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Abstract

Chip Multiprocessors (CMPs) and Simultaneous Mul-
tithreading (SMT) processors provide high performance
but put more pressure on the memory interface than their
single-thread counterparts. The “memory wall” problem
is exacerbated by multiple threads sharing a memory inter-
face, and will get worse as more cores are added. Therefore,
communications between cores, using shared caches or fast
interconnects between private caches, are needed to keep
the CPUs busy without burdening the memory interface.
Multiple CMP systems add another dimension to this chal-
lenging problem, as the communication mechanism is no
longer uniform. To parallelize data-intensive applications
for high performance on these systems, one must explore a
number of execution behaviors in a complex architecture-
dependent exercise that entails identifying key components
of the communication subsystem and understanding their
behavior under varying workloads. As part of ongoing re-
search into efficient program execution models for paral-
lel microprocessors, we have developed a tool to evaluate
the performance of the storage controllers at different lev-
els of the memory hierarchy under varying workloads and
measure cache coherence overhead. The tool allows explo-
ration of architectural features of real processors that affect
the performance of several parallel execution approaches.
Here, we demonstrate its use by evaluating two of our par-
allel programming models that employ architecture-specific
optimizations and compare them to a conventional model
for several applications on parallel microprocessors.

1 Introduction

With the introduction of parallel microprocessors, in
the form of Simultaneous Multithreading (SMT) processors
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and Chip Multiprocessors (CMPs), the trend in commercial
microprocessor design has shifted from exploiting instruc-
tion level parallelism (ILP) and ever increasing clock rates
to exploiting thread level parallelism (TLP). SMT proces-
sors [20] maintain multiple executable thread contexts in
hardware. The threads execute simultaneously and share the
execution resources of the physical processor, such as the
functional units and the caches. However, each thread has
its own instance of the architectural state, which includes
the program counter and registers. Chip Multiprocessors
[13, 2] are built with several processor cores in a single
package. They also share some levels of the memory hi-
erarchy between the cores, but the amount of sharing varies
by manufacturer and product. Cores tend to have their own
individual first level caches. Some CMPs, such as Intel’s
Core Duo [13] series share large second level caches be-
tween cores, while others, like AMD’s Athlon 64 X2 [2]
have L2 caches that are private to each core.

The fast interconnects and/or one or more shared levels
of the memory hierarchy in these parallel microprocessors
present new opportunities for communication between the
execution contexts/cores. But these resources could turn
out to be potential bottlenecks if there are any hidden costs
involved in using them, or if their performance is greatly
reduced because of contention. Moreover, because of lim-
ited pin-out, or because some of these parallel microproces-
sors are pin compatible with their sequential predecessors,
their memory interfaces tend not to scale with the number of
threads. Often, the same memory interface that was already
a bottleneck for a single-threaded CPU is used in the paral-
lel microprocessors exacerbating the memory wall problem
when multiple threads access memory simultaneously.

Executing parallel applications, particularly data-
intensive ones, on these parallel microprocessors involves
choosing an execution paradigm that takes into account
the capabilities of the memory and cache controllers and
the expense of maintaining cache coherence in the system.
For example, we have shown that for important classes of
applications, using the conventional parallel partitioning



Figure 1. IPC measurements for FDTD
(the Spatial Decomposition Model, or SDM) tends to
overwhelm the cache and memory interface on SMT
processors, thus sometimes causing them to run slower than
the sequential version of the programs [28]. This effect can
also be seen in Figure 1, which compares the instructions
per cycle (IPC) rate achieved by the Sequential (Seq) and
SDM versions of an extremely memory-intensive Finite
Difference Time Domain (FDTD) electromagnetic simu-
lation running on a 3 GHz Intel Pentium 4 and a 2.4 GHz
dual-core AMD Athlon X2. As long as the problem size
fits in the 512K L2 cache, the SDM version has higher
aggregate IPC than the Seq version because it exploits
parallelism, but it slows down even more than Seq once
main memory accesses are needed for larger problem sizes.
This performance degradation occurs because of the steeper
memory wall under SDM due to simultaneous accesses
from multiple threads. Thus, ineffectively parallelized code
can actually run slower on a parallel microprocessor.

To alleviate the problem, we proposed the Synchro-
nized Pipelined Parallelism Model (SPPM), an execution
paradigm that uses the shared cache as a high-speed com-
munication channel between producer and consumer pairs.
SPPM carefully manages the threads’ execution so they
communicate via the cache, which significantly reduces the
burden on the memory interface and better exploits con-
current execution on parallel microprocessors. Our results
[28] show SPPM’s advantage on the Pentium 4 with Hy-
perthreading. We have also found SPPM to be very effec-
tive on Core Duo processors and even dual CPU Power-
Mac G5 symmetric multiprocessor (SMP) systems. How-
ever, while SPPM performs well on parallel microproces-
sors with shared caches, it does not perform as desired when
cores have private L2 caches. On current private cache
CMPs, the overhead of cache line transfers between the
caches offsets the advantages achieved by reducing the bur-
den on the memory interface. In this case, the bottleneck is
the cache-coherence protocol and the cache controller.

To understand this surprising behavior, we developed a
tool called C2CBench to evaluate the performance of the
storage controllers at different levels of the memory hier-
archy under varying workload conditions and to measure
the overhead of maintaining cache coherence in parallel
microprocessors. This tool helped us explore the behav-
ior of parallel execution paradigms on parallel micropro-
cessors, and has been invaluable in finding bottlenecks in

CMP architectures and systems and exploring ways to ex-
ploit their features. To overcome the expensive cache co-
herence operations on CMPs with private caches, we devel-
oped a new execution model called Polymorphic Threads
(PolyThreads), which supports producer-to-consumer com-
munication while minimizing cache-to-cache traffic.

The paper is organized as follows: Section 2 discusses
related research. Section 3 defines the SDM and SPPM
models and identifies potential bottlenecks that may affect
their performance. It introduces PolyThreads as an im-
provement over SPPM for architectures with private caches.
Section 4 describes our benchmarks and enumerates the tar-
get architectures. Section 5 presents the results of archi-
tecture evaluation and explains how the programming mod-
els are impacted, while Section 6 compares performance of
SDM, SPPM, and PolyThreads on the target systems. Fi-
nally, Section 7 describes our ongoing research into paral-
lelization of applications for parallel microprocessors.

2 Related Research

SPPM was inspired by I-Structures [4] used in data-flow
architectures for fine-grained producer-consumer synchro-
nization. Others have proposed using an I-Structure-like
Synchronization Array [25, 24] to decouple producer and
consumer threads for pointer chasing code, and target the
exploitation of extremely fine-grained parallelism whereas
we seek to target much coarser-grained parallelism.

In the past, pipelined computation was the basis for
systolic arrays [16, 3] and vector processors Cray-1 [26].
More recently, stream processing has been a topic of re-
search in both the industry and the academia. For exam-
ple, the StreamIt programming language and compilation
infrastructure [12, 11] was developed to characterize large
streaming applications and efficiently map their concurrent
kernels to a number of target architectures.

Locality enhancement techniques [21] are software op-
timizations applied with the objective of improving the
behavior of memory intensive applications. By making
maximal usage of data fetched into the cache before it
gets evicted, these optimizations improve both the spatial
and temporal locality of applications. For example, tiling
[29, 6, 7], also known as blocking [15, 18], transforms loop
nests whose working set sizes far exceed the cache size to
improve the temporal locality by working on smaller tiles
of data. The transformation causes a tile to be fully used
before it is evicted from the cache.

Research into cache partitioning to avoid interference
and to improve shared cache performance on SMT proces-
sors for scientific codes with perfect loops [23] uses tiling
and copying to reduce capacity and conflict misses. How-
ever, modifications to the operating system or access to per-
formance counters are needed to detect interference.
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Cache coherent shared memory machines have been
around for decades, and nearly every paper evaluating
such architectures contains some performance estimations
or measurements of the timing or bandwidth. Early ma-
chines such as DASH [19] and Flash [17] significantly in-
fluenced how future scalable cache coherent machines were
designed. One effort to measure NUMA system perfor-
mance is found in [9]. The authors develop a tool to eval-
uate link throughput between caches in scalable NUMA
machines. Somewhat less was done with commodity, bus-
based SMP systems. For example, the authors of [14] evalu-
ate the Pentium Pro processors’ performance in great detail
but much less detail is provided regarding cache coherence
behavior and timing. lmbench [22] provides much detail
on many performance metrics, including support for multi-
threading contention. However, unlike C2CBench, it does
not measure cache-to-cache performance.

Another performance evaluation approach is to use the
performance counters available on modern CPUs. The
Performance Application Programming Interface (PAPI)
[5, 10] tools provide a standardized interface to counters
in commodity architectures running Linux. Oprofile [1] is a
tool that uses performance counters to profile applications,
though with less control than PAPI provides. Both tools
aided our efforts to understand SPPM behavior.

3 Parallel Program Execution Models

The Spatial Decomposition Model (SDM) exploits data
parallelism by partitioning data and associated computation
across the available processors. It is relatively easy to pro-
gram for suitable algorithms and is widely used by both
programmers and parallelizing compilers. SDM threads
work on their respective data partitions independently of
each other, causing the already bandwidth-limited shared
memory interface on CMP and SMT processors to be fur-
ther overburdened with a large number of simultaneous ac-
cesses. When the application’s working set is larger than
the cache, SDM induces a large number of capacity misses
that further degrade performance. On systems with shared
caches, SDM threads may also cause cache interference,
evicting each other’s data from the shared cache.

The Synchronized Pipelined Parallelism Model
(SPPM)[28] was developed to reduce the demand on
the memory bus by restructuring suitable programs into
producer/consumer pairs that communicate through the
cache rather than the memory. For architectures that do not
provide a shared cache, the presumed fast cache coherence
mechanism should still provide a higher bandwidth com-
munication channel than the main memory, which turns out
not to be the case (see Section 5). Figure 2 shows a logical
representation of how SPPM works. The main memory
holds the computation’s input data blocks, each of which
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Figure 2. SPPM Execution
is fetched by the producer and possibly modified. The
producer’s results are then passed on to the consumer for
further processing, after which the consumer’s results are
written back to main memory. The figure shows the dif-
ferent states the data blocks are in at a given instant: some
blocks are done, one is being transferred from producer
to consumer and being processed by the consumer, while
another is being fetched and processed by the producer.
While the figure shows a single data array, often several
arrays or streams are needed.

Restructuring suitable applications to exploit producer-
consumer parallelism is often more complex than using
SDM, though some streaming applications are naturally
suited to producer-consumer parallelism. Work is under-
way to ease the programming of SPPM applications (see
Section 7). Depending on the architecture, the producer
and consumer may communicate using either a shared
cache or the cache coherence interconnect connecting the
cores/processors. In either case, the number of consumer’s
memory accesses is greatly reduced, with aggregate mem-
ory bandwidth similar to that of the sequential program.

Polymorphic Threads model was developed because
SPPM did not perform well on CMPs with private caches.
While PolyThreads is derived from SPPM, the commu-
nication paradigm is entirely different. Each polymor-
phic thread contains both the producer and consumer code,
which operate on blocks of data, with each thread operat-
ing on alternating blocks. When a thread’s producer code is
finished with a block, it signals the other thread’s producer
to begin work on the next input block. It also transforms
itself into a consumer for the data just produced by itself as
a producer, as illustrated in Figure 3. Because the consumer
uses data just produced by its producer persona, it finds the
data in its local cache, thus no large cache-to-cache trans-
fers are needed. This allows concurrent execution of poly-
morphic producer-consumer threads, largely communicat-
ing results through the local cache. While synchronization
still requires the use of the coherence mechanism, such lit-
tle data is transferred that it does not significantly affect the
performance. In addition, the program’s access pattern may
lead to dependencies that cause a small amount of data to be
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Figure 3. SPPM and Polymorphic Threads
transferred between caches at block boundaries. The block
size can be tuned based on the data access pattern and the
cache size to achieve the best performance.

Polymorphic Threads greatly benefits SMPs and CMPs
that have private caches because cache coherence opera-
tions always incur some cost. However, it does not yield
any benefit on SMT processors and CMPs with one or more
shared cache levels, because producer-consumer commu-
nication is already as fast as possible and the overhead of
synchronizing and switching modes means it runs slightly
slower than SPPM on such processors. In addition, Poly-
Threads programs are more complex and difficult to develop
because of the fusion of producer and consumer code with
the transformation at a synchronization point in the middle.
The added complexity and slight additional overhead means
that it should only be used when needed to overcome the
cache coherence cost of processors having private caches.
As described in Section 7, efforts are underway to reduce
the burden of programming such code.

4 Benchmarks and Target Architectures

We have currently hand-coded the following four appli-
cations as benchmarks for our research. These applications
are real-world segments, yet are simple enough to isolate
the memory behavior and discover performance differences
between the various parallel execution approaches.

Red-Black Equation Solver (Red-Black): This iterative
equation solver kernel solves a partial differential equation
on a grid using a finite differencing method. Due to the or-
dering nature of the grid point updates, this algorithm is not
parallelizable using SDM. Authors in [8] suggest restruc-
turing the algorithm to update the grid points in a different
order, called the Red-Black Ordering, that lends itself more
easily to parallelization. A detailed description of the pro-
gram code can be found in [28].

Finite Difference Time Domain Simulation (FDTD): The
Finite Difference Time Domain application [27] is an ex-
tremely memory-intensive electromagnetic simulation. It
computes many time steps over a 3D volume. A detailed

description of the program code can be found in [28].
ARC4 Stream Cipher (ARC4): ARC4 is the Alleged RC4,

a stream cipher commonly used in protocols such as the
Secure Sockets Layer (SSL) for data security on the Inter-
net and Wired Equivalent Privacy (WEP) in wireless net-
works. The encryption process uses a secret user key in a
key scheduling algorithm to initialize internal state, which
is used by a pseudo-random number generator to generate
a keystream of pseudo-random bits. As each byte of the
keystream is generated, it is XORed with the correspond-
ing byte of the plaintext to generate a byte of the ciphertext.
Because the generation of each byte of the keystream is de-
pendent on the previous internal state, the process is inher-
ently sequential and, thus, non-parallelizable using SDM.
By treating the keystream generation and the production
of ciphertext as producer and consumer, SPPM and Poly-
Threads can exploit the inherent concurrency.

The Pipelined Equation Solver (EQN): The pipelined
equation solver (EQN) solves the same sort of problem
as Red-Black, described above. Instead of restructuring
the original algorithm with its intra-loop dependences, it is
pipelined by executing its iterations concurrently. As an it-
eration produces semantically enough data, a new iteration
is spawned on another processor, if available. This forms
a linear chain of processors with each acting as a producer
for the next one in the chain and as a consumer for the pre-
vious one. This form of pipelined computation leads to a
few iterations toward the end being executed speculatively.
In our implementation, the processor that achieves conver-
gence first signals the other processors to stop. This bench-
mark, like ARC4 above, is representative of classes of appli-
cations that are not parallelizable at all using SDM. More-
over, it demonstrates one way that SPPM can scale with the
availability of more than two hardware threads.

Our benchmarks were run on the following mix of CMP
and SMT processor based systems.

• 3 GHz Intel Pentium 4 with Hyperthreading and 512K
Level 2 cache and 1GB dual-channel PC3200 RAM
running Linux 2.6.16 (labeled P4)

• 2-way dual-core 2.0GHz Opteron 270 system with pri-
vate 64K L1 and 1024K L2 caches per core and 16GB
dual-channel ECC PC3200 memory running Linux
2.6.16 (labeled Opteron).

• Dual-core 2.4GHz Athlon 64 X2 system with private
64K L1 and 512K L2 caches on each core and 2GB
dual-channel PC3200 memory running Linux 2.6.16
(labeled Athlon).

• 2-way dual-core 2.66GHz Intel Core 2 Xeon 5150 Mac
Pro with a private 32K L1 cache per core and shared
4096K L2 caches per chip and 1GB FBDIMM RAM
running Mac OS X 10.4.7 (labeled Xeon).
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• 2GHz Intel Core Duo based iMac with a private 32K
Level 1 cache on each core and a shared 2048K Level 2
cache between the cores and 512MB PC2-5300 mem-
ory running Mac OS X 10.4.7 (labeled Core Duo).

On the P4, Intel’s C++ Compiler 7.0 was used, while
GCC 4.0 was used on all the other systems. The bench-
marks were compiled using the -O3 optimization flag on
the P4, Opteron and Athlon and using the -fast optimization
flag on the Xeon and Core Duo. The performance tool was
compiled using the -O optimization flag on all the systems.

5 Architecture Evaluation Results

Our memory hierarchy communications performance
tool (C2CBench) measures the performance of various lev-
els of the memory hierarchy under different workload con-
ditions. It can determine relative throughput and latency
of accessing local and remote caches and memory with
and without interference from other threads. C2CBench is
based on the SPPM runtime system, which provides pro-
ducer and consumer threads that perform specified oper-
ations (reads or writes) on the elements of a data set di-
vided into blocks. Using appropriate values for the data set
size and block size, one can test the performance of the L1
cache, L2 cache, and memory controllers for either local or
remote accesses. The producer and consumer can be con-
figured to either work in lock-step manner or concurrently.

• When working in lock-step, the producer processes a
block of data while the consumer waits for it to finish,
thus introducing no interference. In turn, the producer
waits for the consumer to finish processing that block
before proceeding to the next one. This allows us to
measure the baseline performance with no contention
for access to the storage controllers.

• When working concurrently, the consumer processes
a block of data previously processed by the producer
while the producer is processing the next block of data.
Working concurrently puts additional burden on stor-
age controllers and allows us to measure the degrada-
tion in their performance due to contention.

C2CBench also controls buffer placement on NUMA archi-
tectures by using CPU affinity and Linux’s data placement
policies, so the buffer can be placed in physical memory at-
tached to a specified processor. This allows us to measure
the effects of local and remote data placement.

5.1 Memory Interface Performance

Figure 4 shows the time in microseconds taken to read
each cache line in a 32M block of data from the memory

Figure 4. Memory Interface Performance

Figure 5. Memory and L2 Performance
with simultaneous accesses by 1, 2 and 4 (where applica-
ble) threads on each architecture. On all the architectures,
the performance decreases as contention increases. On the
Opteron, however, the performance is the same for both 2
and 4 threads because each chip in the system has its own
integrated memory controller. This test models the simulta-
neous accesses to the memory interface in applications par-
allelized using SDM. The figure clearly shows that memory
intensive SDM programs experience degraded performance
due to excessive contention for the memory interface.

5.2 Memory and Private L2 Performance

Figure 5 compares the times taken to read a 128K block
of data from the following locations: the private cache of
another core on the same chip (labeled Local C2C); the lo-
cal memory attached to the chip or frontside bus (labeled
Local Memory); the cache of a core on a different chip
(labeled Remote C2C); or the memory attached to another
chip (labeled Remote Memory). Only the Opteron architec-
ture has all categories, being a NUMA architecture. P4 and
Core Duo are not shown because they have only shared L2
caches. The Xeon’s memory is classified as Local Memory,
though it is shared between all the processors.

The results are surprising, yet confirm our observa-
tions of SPPM performance: on the dual-core Opteron and
Athlon 64 X2, it is faster to read from local memory than
from the other core’s cache. On the Opteron, it is also faster
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Figure 6. L2 Cache Coherence Overhead
to read from remote memory than from a cache on the other
chip. Much of this is due to the fast on-chip memory con-
trollers in these architectures, but the poor cache coherence
performance is unexpected. Because SPPM uses the cache
to communicate, its performance on these chips is worse
than using the memory. Thus SDM actually works better,
though it may be slower than sequential code. This test is
a useful indicator of SPPM’s performance on a target ar-
chitecture, since many of the consumer’s data accesses are
satisfied from the producer’s cache.

5.3 L2 Cache Coherence Overhead

Figure 6 compares the time taken to write to a 128K
block of data resident in the local cache for each of the co-
herence conditions below. The Core Duo and P4 are not
included, because they have shared caches and do not use
a coherence protocol (the L1 does on the Core Duo, but a
128K block does not fit into it).
Block is in Modified state (labeled No Inv): Writing to the
data block is cheapest in this case as no invalidations need
be sent to the other caches in the system. We use this as the
baseline for comparison with the other cases.
Block is in Shared state (MESI and MOESI) or Owned
state (MOESI only): Writing to the data block in these
states is more expensive because it involves invalidating
other caches in the system that might have a copy of the
block. The figure shows two cases: one, where the core
whose copy is to be invalidated is on the same chip as the
invalidating core (labeled SC Inv); the other, where the two
cores are on different chips (labeled DC Inv). Different chip
values are not shown for the Athlon, which only has a single
chip, nor are same chip values shown for the Xeon, which
shares the L2 cache between same-chip cores.
Block is not resident in cache or has been invalidated:
C2CBench does a read-modify operation on the block. As a
result, it involves fetching the block from the remote cache,
after updating its status to Shared/Owned there, and then
invalidating the remote copy. Thus, this is even more ex-
pensive than the previous case, where the remote copy only
need to be invalidated, but not fetched. Again, we differ-

Figure 7. L1 Cache Coherence Overhead
entiate between the cases where the source and destination
cores are on the same chip (labeled SC Fetch-Inv) or differ-
ent chips (labeled DC Fetch-Inv).

As expected, the Fetch-Inv cases are more expensive
than invalidation alone, and different-chip operations are
more expensive than same-chip ones. In all cases, inval-
idation time is a large percentage of the fetch and inval-
idate time, thus invalidation overhead is as expensive as
the transfer of cache lines. The Xeon shows high perfor-
mance when invalidation is not required and very poor per-
formance when it is, with the cache line transfer time nearly
negligible compared to the invalidation time. These results
show how expensive coherence operations are on these ar-
chitectures, which directly affects the performance of par-
allel applications that share data and synchronize often. It
is an indication that these parallel microprocessors are not
well suited to many types of parallelism in common use.

5.4 L1 Cache Coherence Overhead

This test measures the cache coherence protocol over-
head between L1 caches on shared L2 cache architectures
(in our case, Core Duo and Xeon). Figure 7 shows the
processing times for each 64K block of a 256K data set
read by the consumer over three iterations of the data set
on the Core Duo and Xeon. The processing times of the
individual blocks are cumulatively added across an entire
iteration, which gives rise to the saw-tooth like waveform.
The tests are run with the producer and consumer running
concurrently (CO) and in lock-step (LS). The size of Level 1
caches on both architectures is 32K, and they apparently use
a write-back policy. When executing in lock-step with the
producer, the consumer always finds the first 32K of a 64K
block in the shared Level 2 cache, where it must have been
evicted from the producer’s cache to accommodate the last
32K of the block. The last 32K of the 64K block must,
therefore, be read from the producer’s Level 1 cache, ap-
parently by first causing it to be written back to the shared
Level 2 cache. As a result, reading the last 32K is more
expensive than reading the first 32K, and this additional ex-
pense has to be incurred for every block read by the con-
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Figure 8. Red-Black Normalized Execution Times

sumer. This explains the linear waveform corresponding to
lock-step execution. However, when the producer and con-
sumer execute concurrently, the producer does not wait for
the consumer to finish reading every block, and keeps evict-
ing newer blocks to the Level 2 cache even as the consumer
is reading older blocks that were evicted before. In this case,
all but the last 32K of the last block are evicted from the pro-
ducer’s Level 1 cache, and as can be seen from the figures,
the consumer processes them very fast. But reading the last
64K block takes as much time as when executing in lock-
step, which causes the spike seen in its waveform. Overall,
the consumer performs better when executing concurrently
than when executing in lock-step. This test shows that ex-
tremely fine-grained data sharing between threads can harm
performance, so it is important that the granularity be larger
than the L1 cache size. We show this behavior in SPPM for
the Red-Black benchmark in Section 6.

6 Programming Model Evaluation Results

We now present the performance measurements of the
Red-Black, FDTD, ARC4, and EQN applications using the
SDM, SPPM and Polymorphic Threads.

6.1 Red-Black Equation Solver

Figure 8 shows normalized execution times of the mod-
ified sequential (MSeq) version [8], the SDM, SPPM, and
PolyThreads versions for two problem sizes (2000 × 2000
and 2500×2500). The SPPM-SC version is SPPM with the
producer and consumer threads running on the Same Chip
(SC) while SPPM-DC is SPPM with the producer and con-
sumer threads running on Different Chips. All values in
the figure are normalized to the corresponding sequential
version execution time value on each machine. Because of
the red-black access pattern, MSeq incurs increased mem-
ory references over the sequential version, which does not
need the red-black access pattern, and is usually slower.
All the parallel versions are based on MSeq’s access pat-

tern. The figure shows that SPPM is faster than SDM on
all the shared cache machines (P4, Core Duo, and Xeon).
The SDM version is as fast or faster than the normal SPPM
versions on the AMD architectures due to the high band-
width integrated memory controller and the high overhead
of the cache coherence protocol demonstrated earlier. On
these architectures, however, PolyThreads is significantly
faster than the other versions, because it greatly reduces the
cache-to-cache transfers. In fact, it is even as fast as SPPM
on the Intel architectures, so it does not induce any perfor-
mance penalty in Red-Black.

As we demonstrated in Figure 7, on shared architec-
tures with private L1 caches, there is an overhead involved
for maintaining cache coherence when data is dirty in the
L1 caches. This overhead penalizes applications with ex-
tremely fine-grained data sharing. In Figure 9, we vary this
granularity for a problem size of 1000× 1000 in the SPPM
version of the Red-Black equation solver on the Xeon and
the Core Duo. Granularity is measured in number of rows
of the input array i.e. 1000 data elements (≈ 8KB of dou-
ble precision floating point numbers). The size of the L1
cache on both the Xeon and Core Duo is 32KB. For gran-
ularities finer than 4 rows (≈ 32KB), the consumer incurs
the high overhead of the L1 cache coherence protocol while
fetching data from the producer’s L1 cache, causing the
overall execution time to increase. As the granularity is
increased to greater than 4 rows, fewer data elements are
fetched from the producer’s L1 cache by the consumer, so
the execution time decreases, hence performance increases
(more pronounced on the Xeon than on the Core Duo). Al-

Figure 9. Red-Black – Effect of granularity
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Figure 10. FDTD Normalized Execution Times

though there is a loss in parallelism with increasing granu-
larity, the loss is more than compensated for by not having
to fetch a prohibitive amount of data from the producer’s L1
cache. However, for very coarse levels of granularity at the
right of the figure, the loss in parallelism can no longer be
overcome, so performance degrades.

6.2 FDTD

Figure 10 shows normalized execution times of the
SDM, SPPM and PolyThreads versions of FDTD on the tar-
get architectures for two problem sizes (80 × 80 × 80 and
100 × 100 × 100). SPPM-SC and SPPM-DC are defined
in the same way as in Red-Black above. All values in the
figure are normalized to the corresponding sequential pro-
gram value on each machine. Because SPPM makes better
use of the cache, it performs better than SDM in almost all
cases, but is particularly effective on shared cache architec-
tures. Because FDTD accesses so many arrays per iteration,
it is extremely data-intensive, thus the SDM version tends to
run much more slowly than the sequential version on the P4.
Despite the sharing of resources by HyperThreading on the
P4, SPPM still manages to extract a significant performance
improvement. SPPM also achieves nearly perfect speedup
on the Core Duo and Xeon. SPPM-SC ekes out a perfor-
mance advantage over SDM on the AMD chips, but is not
near a perfect speedup, while SPPM-DC is as slow as the
sequential version or worse. PolyThreads, which reduces
the cache-to-cache transfers, does provide better speedup
on Athlon and Opteron, though still not as good as on the
Intel chips. It is slower than SPPM on the shared cache
architectures because of its slight overhead.

6.3 ARC4 Encryption

Figure 11 compares the encryption throughput of the se-
quential (Seq), SPPM (Same Chip and Different Chips), and
PolyThreads versions (higher values are better). ARC4’s
producer and consumer are asymmetric, so the producer

Figure 11. ARC4 Encryption Bandwidths
(key generator) does much more work than the consumer
(XOR the streams). SPPM achieves significant speed-up
on shared cache architectures, but incurs a performance
penalty on the ones with private caches due to the high
cache coherence overhead. Even PolyThreads incurs a
penalty on the AMD architectures. Because of the high
memory bandwidth on these architectures, the sequential
version performs roughly as well as PolyThreads. More-
over, the fact that the consumer does much less work than
the producer naturally limits the speedup achievable in this
specific case as can be seen from the figure. Nevertheless,
this algorithm represents a class of applications not paral-
lelizable using SDM but which can be run in parallel using
SPPM and PolyThreads.

6.4 Pipelined Equation Solver (EQN)

Figure 12 shows the normalized execution times of EQN
on the target architectures for varying number of threads.
The execution times are normalized to the execution time
using a single thread (1T). 2T and 4T are the execution
times using 2 and 4 threads respectively. In all the cases,
SPPM scales nearly linearly from 1 to 2 threads. On the
Opteron, performance does not scale linearly while going
from 2 to 4 threads. When running 4 threads, 2 threads run-
ning on different chips have to share data between them.
The higher overhead of the cache coherence protocol be-
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Figure 12. EQN Normalized Execution Times
tween them forms the bottleneck in the system and results
in a less than linear speed-up. On the Xeon, going from 2
to 4 threads is causes a degradation in performance. This
is a result of the extremely high overhead of maintaining
cache coherence across chips (see Figure 6) as opposed to
no overhead within a chip due to the shared cache.

As a result of these experiments, it is clear that SPPM
does very well when the producer and consumer share a
cache. It is also clear that the communication mechanism in
SPPM is penalized by slow cache coherence mechanisms,
so Polymorphic Threads must be used instead for good per-
formance on architectures with private caches. The results
also show that the conventional parallel execution model
i.e., SDM can often run more slowly than the sequential ver-
sion on current parallel microprocessors, a problem which
motivated this research in the first place. Finally, the re-
sults show one way that SPPM can scale to more than two
threads/processors.

7 Ongoing Work

While SPPM and Polymorphic Threads are better suited
than SDM on modern parallel processors for some classes
of data-intensive applications, they are more difficult than
SDM in terms of programming effort. To simplify the pro-
cess of parallelizing applications using SPPM and Poly-
Threads, we are designing software infrastructure to sup-
port exploiting parallelism and managing synchronization.
This would allow programmers to avoid tedious hand cod-
ing and concentrate on the functional aspects of their appli-
cations. This software infrastructure development will be
complemented by formulating techniques to model the per-
formance of Seq, SDM, SPPM and PolyThreads in terms
of the architectural and model-specific parameters obtained
using C2CBench. This will allow programmers to quanti-
tatively compare the different models and to choose what is
best for a given application. Efforts are also underway to
enhance SPPM and PolyThreads for scalability when more
cores are available for use. The eventual goal of this re-
search is to augment parallelizing compilers to identify and

exploit SPPM and PolyThreads-style parallelism in suitable
applications. We are also evaluating hardware modifica-
tions to support high performance communication and syn-
chronization between processors.

8 Conclusion

Writing efficient software for modern parallel micropro-
cessors is an architecture-driven exercise. In adopting a
parallel programming model and applying advanced opti-
mizations, attention must be paid to the capabilities of the
memory interface and cache controllers in the system and
the overhead of the protocol used to maintain cache co-
herence among the processors. Using C2CBench, we have
experimentally evaluated several modern parallel micropro-
cessors based on important criteria that affect performance.
We have shown how sustained simultaneous accesses to
the memory interface can degrade performance in data-
intensive applications. We have also shown that in architec-
tures having private caches, even though the caches and the
processor interconnect themselves are capable of sustain-
ing a high data bandwidth, the actual bandwidth available is
severely limited by the excessive expense of the cache co-
herence protocol. Even in architectures with shared caches,
data transfer speeds between private caches is still very
slow, which assumes importance for choosing the granu-
larity of data sharing between the threads.

We compared the conventional Spatial Decomposition
Model (SDM) with our Synchronized Pipelined Parallelism
Model (SPPM) and Polymorphic Threads for several dif-
ferent classes of data-intensive applications. On all shared
cache architectures, SPPM and PolyThreads perform bet-
ter than SDM because they put less burden on the memory
interface and carefully manage the shared cache for inter-
thread communications. For some applications, there is a
small penalty in using PolyThreads compared to SPPM due
to more synchronization in the code. On private cache ar-
chitectures, SPPM’s performance degrades due to the high
overhead of cache-to-cache data transfers. SDM still does
not perform well on such architectures because it strains
the memory interface. Polymorphic Threads, however, im-
proves performs significantly because of the way it localizes
inter-thread communication within the same processor, thus
avoiding expensive inter-processor data transfers.

Using a performance tool like C2CBench makes it pos-
sible to explore the complex design space of parallel execu-
tion on modern parallel microprocessors. Bottlenecks found
by the tool can be addressed or overcome by programming
models and execution infrastructures like SPPM and Poly-
Threads. Additional programming support for these ap-
proaches will allow programmers to focus on functional as-
pects rather than having to deal with issues of parallelization
and management of synchronization. This will lead to more
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efficient utilization of the computational, memory, and com-
munication throughput available on current and next gener-
ation parallel microprocessors.
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