of six tags is placed 15 inches from
the antenna. Our study shows that tags are often missed by
the reader, with the specific missing tags varying
randomly over time. This behavior demonstrates the
inherent unreliability of these readers.
 Our experiment with the readers gives insight into
their unreliable nature. We have highlighted the inherent
unreliability of the readers as well as the influence of
environmental conditions on their performance.

4.2 Evaluating RF
2
ID

 This experiment demonstrates our proposed
architecture of RF2ID with a static path topology. The
experiment is done on a 100-node Linux cluster with dual
Pentium-4 Xeon processors and gigabit Ethernet using
MPI for communication among the processors. Each VR is
mapped to a processor. The study incorporates the actual
physical readers and tags seen in section 4.1.

4.2.1 Experimental Setup. We have conducted two set of
experiments to evaluate RF2ID. The first set of
experiments evaluate the improved system performance in
terms of reliability while the RFID resources are
inherently unreliable. Then we explore the strength of the
path based system to locate missing or misplaced items
along its traversal. The experimental setups are:
� Item Tracking: Here we have placed two separate

antennas 120 inches apart, considering each receiving
antennas as an individual reader. The current setting
emulates a supply chain scenario with two antennas
and a (manually) moving cart carrying the tags. The
physical route of the tags brings them within 5 inches
of each antenna. We overcome the limited number of
RFID tags by reusing the same set of tags with
different timestamps.

0

2

4

6

8

10

12

0 10 20 30 40 50 60

Tag distance from antenna (inches)

N
u
m

b
e

r
o

f
d

e
te

c
te

d
 t
a
g
s

Number of tags = 1 Number of tags = 2

Number of tags = 3 Number of tags = 4

Number of tags = 5

 (a)

0

2

4

6

8

10

0 30 60 90 120 150 180

Angular position of tag (degree)

N
u
m

b
e
r
o
f
d
e
te

c
te

d
 t
a
g
s

Number of tag =1 Number of tag =2
Number of tag =3 Number of tag =4
Number of tag =5 Number of tag =6

 (b)
Figure 3: (a) Varying the number of detected tags
with different tag to antenna distance (b) Varying
the antenna to tag angle with different number of
tags to determine number of detected tags.

0

2

4

6

8

0 3 6 9 12

RF Attenuation (dB)

N
u

m
b

e
r

o
f
d

e
te

c
te

d
 t
a

g
s

(a)

0

2

4

6

8

0 20 40 60 80 100

Observation time (seconds)

N
u

m
b

e
r

o
f
d

e
te

c
te

d
 t
a

g
s

(b)

Figure 4: (a) Number of detected items with
varying attenuation of RFID readers (b) RFID
reader behavior when palette of 6 tags placed in
a fixed distance and detected tags are observed
over a period of 3 seconds.

 8

 We have used a delay in tag traversal to make sure the
system is able to distinguish the difference between a set
of tags in consecutive iterations. As RFID readers show
reduced performance in the presence of multiple items,
we have considered a maximum of six items per palette
throughout our experiment. For the scalability study of
the system, we have used simulated physical readers
discussed in Section 3.3.

• Item Location: The system initiates a search
mechanism to locate misplaced or missing items.
From the route of the item, the corresponding path is
detected in the system. Then the search starts at the
destination-VR to the source VRs to figure out the
highest indexed VR in the path having the item
specific information. When the search narrows down
to a particular VR, it looks for information on the
item in its associated PRs, and picks the one with the
latest information on the item. The VR then controls
the antenna power of that particular PR to locate the
possible item position within a radius. The mechanism
used here is to start the search with the maximum PR
power level, if the item is not detected the system
assumes the item has been physically misplaced.
Otherwise, the VR gradually decreases the PR power
level to detect the minimum power level required to
detect the item. The system is able to define an
approximate radius of the item position using
empirical studies of antenna power to item position
relationship discussed in section 4.2.2. Further
investigation using techniques such as the ones
discussed in [23, 24, 10] are part of our future
investigation.

4.2.2 Study on Reliability. We investigated
improvements in reliability where reliability is defined as
the number of detected items in the presence of false
negative readings. False negative readings indicate a
reader is not able to detect an existing item.

70

75

80

85

90

95

100

0 2 4 6 8

Number of Physical Readers

A
c
c
u
ra

c
y
 a

t
S

in
g
le

 V
R

(%
)

Accuracy range(90-100)

Accuracy range(80-100)

Accuracy range(70-100)

Accuracy range(60-100)

Accuracy range(50-100)

Figure 5: Accuracy as a percentage of found
items at a virtual reader level as the number of
physical readers is varied.

Figure 5 shows the impact of increasing accuracy level
in a single VR on the system reliability. We have
simulated multiple PRs attached to a single VR. For
example, when the VR consists of four PRs, with accuracy
varying from 50% to 100%, the aggregated (VR) accuracy
level of the system is obtained as 97%.

Figure 6(a) demonstrates improved performance when
two physical RFID readers are used with varying number
of tags. Individual PRs show false negative readings from
55% to 60% of the time. But using our notion of Vpath
false negatives are reduced significantly. A reading over
120 tags show 52% and 55% false negative readings in
PR1 and PR2 where a Path reduces this to 39%. Figure
6(b) specifies the list of tags detected by PR1, PR2 and the
combined tag information obtained in a VR consulting
these PRs.

0

10

20

30

40

50

60

70

30 60 90 120 150 180 210 240 270 300

Number of tags

F
a
ls

e
 N

e
g
a
ti
v
e
 (
%

)

PR1

PR2

Path

(a)

(b)

Figure 6: (a) False Negative Reading of the
System using single PR (PR1, PR2) and Path
among PRs. (b) Detected items using two
different physical readers PR1, PR2 and VPath.

Due to the limited number of physical RFID readers

and tags, we have used simulated physical readers to
examine reliability in the presence of larger numbers of
VRs. A one to one mapping of PR to VR effectively
simulates the unreliability of PRs. In Figure 7(a), it is
observed that the increasing number of VRs reduces the
number false negatives. For example, 10 VRs with 50%

Items Detected by PR2

A02A 0508 11A1 8482 2A01 0101
A02A 0508 11A1 8480 8A01 0101
A02A 0508 11A1 8483 1A01 1901

Items Detected by VR using PR1 and PR2 in VPath

A02A 0508 11A1 8482 2A01 0101
A02A 0508 11A1 8480 8A01 0101
A02A 0508 11A1 8483 1A01 1901
A02A 0508 11A1 8483 2A01 2001

Items Detected by PR1

A02A 0508 11A1 8480 8A01 0101
A02A 0508 11A1 8483 2A01 2001

 9

reader accuracy achieves less than 10% false negatives.
Similarly, improved accuracy is observed in Figure 7(b) in
terms of identified tags from source to destination. Items
can be missed at a particular VR but as we have a notion
of Vpath, the information propagates properly through the
VRs. A reader with accuracy level as low as 40% is
improved to 97% by using 15 VRs.

4.2.3 Missing and Misplaced Item Location. Our Vpath
abstraction plays an important role in item location. We
have examined the maximum tag detection range of
readers in perpendicular position by gradually decreasing
antenna attenuation level from 31.5 dB. This study allows
us to define a radius around the reader to find possible tag
locations.

Figure 8 shows the relationship between reader
attenuation and maximum item detection range. In an item
tracking scenario, a particular item or group of items may
be misplaced along its physical route (e.g., conveyor belt).
After deciding that an item is lost, the system identifies
which PR last observed this item and initiates item
location operations. Antenna attenuation can be used to
locate, within a certain radius, the last physical location of
a lost item. To this end, we have placed a tag at a 28
inches distance from the reader at an angle of 90 degrees
relative to the antenna. Here the item is detected by the
reader at attenuation set to 7dB indicating a 30 inches
radius.

From our study on RF2ID, it is evident that the system
reliability is improved by abstractions of Vpath and VR.

5. Related Works

The Savant architecture involves a hierarchy of
software components called Savants [9] which are
distributed throughout the corporate infrastructure. The
RFID middleware design of RFIDStack [3] focuses on
reducing data flooding with built-in aggregation and filter
types. Full content-based routing is used to deliver
captured data only to interested parties, and a feedback
mechanism allows data consumers to notify producers of
data properties. The architecture of High Fan-in Systems
[6] utilizes a tree structure or “bowtie” topology with large
numbers of sensors at the edges and a hierarchy of
progressively wider-scoped computational nodes. De et
al. [10] propose a system for object tracking that builds on
the Savant architecture. Similarly, MAX [23] uses a tree-
like structure using a static base station with several
substations for object location applications. WinRFID [11]
uses a hierarchical tree-like architecture that uses web
services for deployment of information. SCOUT [24] uses
two different approaches depending on an application to
ensure the scalability of object tracking for mobile
devices. None of these systems exploit the data flow

inherent in the movement of items typical of RFID
deployments.

The concept of path is used in many different contexts
including fault tolerance [14], compiler optimization
techniques [15], profiling distributed systems [16, 17], and
resource allocation [18, 19]. Scout OS [8] defines a path
abstraction to navigate through the layers of the network
stack and the Ninja project [7] utilizes a path abstraction
as a way to compose multiple services distributed on the
Internet into a single logical unit. Our work is inspired by
the use of paths in these various contexts.

0

20

40

60

80

100

0 10 20 30

Number of Virtual Reader

N
u

m
b

e
r

o
f
fa

ls
e

 n
e

g
a

tv
e

ta

g
s
(%

)

Reader Accuracy40%
Reader Accuracy 50%
Reader Accuracy 60%
Reader Accuracy 70%
Reader Accuracy 80%
Reader Accuracy 90%

(a)

0

20

40

60

80

100

0 5 10 15 20 25 30

Number of VIrtual Readers

S
u

c
c
e

s
s
fu

ll
y
 i
d

e
n

ti
fi
e

d
 T

a
g

s

(%
)

Reader Accuracy40%

Reader Accuracy 50%

Reader Accuracy 60%

Reader Accuracy 70%

Reader Accuracy 80%

Reader Accuracy 90%

(b)

Figure 7: (a) False negative readings by varying
number of VRs (b) Tags identified along the
paths as a percentage of all tags as the number
of VRs is varied.

0

20

40

60

80

100

0 5 10 15

Reader Attenuation (dB)

M
a
x
im

u
m

 D
e
te

c
ti
o
n

 R
a

n
g
e

 (
in

c
h

e
s
)

Figure 8: Maximum detection range of a Reader

with varying attenuation level.

 10

6. Conclusion and Future Work

We have presented the design and implementation of
RF

2
ID, a reliable middleware framework for RFID

deployment. We have proposed two novel abstractions:
virtual reader and virtual path, and we have presented
experimental results to validate the usefulness of these
abstractions. We have shown that a path-based
architecture improves system accuracy and enables the
support of queries over partially located items, i.e., items
whose tags are lost at some intermediate location along the
physical route from source to destination. Our future work
includes incorporating load balancing in path creation and
management. We also plan to experimentally compare our
framework to other ways of organizing VRs, e.g., using a
tree-like hierarchical structure. We plan to develop a
complete system using RFID devices and evaluate it
extensively with different hardware configurations and
physical mappings of RFID deployments.

7. Acknowledgements

The work has been funded in part by an NSF ITR grant

CCR-01-21638, NSF NMI grant CCR-03-30639, NSF
CPA grant CCR-05-41079, and the Georgia Tech
Broadband Institute. The equipment used in the
experimental studies is funded in part by an NSF Research
Infrastructure award EIA-99-72872, and Intel Corp. We
would like to thank Paolo Mentonelli, Echezona Ukah and
Vladimir Urazov for their contributions to the RF2ID
project. Finally, we would like to thank members of the
Embedded Pervasive Lab (EPL), College of Computing,
Georgia Tech.

References

[1]. Intermec, “Why Gen 2 is the RFID for CPG

Manufacturers and how to make sure gen 2 performance

will meet their needs”.
[2]. ALIEN, “EPCGlobal Class 1 Gen 2 RFID

Specification”.
[3]. C. Floerkemeier et al., “RFID Middleware Design -

Addressing Application Requirements and RFID,” In
Proceedings of sOc-EUSAI 2005.

[4]. M. C. O'Connor, “RFID users want Clean Data,”
http://www.rfidjournal.com/article/articleview/1232/1/14/

[5]. F. Wang et al., “Temporal Management of RFID Data,”
Proceedings of the 31st international conference on Very
large data bases VLDB, 2005.

[6]. M. J. Franklin et al, “Design considerations for High

Fan-in Systems: The HiFi Approach,” Proceedings of the
2nd CIDR Conference, 2005.

[7]. S.D. Gribble et al, “The Ninja Architecture for Robust

Internet-scale Systems and Services,” Computer
Networks 35, 473-497, 2001.

[8]. D. Mosberger et al., “Making Paths explicit in the Scout

Operating System,” OSDI, 1996.

[9]. Oat Systems and MIT Auto-ID Center, “The Savant,”
Technical Manual. February, 2002.

[10]. P. De et al., “An Ubiquitous Architectural Framework

and Protocol for Object Tracking Using RFID Tags,” In
Proceedings of the MobiQuitous 2004.

[11]. B. S. Prabhu et al., ”WinRFID – A Middleware for the

enablement of Radio Frequency Identification. (RFID)

based Applications,” UCLA – Wireless Internet for the
Mobile Enterprise Consortium.

[12]. “The Basics of RFID Technology,”
http://www.rfidjournal.com/article/articleview/1337/1/12
9/

[13]. T. Hassan et al.,"A Taxonomy for RFID,” Proceedings of
the 39th Annual Hawaii International Conference on
System Sciences (HICSS'06), 2006.

[14]. M. Chen et al., “Path-based Failure and Evolution

Management,” In Proceedings of the First Symposium on
Networked Systems Design and Implementation (NSDI),
2004

[15]. G. Ammons et al., “Improving data-flow analysis with

path profiles,” In Proceedings of the ACM SIGPLAN '98
Conference on Programming Language Design and
Implementation, 1998

[16]. P. Barham et al., “Magpie: real-time modelling and

performance-aware systems,” In Proceedings of the 9th
Workshop on Hot Topics in Operating Systems, 2003.

[17]. T. Gschwind et al., “WebMon: A Performance Profiler

for Web Transactions,” WECWIS : 171-176, 2002.
[18]. M. Welsh et al., “SEDA: An Architecture for Well-

Conditioned, Scalable Internet Services,” In Proceedings
of the Symposium on Operating Systems Principles,
2001.

[19]. R. J. Mehra et al., “Virtual Services: A New Abstraction

for Server Consolidation,” In Proceedings of the 2000
USENIX Annual Technical Conference, 2000.

[20]. R. Weinstein, “RFID: A Technical Overview and its

Application to the Enterprise,” IT Professional, vol 7,
2005.

[21]. M. C. O'Connor, “McCarran Airport RFID System Takes

Off,” RFID Journal,
http://www.rfidjournal.com/article/articleview/1949/1/1.

[22]. “Alien Technology RFID Readers”,
http://www.alientechnology.com/products/alr9800.php

[23]. K. Yap et al., “MAX: human-centric search of the

physical world,” SenSys, pp. 166-179, 2005
[24]. S. Kumar et al., “SCalable Objecttracking through

Unattended Techniques (SCOUT),” Technical Report
USC CS TR00-738, University of Southern California,
2000.

[25]. Bruckner et al., “Modeling Temporal Consistency in

Data Warehouse,” DEXA Workshop: pp. 901-905, 2001.
[26]. R. Armstrong,"Seven Steps to Optimizing Data

Warehouse Performance,” Computer, vol. 34, no. 12, pp.
76-79, 2001.

[27]. L. Ho et al., “A prototype on RFID and sensor networks

for elder healthcare: progress repor,” ACM SIGCOMM
Workshop on Exper. Appro. To Wireless Network
Design and Analysis, 2005.

[28]. Y. Han et al., “System Modeling and Simulation of

RFID,” Auto_ID Labs Research Workshop, September
23rd, 2004.

