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Abstract

As computing breaches petascale limits both in proces-
sor performance and storage capacity, the only way that
current and future gains in performance can be achieved
is by increasing the parallelism of the system. Gains in
storage performance remain low due to the use of tradi-
tional distributed file systems such as NFS, where although
multiple clients can access files at the same time, only one
node can serve files to the clients. New file systems that dis-
tribute load across multiple data servers are being devel-
oped; however, most implementations concentrate all the
metadata load at a single server still. Distributing meta-
data load is important to accommodate growing numbers
of more powerful clients.

Scaling metadata performance is more complex than
scaling raw I/O performance, and with distributed meta-
data the complexity increases further. In this paper we
present strategies for file creation in distributed metadata
file systems. Using the PVFS distributed file system as our
testbed, we present designs that are able to reduce the mes-
sage complexity of the create operation and increase per-
formance. Compared to the basecase create protocol im-
plemented in PVFS, our design delivers near constant op-
eration latency as the system scales, does not degenerate
under high contention situations, and increases throughput
linearly as the number of metadata servers increase. The
design schemes are applicable to any distributed file system
implementation.

1 Introduction

As processors and interconnects continue to deliver ex-
ponentially better performance as time goes on, storage has
been relatively stagnant, and I/O is becoming a painful bot-
tleneck in high-performance computing. Due to the funda-
mental limitations of rotating magnetic media, one of the
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few possible ways to increase throughput of data operations
is by employing multiple devices in parallel. Striping data
across many disks or data servers is a straightforward way
of scaling bandwidth; however, applications do not only
read and write data, they also manipulate metadata to orga-
nize their data in a typical tree hierarchy. In many fields, ac-
cessing and modifying the metadata consumes a significant
fraction of the overall run-time [16]. Furthermore, scaling
metadata performance by aggregating servers and storage
devices is inherently more complex than data striping.

In this paper, we analyze strategies for file creation in file
systems that distribute the metadata across multiple servers.
There are many steps involved in a single create operation
because the data objects, metadata representation, and par-
ent directory entry may all reside on separate machines. Of
the set of typical metadata operations, create features a high
level of complexity due to the number of disparate objects
involved and the constraints imposed by correctness guar-
antees. While designing for good create performance, it is
important to ensure that no other file system client can see
the system in an inconsistent state.

The rest of this paper starts with an overview of dis-
tributed file system architecture in Section 2. The design
choices for object creation are described in Section 4, fol-
lowed by experimental results in Section 5. Section 8 sum-
marizes the contributions of this work and suggests direc-
tions for future research.

2 Background

Previous studies have shown that high-end computing
workloads feature data accesses by multiple processes as
well as high metadata rates, and frequent and concurrent
creates and deletes [20]. Metadata operations make up
over half of some workloads [16]. As ever larger machines
with more disks are being deployed [23], a single metadata
server is no longer sufficient to handle the workload. Some
of the metadata issues can be ameliorated by using col-
lective interfaces, such as MPI-I/O [21], at the clients [9].
These techniques limit accesses to one client, with results



broadcast outside of the file system to the other cooperat-
ing clients. Unfortunately, not all usage scenarios can limit
their metadata accesses in this way, and non-collective I/O
interfaces, such as POSIX [6], are still prevalent.
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Figure 1. Distributed file system architecture.

A common distributed file system architecture consists
of many IO servers that store data contents, one or more
metadata servers that store information about the data, and
many clients, all of which are connected by a shared net-
work as shown in Figure 1. Clients typically communicate
with both IO and metadata servers to perform file system
activities, and servers may or may not communicate among
themselves. This architecture is used in many current par-
allel file system implementations [8, 3, 12].

Some systems delegate operations, such as create, from
the requesting client to a single server, that in turn contacts
other servers as required to perform the metadata and data
operations [3]. This approach simplifies the client imple-
mentation at the expense of scalability. It also requires an
architecture where all servers can communicate with each
other. In this paper, we consider the more general case
where clients communicate directly with the servers in-
volved in a transaction.

Our testbed for implementation is PVFS [2, 8] (ver-
sion 2), an open source parallel and distributed file system.
PVFS uses striping across IO servers to achieve high data
rates, and fully distributes file, directory, symbolic link, and
other metadata objects across one or more metadata servers.
Operation is optimized for the case of cooperating clients,
avoiding the need for mandatory defensive locking, but also
not allowing for the use of client-side data caches. The
server is stateless from the protocol point of view, although
network connections are cached for performance. Distribut-
ing metadata among multiple servers ensures good scalabil-
ity [9] but at a cost of an increased number of transactions
required to perform a single operation from the client point
of view. Furthermore, PVFS is designed with correctness
in mind, so each of the multiple transactions is followed by

a disk synchronization to ensure data stability, and relation-
ships between the transactions forces serialization at times.

The contribution of this paper is an analysis of the re-
quirements of the file create operation in the distributed file
system architecture of Figure 1. We present multiple de-
signs to decrease individual create operation latency and in-
crease overall create throughput for multiple clients, while
ensuring that the system remains consistent.

3 Basic Create Protocol

We begin with a description of the components of a file.
A single file striped across the IO servers exists as multiple
entries (disk files and database rows) in the IO and metadata
servers. First, there are generally N datafiles, one on each
IO server, that hold chunks of the data in the file. We call
these datafiles, and the 64-bit descriptors used to refer to
them are IO handles. Next there is a metafile on a metadata
server that contains a list of all the IO handles that com-
prise the file. This metafile has a metahandle that represents
it, and an associated set of attributes for the file, such as
ownership credentials and permission bits. The metahandle
of the file is added to the list of metahandles maintained by
the parent directory, making the file visible. The parent di-
rectory need not exist on the same metadata server as the
file itself. Table 1 summarizes the components of a file.

Number Description
N File data chunks
1 Metafile, with attributes
1 Directory entry

Table 1. Distributed file components.
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SEND REQ
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Recv IO handles

Create dirent req

INIT Get parent attr

Figure 2. Create state machine.

Figure 2 illustrates the sequence of operations performed



by a PVFS client to complete a file create operation, after it
gets the attributes of the parent directory:

1. Select a metadata server at random, create a metafile at
that server and receive corresponding metahandle.

2. Select a set of IO servers, create a datafile at each
server and receive corresponding IO handles.

3. Set the attributes of the metafile, including the list of
IO handles of the created datafiles.

4. At the metadata server hosting the parent directory,
create a directory entry for the newly created file.

As seen in the figure, there are four serial steps for the
create operation, each of which involves one or more re-
quest and response pairs to IO or metadata servers. We de-
fine a step as an entity comprised of an operation and its
subsequent communication state. For example, the “create
meta handle” step refers to the “create meta handle” state
along with the consecutive “SEND REQ” state. The state
after “create IO handles” depicts multiple “SEND REQ”
states, which implies there might be many IO servers in-
volved requiring multiple messages

Parallelism does occur at the IO handle create step in
Figure 2, where each IO server operates independently. Al-
though the figure does not show it explicitly, each of these
operations is followed by a test for success, and in the fail-
ure case, all preceding operations are carefully undone by
the invoking client. The states are ordered so that the direc-
tory entry is not created until after the file itself is created
so that other clients can not view an inconsistent state. Due
to the multiple serial steps in the basic create protocol, this
operation becomes relatively expensive when compared to
single-server file systems such as NFS [13]. Good metadata
scalability comes at the expense of degraded performance
for a single operation.

4 Design Alternatives

This section describes techniques to achieve improved
metadata performance while retaining good scalability, ap-
proached from the view of incrementally improving the cre-
ate operation.

4.1 Compound operations

Looking at the list of fundamental steps in the basic cre-
ate protocol, it can be seen that the initial creation of the
metahandle is independent from the creation of the IO han-
dles, thus these two operations can proceed in either order,
or concurrently. If run in parallel, there will be some sav-
ings from avoiding a serialization, but swapping the order
so that IO handles are created first moves the metahandle

create and metahandle setattr operations beside each other,
which can then be combined into a single operation. Using
a compound operation like this also avoids one serialization
step, and has the added advantage of saving an RPC.

Compound operations have been used frequently in the
past. As selective combinations for enhanced functional-
ity, they can be used to avoid race conditions in distributed
applications, such as in the test and set or fetch and add
operations in shared-memory machines [10] and with the
RDMA write and invalidate network [14]. Other uses of
compound operations are purely to reduce transaction cost,
as in NFSv4 [19] where most operations can be glued to-
gether into a compound and issued as a single RPC. Exten-
sions to POSIX [5] introduce a combined getattr plus stat
to address one particular performance problem that occurs
in the frequently used directory listing operation.

Create dirent req

DONE

SEND REQ

SEND REQ

INIT Get parent attr

SEND REQ

Create IO handles

Create meta handle

Setattr on meta handle
SEND REQ

Recv meta handle

Recv IO handles

Figure 3. Create state machine with com-
pound operations.

Here, we combine the create and setattr operations as
a single new server command that can be used in multi-
ple scenarios, but we do not introduce a generic facility
for operation compounding as there are not enough situa-
tions that can exploit it to justify the implementation cost
currently. The modified state machine that saves one RPC
call is shown in Figure 3. As will be seen in Section 5, the
gain from this modification is modest, and considerations of
complexity may rule against widespread use of compound
operations except in specific cases.

4.2 Handle selection strategies

Microbenchmarks and timing analysis suggest that the
creation of IO handles is a serious contributor to overall cre-
ate time. The process involves communicating with a poten-
tially large number of IO servers, depending on the striping
mechanism used by the file system. While all the IO han-



dle creates can proceed independently, they must all finish
before creation of the metahandle starts, because the meta-
handle lists the newly-created IO handles returned from the
IO servers.

The only way to parallelize the IO handle and metahan-
dle creation steps is if the client knows the IO handles in
advance. Some approaches to solve this problem are dis-
cussed below, after some information on possible handle
schemes is presented.

Handle mapping Handles are opaque bit sequences used
to refer to a particular object, usually 64 or 128 bits in
length. In PVFS, handle ranges are statically assigned
at file system creation. Each client loads a configuration
file upon first access that maps linear handle ranges to
particular metadata or IO servers. (The handle space for
metafiles and datafiles are distinct.) Different handle as-
signment algorithms are implemented by other file systems.
PNFS [4] uses a central directory to map handles into stor-
age servers—a client must contact the main server to find
out the data server that holds its object. The experimental
system Ceph [24] uses a well-known hashing function so
that any client can perform the algorithm used to convert
handles to storage servers. To achieve good scalability, it
is necessary that clients be able to select their own handles
for newly created objects, yet avoid any centralized handle
allocation point.

Handle guessing For fixed handle ownership ranges such
as PVFS uses, a client can guess a potential IO handle and
suggest to the IO server that it allocate the suggested han-
dle. This approach would work for reversible hash-based
policies too. The major risk to this approach, though, is
that of handle collision. Multiple clients may be guessing
new handles at the same time. This scheme begs for devel-
opment of a “back-off” protocol that can jump ahead in the
available handle space hoping to find a free one. It also adds
considerable complication to the state machines at both the
client and at IO servers for processing new object allocation.

Central directory A file system may choose to imple-
ment a centralized directory of allocated and free handles.
For tightly coupled systems, this may be the most efficient
way for clients to request new handles. The scheme has the
downside that both clients and servers must access a single
list to perform handle allocation, although this may not be
problematic for tightly coupled systems.

Handle reservation Clients may request, in advance, new
handles from the IO servers, before they have a need to
create new objects. By reserving a set of handles in ad-
vance, individual create operations can proceed much more

quickly. However, this approach leads to many more ques-
tions. When should clients reserve handles, and how many
should they request? What happens to reserved yet unused
handles when clients exit? Should the IO servers create and
commit to disk a datafile for each reserved handle? We pur-
sue this approach in the following subsections and discuss
the issues that arise.

4.3 Leased handles

We first present and analyze a scheme whereby clients
can lease handles in advance of create time, and later re-
quest that one of those handles be assigned to newly created
datafiles. The scheme is illustrated in Figure 4. As shown,
the state machine has two paths, a fast path that completes
the entire create operation in two steps and a slow path that
takes three steps.

Create dirent req

DONE

SEND REQ

SEND REQ

INIT

SEND REQ

SEND REQ

SEND REQ

Missing leased handles
(slow path)

Get parent attr

SEND REQ

Reserve leased IO handles

(fast path)

Create meta handle

Setattr on meta handle
Lease IO handles

Create meta handle

Setattr on meta handle

Get leased handle status

All IO handles present

Figure 4. Create state machine with leased
handles.

Under this scheme, the initial steps up through getting
the attributes of the parent are the same as in the basic create
protocol. Next, for each of the selected IO servers, the client
checks if it possesses any leased handles that can be used. If
the client finds that it has a leased handle for all IO servers
involved in the operation, it takes the fast path where it can
concurrently execute the following steps:

1. Request the IO servers to reserve the leased handle for
a create. If the client determines that any IO server
is running low on leased handles, it can further request
the server to send another set of leased handles embed-
ded in the response.



2. Use the leased handles for creating metahandle and
setting attributes on the metahandle.

The actions in step 1 have a further positive side-effect:
since a client can initiate requests for an additional set of
leased handles for servers whose leased handle count falls
below a threshold level, at no time in future, bar failures or
exceptions, will a client need to travel down the slow path.
That is, once a client has used all IO servers in the system
as targets for create operations just once, it will always take
the fast path.

The reserve leased handle request is similar to the orig-
inal create handle request, in that a server allocates a new
datafile on disk, but uses the handle identifier given by the
client instead of creating a new one.

If there exists at least one server for which the client has
no leased handles, the slow path is taken. On this path, a
request is sent to each IO server for which the client does
not have leased handles. (A reserve request is sent to the
the other servers as in the fast path.) Upon receiving a lease
request, an IO server allocates a small number of handles
with the first handle among those allocated reserved for the
create operation in progress. Note that request for leased
handles are serialized at the server which guarantees atom-
icity.

The client exits both the slow and fast paths with a set
of leased handles for future create operations on the partic-
ipating IO servers. It also has created the metafile and set
its attributes including the list of IO handles. Finally, a cre-
ate dirent request is sent to the metadata server hosting the
parent directory.

4.3.1 Leased handle correctness

In a file system, a file is visible in the system only when
all operations succeed. If any one of the intermediary steps
fails, the entire create operation must fail. Since a file can
only be reached by another client when a directory entry
exists for it, the leased handle scheme can be seen not to
violate correctness as the create dirent request is the last
step and only happens if all the previous steps succeed.

Under the leased handles scheme, only the IO handles of
a file are pre-fetched. If a client with leased handles dies,
those IO handles are lost, but no file is created. Similarly if
a client disappears after creating the metahandle, the only
side-effect will be orphan handles, which can be reclaimed
later but are not seen by other file system clients. If a client
tries to reserve a leased handle on failed IO server, that op-
eration will fail, resulting in failure of the create operation.
Similarly failure to either create a metahandle or adding the
directory entry will fail the entire operation, ensuring con-
sistency.

4.3.2 Leased handle leaks

Though the algorithm is correct, particular failures could
result in lost IO handles, orphaned metahandle, or both.
These problems can be easily solved by the file system
check (fsck) utility, which can discriminate between asso-
ciated metahandle and IO handles, and orphan metahandle
and leaked IO handles. The problem with fsck is that it is
a burden to require its operation to clean up such leaks, and
can interfere with normal functioning of the system.

While the original file system implementation also
has many opportunities to create orphaned metafiles and
datafiles, our leased handles algorithm increases the poten-
tial number of leaks. In a system with N clients, with up to L
leased handles each at any given moment, in the worst case,
the number of leased handles is N×L, which can be quite
large for big machines. We did not discuss above a wise
protocol extension to return leased handles to the server be-
fore a client exits, but even with that functionality, failed
clients will cause leaks.

One solution to this problem is to associate a timeout
with each leased handles. Whenever an IO server allocates
a set of leased handles, it selects a time range for which
the handles can be used and returns this value to the leas-
ing client. A leased handle must be used within the timeout
period. When a handle times out, the server invalidates the
lease and marks the handle free. Clients also track the time-
out for each set of leased handles and treat expired handles
as nonexistent, potentially falling back to the slow path in
Figure 4 if its handles have expired.

4.4 Pre-creation of datafiles at IO servers

The leased handles scheme of the previous section is able
to overlap creation of the metahandle and IO handles, re-
ducing the number of steps to two in the fast path. How-
ever, the number of request and response messages remains
the same. One way to reduce the number of messages is to
go beyond leasing IO handles, and actually pre-create the
datafiles. This scheme is naturally designed on top of the
leased handle scheme. On reception of a leased handle re-
quest from the client, an IO server can also create datafiles
for those handles, and respond to the client with leased han-
dles only after all the datafiles corresponding to the leased
handles are committed to disk. This guarantees to a client
with leased handles that the respective datafiles are ready
for use, allowing it to skip communication with IO servers
altogether during future create operations.

Figure 5 shows the modified state machine with datafile
pre-creation. Like the leased handles scheme, there are two
paths. The slow path is identical as before. The fast path
omits the need to create datafiles corresponding to partic-
ular leased handles, and only creates the metafile on the
metadata server. After either path, the directory entry is



created on the parent directory metadata server as in all
the schemes. One more distinction from the leased handles
scheme is that the client must fall back periodically to the
slow path to request new leased handles with pre-created
datafiles, since there is no regular communication at each
create step as in the leased handles scheme.

Create dirent req

DONE

SEND REQ

Lease IO handles

Get leased handle status

Missing leased handles
(slow path)

SEND REQ

SEND REQ

INIT Get parent attr

SEND REQ

SEND REQ

All IO handles present
(fast path)

Setattr on meta handle

Create meta handle

Create meta handle

Setattr on meta handle

Figure 5. Create state machine with leased
handle pre-creation.

Though the average number of steps is more than two in
this scheme, the overall complexity of the create operation
is reduced. Given a create operation involving N IO servers,
the number of request and response message pairs for each
create in the leased handles scheme is on average N +2, for
the reservation requests to the IO servers and one each for
creation of the metafile and creation of the directory entry.
In the datafile pre-creation scheme with each client request-
ing L pre-created datafiles, there are L− 1 trips down the
fast path requiring two messages each, and one trip down
the slow path requiring N + 2 messages, for an average of
2 + N

L . For clients requiring large create rates, L can be
tuned to be large, bringing the average closer to two mes-
sages per create.

4.4.1 Pre-creation correctness

The argument for correctness of datafile pre-creation fol-
lows the same logic as leased handles. Since failure of any
intermediate step will fail the overall create operation, a file
will be visible only when all the steps succeed. But, para-
doxically, successful completion of the create operation can
also occur even if an IO server has died, as there is no need

to contact that particular IO server during create operation.
Still, the file system is consistent since the state that occurs
after such a “dead IO server” create is no different than the
state that would occur if the IO server dies after the file cre-
ate. Of course, trying to access the file would fail in both
cases, but when the IO server recovers, the file system will
be consistent without the need for an fsck, because the pre-
created datafile was committed to disk just like a normal
datafile in the basecase scheme.

4.4.2 Pre-creation leaks

Once an IO server pre-creates datafiles and returns the cor-
responding IO handles to a client, there is no communica-
tion between it and the client until the client tries to access
or modify one of those datafiles, or the client requests for
a new set of leased handles with pre-created datafiles. Un-
like in the leased handles scheme, here, an IO server never
gets a positive acknowledgment that one of its pre-created
datafiles is part of an existing file rather than just pending
creation. Because of this, a simple timeout scheme can not
be used to recycle pre-created datafiles. However, we can
limit the extent of possible leaks. First, a client can piggy-
back a creation confirmation message to the IO server when
it goes to write data to the newly created file. A simple bit
in the IO request would suffice for this. (In the case of co-
operating parallel clients, any or all clients would set that
bit on writes of collectively created files.) Second, clients
can return unused leased handles causing deallocation of
the corresponding pre-created datafiles, as mentioned in the
leased handles scheme.

However, the number of unused but pre-created datafiles
can still grow without bound. Consider a client that cre-
ates many files using its pre-created datafiles but never ac-
knowledges this to the IO server by writing to the files, and
then crashes. The only way for the IO server to find out
the true disposition of the files is through an fsck-like op-
eration where the metafiles indicate which datafiles are in
use. We can limit the need for full file system checks by
keeping a timeout for each pre-created datafile on the IO
server, and mandating that clients must acknowledge the
use of each pre-created datafile before the timeout. This
explicit acknowledgment case would be rare, and needed
only in the case of allocation of many empty files. Now
if the IO server finds that the number of potentially leaked
pre-created datafiles is large, it can send a request to all the
metadata servers asking to validate which of the given data
handles are actually in use.

4.5 Discussion

The three designs of the file system create operation im-
prove upon the basecase by reducing round-trip messages
and increasing parallelism, while preserving correctness of



the overall file system. The “compound” scheme is straight-
forward to implement but offers only minimal overall op-
erational savings. Both the leased handles and datafile
pre-creation schemes offer more substantial potential per-
formance improvements yet introduce the complexities of
managing handle or datafile leaks. The datafile pre-creation
scheme is unique because, on average, it scales at O(1)
rather than O(N) with the number of IO servers.

For the schemes that require pre-creation of handles or
datafiles, the number of leases per client should be cho-
sen well to provide good performance yet minimize startup
overheads and expenses of cleaning up leaked objects.
Rather than using a fixed number of handles, each client
can monitor its own behavior in terms of create rate and re-
quest a number of handles that increases with apparent load.
There is also a potential need to monitor IO server load, as
datafile pre-creation can serve to limit IO server load by
effectively batching requests, regardless of whether clients
are experiencing high create rates.

5 Experiments and results

Experiments were run on 30 identical nodes, each of
which has dual Opteron 250 processors with 2 GB of RAM
and an 80 GB local SATA disk, running Linux version
2.6.17.6. Each node has a Tigon3 Gigabit Ethernet NIC
and are connected by a single non-blocking Gigabit Ether-
net switch. The round-trip small packet latency between
two nodes is approximately 80 µs, and the sustained uni-
directional throughput is about 950 Mb/s.

For our experiments four versions of the create protocol
were evaluated.

Basecase: Basic create protocol, Section 3.

Compound: Create protocol with compound operations,
Section 4.1.

Leased: Leased handles algorithm, Section 4.3

Pre-creation: Pre-creation of datafiles, Section 4.4

The number of leased handles in Leased and Pre-creation
protocols was fixed at 20 for all our experiments.

As discussed earlier in Section 2, we use PVFS version 2
as our experimental testbed. For our experiments, the create
protocol implemented in PVFS2 version 1.5.1 served as the
basecase and the rest of the protocols were derived from it.
Drawing conclusions from experiments that involve physi-
cal disks are difficult due to variations in disk access times.
Also, to store its metadata, PVFS uses the Berkeley DB4
database, which can cause unpredictable accesses based on
the state of its internal data structures. Therefore we not
only report the performance when metadata is on-disk but
also when metadata is written to a RAM-based file system,

called tmpfs. We discuss the disk variability problem fur-
ther in Section 7.

The goal of the experiments is to evaluate the scalability
and the performance of the algorithms under both low and
high client usage scenarios. The three variable parameters
are the number of IO servers, metadata servers and clients.
The experiments and results are discussed in the rest of this
section.

5.1 Single-operation latency

The purpose of this experiment was to test the differ-
ences in response time of the four protocols as the number
of IO servers is varied. For this experiment we used a single
metadata server, one client and changed the number of IO
servers from one to 26. The core of the client test program
creates a single file striped across all available IO servers,
recording the overall time to perform that operation, then
deletes it, looping 1000 iterations to collect statistical infor-
mation and with an un-timed warm-up of 20 iterations to
ensure that all network connections are up.

Figure 6 shows the plot of response times of four proto-
cols on tmpfs and on disk. The standard deviations on disk
are so large that all algorithms appear statistically identi-
cal, whereas on tmpfs we see clear differences among the
schemes. On tmpfs, the response times of basecase, com-
pound and leased handles increase monotonically as the
number of IO servers is increased; however, the response
time of pre-creation is roughly constant.

The behavior of the algorithms is as expected from the
design. Compound saves one RPC over basecase, and we
see roughly 100 µs difference between the two, in the neigh-
borhood of a round-trip time on our network. Leased han-
dles scheme overlaps metafile creation with the creation of
datafiles. As long as metafile creation time dominates, we
see a one-round-trip difference between those two curves,
but as the number of IO servers increases, datafile creation
begins to dominate and the gap between the two curves re-
duces for high numbers of IO servers. This is possibly due
to the increased cost of message response handling at the
single client as the number of IO servers increases. In the
case of pre-creation, the average response time increases at
a much slower pace than the rest, since in steady state pre-
creation involves only two messages. But the standard de-
viation keeps increasing, since the maximum response time
increases as the number of IO servers is increased.

5.2 Multiple-client throughput

This experiment was a stress test for all algorithms. For
this experiment we fixed the number of IO servers at four,
used one metadata server, and varied the number of clients.
All the clients create unique files under a single directory,
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Figure 6. Mean latency on (a) tmpfs, (b) disk; different y-axis scales.
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Figure 7. Create operation throughput on (a) tmpfs, (b) disk; different y-axis scales.

which means all creates are serialized at the single meta-
data server. The core of the experiment involves all clients
arriving at a barrier, the leader among the clients starting the
timer, each client creating about 120 files, the clients reach-
ing another barrier, the leader stopping the timer and finally
each client deleting the created files. This kernel was re-
peated 100 times while collecting average and standard de-
viations. We calculate the number of files created in a given
amount of time by multiplying the number of files per client
by the number of clients and dividing by the elapsed time
for execution, including the cost of the barriers.

Figure 7 shows the throughput on tmpfs and disk. We see
again that the disk version (on the right), suffers from very
low performance numbers and wide standard deviation, per-
mitting few meaningful conclusions. But all schemes show
improving throughput through about 4 clients, then remain-
ing steady through 14 clients when performance drops to

about 350 creates/sec. The drop at 15 clients is due to a bot-
tleneck at the single metadata server, and with 3000 files in
the directory, there are more seeks and disk synchronization
calls that degrade performance for all schemes.

However on tmpfs, until about 5 clients, the pre-creation
and leased handles protocols are significantly better than
compound, which in turn is better than basecase. This is
an effect of the latency differences of the algorithms as pre-
sented in the previous set of figures. Beyond 5 clients,
timing variations grow larger, but the three new schemes
do outperform basecase because they all perform only two
RPCs unlike basecase that needs three.

5.3 Metadata server scalability

This experiment tests the behavior of the protocols as
we move toward more distributed metadata. For the exper-
iment we fixed the number of IO servers at 4, the number
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Figure 8. Metadata scalability on (a) tmpfs, (b) disk; different y-axis scales.

of clients at 24 and varied the number of metadata servers
from 1 to 12. As file systems grow and as metadata service
load increases from increasing numbers of clients, the need
to use multiple servers for metadata will become necessary,
as will the need to use algorithms that scale well with in-
creasing metadata server counts.

Since PVFS uses a random allocation scheme for new
metafiles, it was necessary to create a large number of direc-
tories to ensure even load across the servers. This was done
before the experiment began. The core of the experiment
involved the following steps: the clients arrive at a barrier,
the leader among the clients starts the timer, each client cre-
ates a unique file under a preselected subset of directories,
clients arrive at another barrier, the leader stops the timer
and finally clients remove the files. We remove the files to
maintain constant the size of the metadata database across
different runs of the experiment.

Figure 8 shows the metadata scalability on tmpfs and
disk, respectively. In contrast to the previous experiments,
the patterns in both plots are similar although the tmpfs ex-
periment produced much larger throughput numbers. In
both cases, the throughput increases with the number of
metadata servers through about 4 metadata servers, at which
point all but the pre-creation scheme plateau and remain
steady. On the other hand, pre-creation continues to in-
crease, clearly illustrating the scalability difference of that
scheme.

When the number of metadata servers is small, as in the
experiments of the previous section, the metadata servers
were bottlenecks and all four protocols behaved similarly.
But beyond 4 metadata servers, the complexity of commu-
nicating with IO servers dominates. Metadata operations
on disk are slower than tmpfs, but from 5 metadata servers
onward, IO handles creation time dominates even the over-
heads from disk access, hence we see 4 metadata servers as

the cutoff in both plots.
Beyond about 9 metadata servers in the tmpfs case, pre-

creation begins to flatten off due to network contention ef-
fects. Though the number of creates is constant, the rate of
creates increases as more metadata servers are added. Given
the high rate of creates and the length and number of mes-
sages resident in the network, the overall carrying capacity
of the single-switch network begins to saturate.

6 Related Work

Distributed file systems like NFS [13], Coda [17] and
AFS [11] partition the namespace statically among multiple
servers, so file creation is centralized. The pNFS exten-
sions [4] allow for distributed data, but retain centralized
metadata.

GPFS [18], GFS [15], Intermezzo [1], Lustre [3] and
Frangipani/Petal [22] all use directory locks for creation of
files, possibly with a distributed lock management (DLM)
infrastructure for better performance. Lustre [3] uses a sin-
gle metadata server with replication for fault tolerance. In
Lustre, clients delegate file creation to the metadata server,
which simplifies the create operation. In contrast, PVFS [8]
does not rely on a DLM infrastructure but only on isolated
per-server locks for atomicity. A truly distributed metadata
system such as this breaks a single create operation into a set
of multiple operations. Though distributed locking simpli-
fies the create protocol it suffers from scalability issues [9].

Use of compound operations to reduce cost is an old
idea [19, 10]. Lazy management of handle leaks in our
datafile pre-creation protocol is similar in essence to discon-
nected operations in Coda [7], where the client continues to
modify its local cache relying on synchronization with the
server for conflict resolution.

The Ceph file system uses dynamic subtree partition-



ing [24] to distribute responsibility for parts of the hierar-
chy to different servers, and adapts to client access patterns.
Due to their hash-driven distribution algorithm that is iden-
tical for all files, lists of datafiles are not needed in Ceph
unlike in more general distributed file systems, obviating
any need for our leased handles or pre-creation strategies.
Through the use of subtree placement rather than randomly
distributed file location, multiple trips to metadata servers
are limited.

7 Future Work

PVFS uses Berkeley DB4 for its metadata back-end im-
plementation. For consistency and correctness, metadata
changes must be committed to stable storage. Currently
PVFS relies on DB4 to regularly commit changes to disk.
Since the database has a complex organization, even small
changes may translate into a large number of seeks, de-
grading performance. We hope to improve this situation.
Also, we plan to expand our analysis to include other typi-
cal metadata operations, such as remove and rename.

8 Conclusion

This paper presented an analysis of the design space for
file create in distributed metadata parallel file systems, in-
vestigating the complexities involved when multiple meta-
data and IO servers must participate on each creation while
maintaining a consistent view of the overall file system. Our
hope is that the work will be useful in future metadata de-
signs, especially with the realization that metadata perfor-
mance is often a bottleneck, thus motivating the need for
distributed metadata.
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