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Abstract1 
 

 The reliability of RFID systems depends on a number 

of factors including: RF interference, deployment 

environment, configuration of the readers, and placement 

of readers and tags.  While RFID technology is 

improving rapidly, a reliable deployment of this 

technology is still a significant challenge impeding wide-

spread adoption. This paper investigates system software 

solutions for achieving a highly reliable deployment that 

mitigates inherent unreliability in RFID technology. We 

have developed (1) a virtual reader abstraction to 

improve the potentially error-prone nature of reader 

generated data (2) a novel path abstraction to capture 

the logical flow of information among virtual readers. 

We have designed and implemented an RFID 

middleware: RF
2
ID (Reliable Framework for Radio 

Frequency Identification) to organize and support 

queries over data streams in an efficient manner. 

Prototype implementation using both RFID readers and 

simulated readers using an empirical model of RFID 

readers show that RF
2
ID is able to provide high 

reliability and support path-based object detection. 

 

1. Introduction 
 

RFID technology is rapidly becoming part of today’s 
life through a variety of applications in smart homes, 
airports, and supply chain management. With the ubiquity 
of RFID deployments, there exists a growing amount of 
data being generated from multiple sources that needs to 
be processed in order to support user queries. However, 
handling large volumes of sensor generated data streams 
stresses even high performance computing resources and 
broadband network bandwidth. It imposes several 
challenges, especially when these streams are distributed 
across multiple geographic locations. First, the amount of 
data from different sources that needs to be organized 
properly is very large; second, because of the nature of 
RFID applications, the streamed data and possibly legacy 
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data must be fused together in a time-sensitive manner 
(e.g. using timestamps); and finally, the overall system has 
to be able to manage complexities in a scalable manner to 
answer queries efficiently. These problems become more 
severe in RFID systems where data is generated from error 
prone devices like RFID readers [12, 13]. 

RFID readers use radio waves to communicate with 
electronic tags which vary in type, capability and size. 
Passive tags, in particular, are gaining considerable 
amount of attention as a low cost solution for automating a 
wide range of applications.  However, one of the major 
drawbacks of the readers using passive tags is their 
unreliable behavior.  Typical readers accurately detect tags   
80-90% of the time, whereas readers with improved 
performance have a detection rate of 95-99%. 
Unfortunately, this rate is adversely affected by different 
environmental factors such as the presence of metal 
objects, objects containing liquids, interference from 
multiple readers, or the presence of multiple tags within 
close proximity of one another. For example, the detection 
rate drops to 70% when a reader attempts to detect more 
than five tags [11, 12, 13]. 

A middleware for RFID deployment requires careful 
design considerations taking into account the inherent 
vulnerabilities of these devices.  We have designed a novel 
system architecture that addresses different aspects of such 
a middleware design.  In designing this architecture, we 
had the following goals: 

• Reliability: Our primary challenge is to provide 
system level reliability for inherently unreliable 
components provide a certain Quality of Service 
(QoS) as required by application queries. 

• Load Balancing: System load should be 
balanced across the computational elements when 
handling a large amount of data. 

• High Throughput: The system is expected to 
provide extremely high update rates from the 
readers and therefore requires high throughput to 
handle the sheer numbers of items. 

•  Scalability: The system should be capable of 
handling the addition of new readers or to 
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dynamically ignore malfunctioning readers 
without significantly impacting performance. 

• Data Organization: For large amounts of data 
there is a need to properly sort and organize data 
for efficient query responses. 

There have been several recent proposals involving 
middleware systems for RFID deployment.  Savant [9] is 
designed to handle large amounts of data in a hierarchical 
manner by constructing a tree of subsystems. Similarly, 
the architecture defined in High Fan-in System [6] uses a 
tree like structure for data and query propagation. The 
problem is handled using a publish-subscribe model in the 
work of RFIDStack [3]. WinRFID [11] is another 
architecture that uses web services to ensure data 
availability. All of these systems aim to provide a scalable 
solution in distributed environments for filtering, 
organizing, and providing query results to the end user.  

The focus of our work is complementary to these 
systems. In our work, we focus on the inherent 
unreliability of RFID systems, and ask whether the 
reliability can be improved using a middleware system.  
We use the nature of the dataflow as our ally to improve 
reliability. Further, the data flow can help in data 
organization as well, which has been focus of earlier 
systems. For example, consider a typical RFID 
deployment scenario in a warehouse. RFID readers are 
placed at appropriate locations, and they continuously read 
tags associated with the moving items, e.g. palettes. Often, 
palettes of a particular item type follow the same physical 
path from an entry point to the designated destination in 
the warehouse. Therefore, for many applications, 
generated tag data can be categorized based on their 
physical flow. 

Most RFID middlewares support two major application 
categories: object tracking and object location. Both 
applications have an internal data flow that follows a path. 
In a typical supply chain scenario, as an example of an 
object tracking application [20], readers are placed along 
conveyor belts for item detection. Airport baggage claim 
systems are another example of object tracking 
applications [21]. In both these scenarios, readers are 
statically placed, and the tagged items detected by the 
readers construct a path. Conversely, in the case of object 
location applications, tagged items are placed randomly 
and readers move along a path locating items in their 
wake. Robots equipped with RFID readers looking for lost 
objects in an environment is an example of object location. 
Another scenario is using robots in a disaster situation: 
tags deployed in the environment may guide the robot in 
its recovery operation. As should be evident, a path 
naturally gets created following the sequence of tags 
acknowledged by readers. We have focused on the object 

tracking scenario for the work presented in this paper2. A 
middleware that has inherent support for this flow of data 
considered as a path can be very useful for organizing, 
filtering and thus responding faster to queries. Using the 
intuition of data flow, we have designed a path based 
distributed system architecture for RFID middleware 
called RF

2
ID (Reliable Framework for Radio Frequency 

Identification).  
Our proposed scheme consists of (1) a virtual reader 

abstraction to capture the static and potentially error-prone 
nature of the physical readers and antennas in a scalable 
manner; and (2) a novel path abstraction, called Vpath 

(Virtual Path) to capture the logical flow of information 
among the virtual readers as RFID-tagged objects move 
throughout the environment. Using a notion of path at the 
system level gives us several advantages.  First, the system 
load can be distributed among multiple virtual readers that 
constitute a specific virtual path.  Second, different QoS 
attributes can be defined for a path, such as accuracy and 
priority levels that the virtual readers use to operate on 
data flowing through the corresponding path.  Finally, as 
there is an internal representation of data based on path 
attributes, it becomes trivial to support path-related 
operations on the data, e.g., searching for query results, or 
making a future projection of data behavior based on 
history. 

The main contributions of this paper are as follows: 

• Study of the unreliable behavior of RFID 

devices: A middleware for RFID devices needs 
to take into account the inherent unreliable nature 
of these devices. We have done an extensive 
study of these devices to identify the variety of 
parameters that affect RFID reader performance.  

• Design of a path based system architecture: 
RF2ID uses Virtual Path (Vpath) to logically 
distinguish the flow of data streams. Using 
Vpaths, the system is able to provide higher 
system reliability, provide a capability to 
organize the data streams for efficient query 
management, and offer a vehicle for load 
balancing among the readers.  

• Implementation of RF
2
ID system and its 

evaluation:  We have developed a prototype 
implementation of the RF2ID architecture. The 
implementation incorporates physical readers as 
well as simulated physical readers to enable 
controlled scalability experiments.   Our 
evaluations demonstrate the improved system 
reliability and item detection capabilities of a 
path based architecture. 

The remainder of this paper is organized in the 
following way. The system architecture is described in 
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Section 2. Section 3 provides the implementation of the 
proposed scheme. The system evaluation is presented in 
Section 4, followed by related work (Section 5) and 
conclusions (Section 6). 
 

2. System Architecture  
 

Figure 1 shows a schematic diagram of the system 
architecture. It is motivated by the design goals mentioned 
in Section 1.  While a centralized system may provide 
reliability, it is not scalable, especially when the 
deployment involves a large geographical area.  Hence the 
proposed system architecture is a distributed one, and 
consists of virtual reader, name server and path server 

components.  

 

2.1 Virtual Readers 
 
To achieve reliability in a scalable and distributed manner, 
we have designed a novel abstraction called virtual reader 

(VR).  Virtual Paths (Vpaths) are logical channels across a 
set of VRs.  A Vpath is created dynamically taking into 
account various VR-specific parameters described in later 
subsections. Each VR is responsible for a set of physical 

RFID readers (PR) within its vicinity.   
For applications such as a warehouse wherein the 

topology does not change very often, the PR to VR 
mapping takes place during initialization (described in 
next subsection). A VR is responsible for data 

management, path management, and query management. 
VRs use local variables and data structures to make 
individual local decisions that affect global system 
behavior. We use the following notations for describing 
the functions carried out by a VR:  

• {VR1, VR2, .., VRn} denotes the set of VRs 
corresponding to a Vpath P  

• {PR(i,1), PR(i,2), .., PR(i,m)} denotes the set of PRs 
corresponding to a VRi 

• Each VR maintains five lists and a variable for 
each path P:  

o observedTagList: list of tags detected by 
the associated PRs 

o receivedTagList: list of filtered tags 
from the PRs eliminating duplicates 

o expectedTagList: list of expected tags 
based on information from neighbor 
VRi-1  for a given path 

o missingTagList: list of tags expected 
from  VRi-1 but not received from the 
associated PRs 

o spuriousTagList: list of tags received 
from associated PRs but not expected 
(based on information from VRi-1) 

 
 

Figure 1: RF
2
ID architecture with Virtual Readers, 

Vpaths connecting VRs, Name Server and Path 
server for available information on Virtual 
Readers and RFID readers (PR). 
 

• A set of control parameters in a VR to make path 
creation decisions:  

o connin: maximum number of incoming 
messages handled per unit time 

o connout : maximum number of outgoing 
messages handled per unit time. 

 
2.1.1 Initialization  

 

The VR to PR assignment is done during the 
initialization phase. A PR is inherently unreliable; hence, 
multiple PRs are associated with a given VR to reduce the 
probability of errors.   A VR is associated with a set of 
PRs in its geographical region.  Figure 2 shows an RFID 
deployment in a warehouse.  The figure shows a 2-
dimensional (plan) view of the physical space where the 
system is deployed.  The physical space is divided into 
regions (dashed rectangles) and a VR is assigned to each 
geographical region. The tracks show the belts along 
which items will flow physically from source to 
destination.  Each VR is initially assigned to a disjoint set 
of PRs that are in the geographical region covered by that 
VR.  The set of PRs used by a VR during system operation 
is path specific.  In Figure 2, VR1 uses upper set of PRs 
for the path created between A and D; whereas, it uses 
PRs from the bottom for the path from B to E.  
 

 
Figure 2: A warehouse scenario showing 

RFID reader (PR) and VR deployment. 
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2.1.2 Data Management Data management consists of 
two major tasks: filtering the data (from the PRs 
associated with this VR, and from neighboring VRs), and 
timestamping the data in a consistent manner.  We assume 
that VRi is able to send its information (expectedTagList 
message) to VRi+1 in path P, before the items physically 
reach the neighbor. 

The data acquisition and processing phase by  VRi is 
the process of accumulating scanned data from all 
PRs{PR(i,1), PR(i,2), .., PR(i,m)} contained in path P.  A 
corresponding observedTagList is generated for each PR 
in order to compare them with one another.  The result of 
these comparisons is a concrete list of tags (eliminating 
duplicates) which is recorded in receivedTagList,  
timestamped with the current system time. In the data 

comparison phase, every VRi (except the source VR), 
receives a list of expected items from VRi-1 along path P 
and stores it in expectedTagList. The timestamps in 
expectedTagList and receivedTagList are then compared to 
guarantee a consistent temporal ordering amongst these 
VR-generated lists. The items of expectedTagList and 
receivedTagList are also compared to create a list of items 
expected but not acquired in missingTagList  and received 
items that are not expected in spuriousTagList.. 
 
2.1.3 Path Management Path management includes a 
load estimation and path creation phase and an overload  

management phase.  
As shown in Listing 1, the load estimation and path 

creation phase works as follows. Let us denote the VR 
receiving the path creation request as VRreq, and the 
requested path as P. VRreq first contacts the path server to 
check if any existing path matches P. If a match is found, 
the matching path is returned. If a match is not found,  
VRreq contacts the name server for possible set of VRs that 
can potentially belong to the path P.  Each VRi in path P 
estimates its current load wcurr from the number of existing 
paths (total_Path) it is currently serving. The load 
estimation takes into account the current load wcpu; 
incoming and outgoing messages from VRi to VRj; and 
messages from associated PRs. The numbers of incoming 
and outgoing messages to VRi are bound, respectively, to 
connin and connout to restrict the total number of messages 
handled by a VR in a given time period. After estimating 
wcurr, each VRi estimates the additional load west for the 
new path using history data from previous paths. If the 
combined workload of wcurr and west does not exceed a 
predefined threshold wtr, then VRi sends a 
participateNewPath message to VRi+1; otherwise it sends a 
notparticipateNewPath message to VRi+1.  Similarly, VRi+1 
forwards the received messages and its own participation 
intent to the next VR along P, and this step is repeated 
until the destination VRn is reached. If the total number of 
participating VRs is above a predefined system threshold 
VRtr,VRn sends a pathCreation to its neighbor VRn-1  which 

in turn sends it to its previous neighbor, and so on. 
Otherwise a pathNotCreated exception is sent out to the 
application.  
 

Listing 1: Path creation algorithm 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 

total_Path: Total number of paths associated with a given VR 
total_PR: Total number of PRs associated with a given VR 
total_VR: Total number of VRs in the system 
Messagein (source): Incoming messages from source 
Messageout (destination): Outgoing messages to destination 
α: Per message CPU cost (%) 
wcpu: Average per path CPU load on a VR (%) 
wcurr: Current CPU load on a VR (%) 
west: Estimated CPU load on a VR due to a new path P (%) 
wtr: Threshold of maximum permissible CPU load on a VR (%) 
VRtr: Minimum number of VRs needed for a new path P 
VR_gCountPathID: Final count of number of VRs that are part of the 
new path 
VR_localCountPathID: Local copy of the final count in each 
participating VR  
 
//The following steps are executed at VRi, for i=1 to total_VR 
//Computing current load on each VRi,  
 wcurr = for each path j =1 to  total_Path in VRi 
       SUM(wcpu + α*( Messagein (VRi-1)+  Messageout (VRi+1))+ 
       for k=1 to total_PR SUM(α*Messagein (PRj)); 
 
//Computing estimated load on VRi due to new path creation 
west = wcpu + α*(estimated Messagein (VRi-1)+  
                           estimated Messageout (VRi+1 )) ; 
 
if(wcurr + west ≤ wtr ) // load is below threshold 

    Send participatePathCreation (PathID,VRID) to VRdest; 
else 
    Send notparticipatePathCreation(PathID,VRID) to VRdest; 
if(VRID == VRdest) {     // it is the destination VR 

  VR_gCountPathID= 
  Total number of participatePathCreation messages received; 
 
  if(VR_gCountPathID ≥ VRtr ){ 
     Register (PathID, VR_gCountPathID) in Path Server; 
     VR_ localCountPathID= VR_gCountPathID; 
     Send pathCreation (PathID, VR_gCountPathID) to VRi-1;  
  } 
  else  
     throw pathNotCreated exception to the Application; 
} 
else { // it is an intermediate VR 

      Receive pathCreation (PathID, VR_gCountPathID) from VRi+1; 
      VR_localCountPathID= VR_gCountPathID ; 
      Send pathCreation (PathID, VR_gCountPathID) to VRi-1;  
} 
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The overload management phase works as follows: 
although each VR makes an assumption of its future load, 
at any point of time, one or more VRs in a given path may 
become overloaded. An overload is detected through 
comparing current system load wcurr with the threshold wtr. 
The overloaded VRi   will update VR_ globalCountPathID 
which contains number of participating VRs and send 
messages to the other VRs (in the path) to reduce their 
local value VR_ localCountPathID for this path. Both the 
global and local count of VRs keep total number of 
participating VRs but the local values in different VRs 
may be different at any execution point and any VR 
changing its local value is responsible to update its global 
value and pass that information along its neighbors. Any 
VRi receiving the overloaded message updates its local 
variable VR_ localCountPathID  and checks if the updated 
value for this path is below VRtr. The application is 
notified about the path overload whenever the number of 
participating VRs falls below the threshold VRtr. 
 

2.1.4 Query Management.  Any VR can respond to 
queries from an application.  Vpaths allow a VR either to 
answer the query itself or to route the query to a VR that is 
best able to answer the query.  The set of queries include 
aggregation operations such as: 

• Information on all items 

• Information on items along a specific path 

• Information on items of a specific type or number 
of items over a period of time 

The real power of the path abstraction lies in its ability 
to handle item location queries and troubleshooting 
queries such as: 

• Locate a missing or misplaced  item 

• Locate an item last recorded by a specific VR or 
a specific PR in a VR 

• Information about a malfunctioning reader (e.g., a 
reader that is consistently missing items) 

• Information about a specific conveyor belt (e.g., a 
Vpath that is missing items below a threshold) 

It is well known that the time to respond to a real time 
query has to be very precise [25, 26]. The system is well 
positioned to handle time specific queries since the readers 
timestamp the information they gather as well as 
disseminate.  Thus for example, if a VR receives a query 
that is in its immediate past, it will forward it to the 
appropriate VR that is ahead of it in the Vpath. 
 

2.2 Name Server and Path Server 
 

The name server is responsible for keeping the 
mapping between the topology of the warehouse and the 
VRs assigned to different regions. It knows the physical 
location of the PRs in the warehouse as well as the 
physical routes via conveyor belts that exist in the 
warehouse. In a scenario where the deployment is 

reasonably stable such as a warehouse, all the information 
in the name server are defined at initialization3.  A lookup 
request to the nameserver for a physical route between a 
source, destination pair (Source(x, y), Destination(x, y)), 

yields the set of VRs {VRsource, VR1, VR2,…..VRn, VRdest } 

that are along that route.    
The path server carries dynamic information about the 

paths that exist in the system at any point of time.  A path 
is registered with the path server upon creation by the 
destination VRdest, and contains the path id, participating 
VRs in that path, and a lifetime associated with the path. 
The path entry is deleted when the lifetime expires 
allowing an automated garbage collection scheme. A new 
request to use an existing path or a subpath increments the 
path’s lifetime.  

 

3. Implementation 
 

We have implemented a proof of concept prototype of 
the proposed system architecture. The prototype allows us 
to perform controlled experiments to quantify the 
reliability properties of the proposed architecture. It 
embodies all the same distributed computing elements as 
described in Section 2, albeit in a stripped down form. The 
main difference is in the decision making components. 
The implementation uses a centralized path controller 
which works with a static route map instead of the path 
server and name server, described in the previous section. 
This structural difference does not affect our study on 
system performance or reliability.  On the other hand, our 
prototype includes physical readers as well as simulated 
physical readers.  This feature of the implementation 
allows us to perform controlled experiments far beyond 
the limited scale of the real hardware at our disposal using 
the same distributed architecture.  In the next few 
subsections, we describe the features of the prototype 
system. 
 

3.1 Virtual Readers  
 

In a real deployment, a VR may be mapped to any PC 
class machine (or even to one of the PRs in a given 
region).  Our implementation is in C, and fully implements 
the functionalities outlined in Section 2.1. MPI is used for 
inter-VR communication.    

In the VR implementation, the path management and 
creation mechanisms are considerably simplified to get a 
prototype system up and running for experimentation.  
Using a static route map, each VR knows its neighbors for 
any desired source-destination pair.  So, upon receiving a 
path request, a source VR knows the neighbor to contact to 
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VR mapping process. Such dynamic configurations are outside the scope 
of our paper. 
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create a path.  The path creation request is transmitted in a 
chain-like fashion along the static route by the VRs until it 
reaches the destination VR. When the message reaches the 
destination VR, it broadcasts the successful path creation 
message to all the VRs. This is clearly inefficient when 
there is a large number of VRs in a Vpath.  Further, this 
can be a source of bottleneck if a specific destination VR 
is “hot”.  Since the primary purpose of the prototype 
implementation is to study reliability, we decided to use 
this simple minded path creation and management.  
However, a full-fledged deployment will use the detailed 
algorithms in Section 2.1 using parameters such as 
computational and communication load on each VR. 
 

3.2 Physical Readers  
 

The physical reader used in our implementation is 
ALR-9800 [22] from Alien Technology.  We have done 
extensive study of this reader with two antennas 
supporting point to multipoint and multi static 
architectures, operating at frequency range of 902.75 MHz 
to 927.25 MHz, and including 50 hopping channels with 
channel spacing of 500 KHz. We studied tag behaviors 
using 6 passive RFID tags with reader power set to its 
maximum level (31.5 dB). 

Alien reader provides a rich set of APIs to access a 
variety of reader and tag parameters. Reader discovery 
methods such as setDiscoveryListener() and startService() 
are used for network component discovery within the 
same subnet. For a large system consisting of thousands of 
readers, this auto discovery is very efficient. Various 
reader methods are used to get and set different reader 
parameters and observed tag information such as 
getReaderType(), getAcquireMode(), getTagList(), 
setRFAttenuation(), and setRFLevel(). 

A PR talks to its associated VR using Unix sockets.  
The tags are placed by a PR in a queue abstraction 
implemented using sockets.  Thus the PR-VR 
communication follows a producer-consumer model.   

 

3.3 Simulated Physical Readers  
 

We have implemented a simulated physical reader that 
is designed to have the same interface and behavior as the 
Alien readers. Thus a VR treats a simulated PR no 
different from a true PR.  These simulated physical readers 
offer a powerful and transparent mechanism to study 
system scalability.  Different parameters that affect the 
reader accuracy such as reader to tag distance, reader to 
tag angular position, reader power level, etc., are defined 
as input parameters to the simulated PRs. It also provides 
provisions to set predefined reader accuracy level. They 
can be set to be different for different simulated PRs to 
study a heterogeneous deployment, or all the same for a 
homogeneous deployment.  In the experiments conducted 

we have considered various reader accuracy levels.  A 
uniform distribution is used to define a set of items and the 
simulated reader randomly misses items depending on the 
predefined accuracy. The item detection behavior is 
random that reflects the PR’s physical property studied in 
section 4.2.2. It differs from other simulators concerned 
with tuning device level components such as the work in 
[28]; instead, our focus is on efficient and distributed 
computations on reader generated data in order to support 
scalability studies of the system. 
 

3.4 Path Controller and Static Path Map 
 

As we mentioned earlier, the path server and name 
server are non-existent in our prototype implementation.  
Instead, the system maintains a static route map (in lieu of 
a name server) that contains for each potential source-
destination pairs the list of VRs.  Upon a request to create 
a new path, this static route map is consulted to determine 
the set of VRs that could be participants for the new 
Vpath.  The VRs initiate the path creation as we detailed 
in Section 3.1. The VRs that are potential participants may 
elect to be part of the Vpath or not depending on their 
current CPU load and memory utilization.  Once a path is 
created, the centralized path controller creates an entry in 
its table with a unique ID for the new Vpath and the set of 
participating VRs for that path.   
  

4. Evaluation 
 

Two different aspects of the deployment are studied in 
this section. First, we conduct a study of the behavior 
pattern of RFID devices: this study focuses on various 
parameters that affect the reading of the tags such as 
reader to tag distance, angular position of tag to reader, 
number of readers on a palette, and RF attenuation. We 
present a quantitative study of these aspects of physical 
readers. Then, we present an evaluation of our prototype 
system to demonstrate its effect on improving the 
reliability. The study on RF2ID includes experiments with 
real deployments of RFID devices as well as simulated 
readers to expand the scope of our study. 

 

4.1 Reliability Studies of RFID Devices 
 

We have done an extensive study on the ALR-9800 
[22] RFID readers. We studied tag behaviors using 6 
passive RFID tags with reader power set to its maximum 
level (31.5 dB). In the experiments, we vary  the key 
factors that affect the number of detected tags by a reader:  
the reader to tag distance, reader to tag angle and RF 
attenuation level.  Lastly, we study how the tag reading 
varies over time when the above parameters remain 
unchanged. 
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Figure 3(a) shows the impact of reader to tag distance 
when varying the quantity and proximity of tags from the 
antenna. For example, using five tags, 3 tags are detected 
at a distance of 40 inches; whereas for 2 tags all the tags 
are detected up to 40 inches away. Similarly, Figure 3(b) 
exhibits how the angle of the antenna affects accuracy 
while varying the total number of tags. For a fixed reader 
to tag distance of 15 inches– it is observed that, when the 
palette is placed +30° from perpendicular to the antenna, 
most of the tags are detected; otherwise, the number of 
tags detected begins to degrade.   
 Reader attenuation level also has an impact on the 
number of detected items, which is shown in Figure 4(a). 
Considering a group of 6 tags placed 15 inches from the 
reader at an angle of 90°, only 3 items can be detected 
with a reader attenuation of 9dB. However, if the 
attenuation is decreased to 0dB, the number of tags 
identified by the reader is increased to 6. In Figure 4(b) 
RFID reader behavior is observed over a period of 100 
seconds when a palette of six tags is placed 15 inches from 
the antenna. Our study shows that tags are often missed by 
the reader, with the specific missing tags varying 
randomly over time. This behavior demonstrates the 
inherent unreliability of these readers. 
 Our experiment with the readers gives insight into 
their unreliable nature. We have highlighted the inherent 
unreliability of the readers as well as the influence of 
environmental conditions on their performance.   
 

4.2 Evaluating RF
2
ID 

 
 This experiment demonstrates our proposed 
architecture of RF2ID with a static path topology. The 
experiment is done on a 100-node Linux cluster with dual 
Pentium-4 Xeon processors and gigabit Ethernet using 
MPI for communication among the processors. Each VR is 
mapped to a processor. The study incorporates the actual 
physical readers and tags seen in section 4.1. 
 

4.2.1 Experimental Setup. We have conducted two set of 
experiments to evaluate RF2ID. The first set of 
experiments evaluate the improved system performance in 
terms of reliability while the RFID resources are 
inherently unreliable. Then we explore the strength of the 
path based system to locate missing or misplaced items 
along its traversal. The experimental setups are: 
� Item Tracking: Here we have placed two separate 

antennas 120 inches apart, considering each receiving 
antennas as an individual reader. The current setting 
emulates a supply chain scenario with two antennas 
and a (manually) moving cart carrying the tags. The 
physical route of the tags brings them within 5 inches 
of each antenna. We overcome the limited number of 
RFID tags by reusing the same set of tags with 
different timestamps. 
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 (b) 
Figure 3: (a) Varying the number of detected tags 
with different tag to antenna distance (b) Varying 
the antenna to tag angle with different number of 
tags to determine number of detected tags. 
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Figure 4: (a) Number of detected items with 
varying attenuation of RFID readers (b) RFID 
reader behavior when palette of 6 tags placed in 
a fixed distance and detected tags are observed 
over a period of 3 seconds. 
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 We have used a delay in tag traversal to make sure the 
system is able to distinguish the difference between a set 
of tags in consecutive iterations. As RFID readers show 
reduced performance in the presence of multiple items, 
we have considered a maximum of six items per palette 
throughout our experiment. For the scalability study of 
the system, we have used simulated physical readers 
discussed in Section 3.3. 

• Item Location: The system initiates a search 
mechanism to locate misplaced or missing items. 
From the route of the item, the corresponding path is 
detected in the system. Then the search  starts at the 
destination-VR to the source VRs to figure out the 
highest indexed VR in the path having the item 
specific information. When the search narrows down 
to a particular VR, it looks   for   information on the 
item in its  associated PRs, and picks the one with the 
latest information on the item. The VR then controls 
the antenna power of that particular PR to locate the 
possible item position within a radius. The mechanism 
used here is to start the search with the maximum PR 
power level, if the item is not detected the system 
assumes the item has been physically misplaced. 
Otherwise, the VR gradually decreases the PR power 
level to detect the minimum power level required to 
detect the item.  The system is able to define an 
approximate radius of the item position using 
empirical studies of antenna power to item position 
relationship discussed in section 4.2.2. Further 
investigation using techniques such as the ones 
discussed in [23, 24, 10] are part of our future 
investigation.  

 

4.2.2 Study on Reliability. We investigated 
improvements in reliability where reliability is defined as 
the number of detected items in the presence of false 
negative readings. False negative readings indicate a 
reader is not able to detect an existing item. 
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Figure 5: Accuracy as a percentage of found 
items at a virtual reader level as the number of 
physical readers is varied. 

Figure 5 shows the impact of increasing accuracy level 
in a single VR on the system reliability. We have 
simulated multiple PRs attached to a single VR. For 
example, when the VR consists of four PRs, with accuracy 
varying from 50% to 100%, the aggregated (VR) accuracy 
level of the system is obtained as 97%. 

Figure 6(a) demonstrates improved performance when 
two physical RFID readers are used with varying number 
of tags.  Individual PRs show false negative readings from 
55% to 60% of the time. But using our notion of Vpath 
false negatives are reduced significantly. A reading over 
120 tags show 52% and 55% false negative readings in 
PR1 and PR2 where a Path reduces this to 39%. Figure 
6(b) specifies the list of tags detected by PR1, PR2 and the 
combined tag information obtained in a VR consulting 
these PRs. 
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Figure 6: (a) False Negative Reading of the 
System using single PR (PR1, PR2) and Path 
among PRs. (b) Detected items using two 
different physical readers PR1, PR2 and VPath. 

 
Due to the limited number of physical RFID readers 

and tags, we have used simulated physical readers to 
examine reliability in the presence of larger numbers of 
VRs. A one to one mapping of PR to VR effectively 
simulates the unreliability of PRs. In Figure 7(a), it is 
observed that the increasing number of VRs reduces the 
number false negatives.  For example, 10 VRs with 50% 

Items Detected by PR2 

A02A 0508 11A1 8482 2A01 0101 
A02A 0508 11A1 8480 8A01 0101 
A02A 0508 11A1 8483 1A01 1901 

Items Detected by VR using PR1 and PR2 in VPath 

A02A 0508 11A1 8482 2A01 0101 
A02A 0508 11A1 8480 8A01 0101 
A02A 0508 11A1 8483 1A01 1901 
A02A 0508 11A1 8483 2A01 2001 

 

Items Detected by PR1 

A02A 0508 11A1 8480 8A01 0101 
A02A 0508 11A1 8483 2A01 2001 
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reader accuracy achieves less than 10% false negatives. 
Similarly, improved accuracy is observed in Figure 7(b) in 
terms of identified tags from source to destination. Items 
can be missed at a particular VR but as we have a notion 
of Vpath, the information propagates properly through the 
VRs. A reader with accuracy level as low as 40% is 
improved to 97% by using 15 VRs. 
 
4.2.3 Missing and Misplaced Item Location.  Our Vpath 
abstraction plays an important role in item location. We 
have examined the maximum tag detection range of 
readers in perpendicular position by gradually decreasing 
antenna attenuation level from 31.5 dB. This study allows 
us to define a radius around the reader to find possible tag 
locations. 

Figure 8 shows the relationship between reader 
attenuation and maximum item detection range. In an item 
tracking scenario, a particular item or group of items may 
be misplaced along its physical route (e.g., conveyor belt).  
After deciding that an item is lost, the system identifies 
which PR last observed this item and initiates item 
location operations.  Antenna attenuation can be used to 
locate, within a certain radius, the last physical location of 
a lost item.  To this end, we have placed a tag at a 28 
inches distance from the reader at an angle of 90 degrees 
relative to the antenna. Here the item is detected by the 
reader at attenuation set to 7dB indicating a 30 inches 
radius.  

From our study on RF2ID, it is evident that the system 
reliability is improved by abstractions of Vpath and VR. 
 

5. Related Works 
 

The Savant architecture involves a hierarchy of 
software components called Savants [9] which are 
distributed throughout the corporate infrastructure. The 
RFID middleware design of RFIDStack [3] focuses on 
reducing data flooding with built-in aggregation and filter 
types.  Full content-based routing is used to deliver 
captured data only to interested parties, and a feedback 
mechanism allows data consumers to notify producers of 
data properties. The architecture of High Fan-in Systems 
[6] utilizes a tree structure or “bowtie” topology with large 
numbers of sensors at the edges and a hierarchy of 
progressively wider-scoped computational nodes.  De et 
al. [10] propose a system for object tracking that builds on 
the Savant architecture. Similarly, MAX [23] uses a tree-
like structure using a static base station with several 
substations for object location applications. WinRFID [11] 
uses a hierarchical tree-like architecture that uses web 
services for deployment of information.  SCOUT [24] uses 
two different approaches depending on an application to 
ensure the scalability of object tracking for mobile 
devices. None of these systems exploit the data flow 

inherent in the movement of items typical of RFID 
deployments. 

The concept of path is used in many different contexts 
including fault tolerance [14], compiler optimization 
techniques [15], profiling distributed systems [16, 17], and 
resource allocation [18, 19]. Scout OS [8] defines a path 
abstraction to navigate through the layers of the network 
stack and the Ninja project [7] utilizes a path abstraction 
as a way to compose multiple services distributed on the 
Internet into a single logical unit.  Our work is inspired by 
the use of paths in these various contexts. 
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Figure 7: (a) False negative readings by varying 
number of VRs (b) Tags identified along the 
paths as a percentage of all tags as the number 
of VRs is varied. 
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6. Conclusion and Future Work 
 

We have presented the design and implementation of 
RF

2
ID, a reliable middleware framework for RFID 

deployment. We have proposed two novel abstractions: 
virtual reader and virtual path, and we have presented 
experimental results to validate the usefulness of these 
abstractions. We have shown that a path-based 
architecture improves system accuracy and enables the 
support of queries over partially located items, i.e., items 
whose tags are lost at some intermediate location along the 
physical route from source to destination. Our future work 
includes incorporating load balancing in path creation and 
management. We also plan to experimentally compare our 
framework to other ways of organizing VRs, e.g., using a 
tree-like hierarchical structure. We plan to develop a 
complete system using RFID devices and evaluate it 
extensively with different hardware configurations and 
physical mappings of RFID deployments. 
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