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Abstract— The integration of clusters of computers
into computational grids has recently gained the atten-
tion of many computational scientists. While considerable
progress has been made in building middleware and
workflow tools that facilitate the sharing of compute
resources, little attention has been paid to grid scheduling
and load balancing techniques to reduce job waiting time.
Based on a detailed analysis of usage characteristics of
an existing grid that involves a large CPU cluster, we
observe that grid scheduling decisions can be significantly
improved if the characteristics of current usage patterns
are understood and extrapolated into the future. We
describe a formal framework that uses Kalman filter
theory to predict future CPU resource utilisation. This
ability to predict future resource utilisation forms the basis
for significantly improved grid scheduling decisions. The
paper describes the architecture for such a prediction and
grid scheduling framework and its implementation using
Condor. By way of replicated experiments we demonstrate
that the prediction achieves a precision within 15-20% of
the utilisation later observed and can significantly improve
scheduling quality, compared to approaches that only take
into account current load indicators.

Keywords: Grid, Scheduling, Resource Management,
Kalman Filter based Prediction.

I. I NTRODUCTION

During the last five years, computational scien-
tists have started to adopt Grid computing tech-
niques and infrastructures in earnest. This has,
in part, been enabled by the increased compu-
tational power and available capacity from com-
modity equipment, and by the emergence of
inter-organisational, national and international grid
computing infrastructures, such as the e-Minerals
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Grid [4] in the UK, the Tera Grid [1] in the US or
international grids, such as EGEE [12].

The vision ofgrid computing[2] is to integrate
clusters into global infrastructures in such a manner
that users no longer need to be aware of which
computational resources are used for executing their
jobs and storing their data. This requires solutions to
a great number of problems, including authentica-
tion and authorisation, secure and reliable file trans-
fer, distributed storage management and resource
scheduling across organisational boundaries, which
is the focus of this paper.

In order to achieve such a level of integration, the
question emerges of which cluster should be used to
solve a particular computational task. Obviously, the
clusters have to match the resource requirements of
the jobs at hand, but apart from that, there may well
be a significant degree of freedom as to where jobs
should be executed. Initially, it was the scientists
who had to make that decision and this was often
based on resources they knew about and had access
to. Once a cluster was identified the scientists sub-
mitted a job, typically a batch process, to adistrib-
uted resource management system(DRM), such as
Condor [23], PBS [15], or the Sun Grid Engine [13].
A DRM is responsible for allocating the job to a
node using some resource allocation policy that may
take into account node availability, user priorities,
job waiting time etc. Alternatively, the job could
be submitted to a service that abstracted away from
proprietary resource managers, such as the Globus
GRAM [7] or the GridSAM web service [18].

Today, those decisions are made, in an auto-
mated manner, by portals, meta-schedulers or even
through a federation of resource managers. Meta-
schedulers perform top-down scheduling decisions
and federation of clusters that perform load bal-
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ancing between DRMs in a peer-to-peer manner.
Examples of such meta-schedulers include Condor-
G [23] and compute portals [24], both of which
support the scheduling of jobs across computational
grids. Examples of federation technologies include
the flocking techniques available in Condor [23].

The fundamental problem that all of the above
techniques have to solve is to select a DRM that
can then schedule a job on the resources that it
controls. The problem is made more difficult due
to the level of autonomy of DRMs that in general
accept job submissions from more than one meta-
scheduler in addition to submissions from local user
communities. This level of autonomy prohibits a
centralised solution to meta-scheduling. Users are
interested in completing their jobs as quickly as
possible. When optimising selection in this respect,
different strategies can be employed: the most com-
monly used one is to base the decision on current
utilisation, measured, for example, by queue length
in relation to the number of resources available. This
approach delivers suboptimal results whenever there
is a significant standard deviation in the average
job length per cluster. In those circumstances it
may well be advantageous to submit a job to the
DRM controlling the cluster that appears to have
the higher utilisation.

In this paper, we argue that scheduling based
on future resource utilisation improves the user’s
quality of service. However, this requires the abil-
ity to predict future utilisation on clusters. The
main contributions of our work are the design and
evaluation of a predictive scheduling approach for
resource utilisation based on linear Kalman filters,
a state-space model forecasting technique. Focusing
primarily on CPU utilisation, our approach exploits
the fact that users’ job submission patterns are
repetitive. To prove this point, we have evaluated
the utilisation history of a 940 node cluster, which
has been used by approximately 30 different sci-
entists from a number of different disciplines over
a period of two years. We found that the job
submission patterns are highly repetitive in several
respects, and based on these data show how linear
Kalman filters are able to detect these patterns
and predict the execution time of jobs within 15-
20% of accuracy. We present an architecture for
such predictive grid scheduling and discuss how
it can be implemented using the Condor resource
manager. Through replicated experiments with util-

isation observed in practice, we demonstrate that
allocation decisions based on these Kalman filter
predictions can reduce waiting time compared to
näıve scheduling based on shortest queue lengths,
while the computational costs for using Kalman
filter scheduling are negligible. We believe these
results are applicable whenever scheduling decisions
of computationally intensive tasks need to be made,
and are independent of the particular distributed
resource manager or application domain at hand.

The paper is further organised as follows: Sec-
tion II contains the description of our approach,
illustrates the architecture of our framework and
gives details of the prediction mechanisms used. In
Section III, we present the results of our experi-
mental evaluation and describe the advantages of
the approach. Section IV contains a discussion of
related work and a critical appraisal of our approach,
while Section V concludes the paper by illustrating
possible future directions.

II. PREDICTIVE SCHEDULING

A. Observations

In 2002, we have been instrumental in establish-
ing a large cluster at UCL. The cluster uses Condor
to scavenge otherwise unused CPU time of some
1,100 student Windows workstations to process
chemistry, physics and geological computations, in
the form of batch processes. The workstations are
used as Citrix clients and therefore students do not
use any significant CPU time on these workstations,
which make them ideal to be used in a CPU
cluster. The UCL cluster is the largest of its kind
in the UK. Since 2003, the Condor cluster is being
actively used by some 30 computational scientists.
An account of some of the computations that were
performed on the UCL Condor cluster is given
in [25].

We have retained utilisation logs of the UCL
Condor cluster for two years. The volume of compu-
tation is such that we argue that it is comparable to a
dozen clusters of average size and it therefore repre-
sents a good sample. Following high level screening,
we have selected a period of four months of high
activity for detailed analysis. The selected period
between June and September 2005 is characterised
by a higher than usual level of activity, probably due
to the highly publicised availability of the cluster
both within UCL and in the UK, the absence of
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Fig. 1. User activity during analysis period.

teaching duties and the run up to deadlines for
various important conferences and journals.

Rather than observing jobs anonymously, our de-
tailed analysis investigated the time and number of
jobs submitted, as well as the length of computation,
on a user-by-user basis. That analysis revealed a
number of very interesting results.

Figure 1 shows the times when the most active
eleven users submitted jobs to the cluster during
the four month period that we analysed in detail.
A rectangle against a user and a date indicates that
the user has submitted jobs during that day. The
key observation to be derived from that figure is
that, even though these were the most active users,
they did not all submit jobs all the time. Moreover,
there are very detectable patterns of job submission.
For example James and Dino use the cluster for
extended periods of time. Arnaud and Maria use the
cluster for 3-6 days of intensive activity followed by
a period of inactivity that is at least equally long.

Figure 2 shows the distribution of job arrivals
during a randomly selected three day period. The
figure shows three data series, one for each day,
where each column shows the number of jobs that
were submitted in any six minute interval. What
can be seen from Figure 2 is that, on each day, job
submissions do not occur with a regular distribution
but users submit large numbers of jobs in one go
and then there are extended periods where no jobs
are submitted. The reason for this behaviour is
that users rarely submit jobs manually but, rather,
automate submission using computational workflow
tools, such as the OMII-BPEL environment [10],
Condor’s DAGMan [11] or simply with shell scripts.

The most interesting observation is shown in
Figure 3. The figure shows the distribution of job

lengths for the four most active users. It shows
that the vast majority of jobs that Sally submits are
shorter than an hour, while Dino regularly submits
long running jobs the length of which often exceeds
20 hours. James submits jobs with an average length
of about 7 hours and his job distribution has a non-
negligible standard deviation. The root cause for
these observations is that users utilise the same set
of computational applications over extended periods
of time, within or across sessions, and apply them
to different studies and data sets.

The discussion of the empirical samples above
shows that the behaviour of users who submit jobs
to a grid is not at all random, but, rather, follows
regular patterns. It is this observation that we use
and exploit in our aim to improve the quality of
scheduling decisions that meta-schedulers, portals
or federations of grids need to make. The basic idea
is that, because job submission occurs in distinctive
patterns and the duration of jobs may vary between
minutes and days, established prediction techniques
may yield better scheduling decisions than the stan-
dard technique of submitting to the DRM, which
has the cluster with the shortest queue length or the
lowest current load. We use this insight to derive
the two main hypotheses of this paper.

Our first hypothesis is that we can use the job
execution history and resource utilisation of the past
to predict resource utilisation and hence availability
in the immediate future linear Kalman Filter theory.
The second hypothesis of this paper is that we can
improve the quality of grid scheduling in compari-
son to techniques that use shortest queue length, by
using this ability to forecast resource utilisation.

B. Prediction Theory

Users are generally interested in minimising the
time between their submission of a job and its
completion. We refer to the elapsed time between
these events from the point of view of a DRM
as the job execution time. The utilisation of the
cluster by other users may affect the level of service
obtained and, as a consequence, the overall length
of a job, as the various users compete for underlying
resources.

We predict future cluster utilisation by applying
Kalman filter forecasting [17], originally developed
in automatic control systems theory and applied in
many different fields, from telecommunications to
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Fig. 2. Job submission rates during three randomly selected days.
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weather forecasting. Kalman filters are essentially
a method of discrete signal processing that provide
optimal estimates of the current state of a dynamic
system described by astate vector. The state is
updated using periodic observations of the system,
if available, using a set ofrecursive prediction
equations.

In a grid environment, numerous indicators of
utilisation can be selected as a basis for these
observations, such as job queue lengths and re-
source availability, the choice of which will depend
on resource management systems and scheduling

policies in place and their effect on the duration
of the lifetime of a job. We discuss the choice
of utilisation factors and job length indicators in
Section II-C and our specific choice of indicator in
our implementation in Section II-D.

The applicability of Kalman filter for the pre-
diction of the utilisation of the UCL Condor pool
was previously investigated using the evaluation
component described in [19]. This component is
used to analyze the predictability of a time series,
and showed that the filter was sufficient to obtain a
10% prediction accuracy, motivating its adoption.
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One of the main advantages of Kalman filters is
that there is very little computational and storage
overhead as they are expressed through recursive
equations. The entire history of the system does not
have to be maintained and it is sufficient to record
the value of the current inner-state and the para-
meters of the recursive equations, updated at every
step. This characteristic ensures better scalability
in large scale grid environments. Moreover, this
class of predictors does not require a training phase,
unlike other types of forecasting techniques based
on machine learning [20]. Instead, the system will
dynamically adjust to the observed values, based on
an initial set of parameters used to bootstrap the
system. These must be tuned to the environment
and indicator at hand and is further discussed in
section II-C.

A detailed mathematical description of our model
is presented in the next subsection, where we pro-
vide a brief general introduction to state space
models and detail the equations derived to calculate
the predicted value of cluster utilisation in given
time interval, discussing how we have applied these
concepts to the analysis and the prediction of re-
source availability on Grid clusters. Importantly, we
also derive a formula for the calculation of our
prediction interval, used to evaluate the quality of
our predictions.

More details about forecasting techniques based
on state space models and Kalman filter techniques
can be found in [3], [9].

1) State space models:We apply Kalman filter
theory to the analysis of the time series of values
that represent the utilisation of a cluster observed at
a regular time intervalT .

We express the prediction problem in the form
of a state space model of the time series, where we
model the available set of observations as a function
on an inner state represented by a set of vectors.
Using this model, we can then derive a simple set
of equations suited to our purpose to calculate, at
time t, the predicted value of the utilisation at time
t+h∗T , with h > 0 (i.e., afterh sample intervals).

The state space model for a time seriesYt con-
sists of two equations. The first one, called the
observation equationis the following

Yt = GtXt + Wt t = 1, 2, ...

with Wt defined as1

Wt = WN(0, Rt)

This equation defines thew-dimensional observa-
tion {Yt} as a linear function of av-dimensional
state variables{Xt} and a noise term. The second
one is thestate equationdefined as follows

Xt+1 = FtXt + Vt t = 1, 2, ...

with Vt defined as

Vt = WN(0, Qt)

This equation determines the stateXt+1 at time
t + 1 in terms of the previous stateXt and a noise
term. Defining w as the dimension ofYt and v
as the dimension ofXt, {Gt} is a sequence of
w × v matrices and{Ft} is a sequence ofv × v
matrices. We assume that{Vt} is uncorrelated with
{Wt}, even if a more general form of the state
space model allows for correlation between these
two variables. We also assume that the initial state
X1 is uncorrelated with all of the noise terms{Vt}
and{Wt}.

2) Kalman filter prediction:With the notation of
Pt(X) we refer to the best linear predictor (in the
sense of minimum mean-square error) ofX in terms
of Y at the timet. Pt(X) is defined as follows

Pt(X) ≡
[

Pt(X1) ... Pt(Xv)
]T

where

Pt(Xi) ≡ P (Xi|Y0, Y1, ..., Yt)

P (Xi|Y0, Y1, ..., Yt) indicates the best predictor of
Xi givenY0, ..., Yt. We can also observe thatPt(X)
has the following form

Pt(X) = A0Y0 + ... + AtYt

since it is a linear function ofY0, ..., Yt. It is
possible to prove [3] for the state space model
discussed in the previous section that the one-step
predictor

X̂t ≡ Pt−1(Xt)

1WN stands for White Noise, a term that derives from telecom-
munication engineering. A white noise is a sequence of uncorrelated
random variablesXt, each with the same mean and varianceσ2.
Therefore, white noise is also an example of stationary time series.
More specifically, the notationWN(0, {Rt}) indicates white noise
with zero mean and varianceRt.
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and their error covariance matrices (withE[] we
indicate the expected value)

Ωt = E[(Xt − X̂t)(Xt − X̂t)
T ]

are determined by these initial conditions

X̂1 = P (X1|Y0)

Ω1 = E[(X1 − X̂1)(X1 − X̂1)
T ]

and these recursive equations

X̂t+1 = FtX̂t + Θt∆
−1
t (Yt −GtX̂t)

Ωt+1 = FtΩtF
T
t + Qt −Θt∆

−1
t ΘT

t

where
∆t = GtΩtG

T
t + Rt

Θt = FtΩtG
T
t

3) Estimation Model: We use a mono-
dimensional basic state space model composed of
the following two scalar equations

Yt = Xt + Wt t = 1, 2, ...

with
Wt = WN(0, Qt)

and
Xt+1 = Xt + Vt t = 1, 2, ...

with
Vt = WN(0, Rt)

This model is general and suited to a vast range
of time series with different trends.

In our caseYt is the time series representing
the number of nodes that are utilised in a cluster.
With respect to the Kalman filter prediction we can
consider a mono-dimensional system with

Gt = [1]

Ft = [1]

Therefore, we can derive the recursive equations of
the Kalman filter for the prediction of the values of
this series. Given the previously observed valueYt

and the predicted value at timet, X̂t, the recursive
equation for the determination of the predicted value
at time t + 1 is

X̂t+1 = X̂t +
Ωt

Ωt + Rt

(Yt − X̂t)

with

Ωt+1 = Ωt + Qt −
Θ2

t

Ωt + Rt

Since in this case we have

Ωt = Θt

we can also write

Ωt+1 = Ωt + Qt −
Ω2

t

Ωt + Rt

In our model, sinceGt = 1, the predicted value
of the utilisation of a cluster will be equal to the
predicted value of the inner state:

Ŷt+1 = X̂t+1

4) Prediction Interval:A prediction interval con-
sists of upper and lower limits delimiting the range
within which a future value is expected to lie with
a prescribed probability100(1 − α)%, with α ∈
[0, 1] [6].

The general form of the formula for the estima-
tion of the prediction interval commonly used in
time series analysis is:

Ŷt+h ∓ zα/2

√
V ar(Ŷt+h − Yt+h)

whereYt+h − Yt+h is the error when forecastingh
steps ahead andzα/2 denotes the percentage point
of a standard distribution with a proportion ofα/2
above it.

Therefore, in our case, the prediction interval can
be calculated as follows:

Ŷt+h ∓ zα/2

√
Ωt + Rt

We use this formula to evaluate the precision of
our predictions and their impact on the scheduling
decisions.

C. Architecture

In this subsection we explore how the Kalman
filter based prediction technique can be used in an
architecture of production level grid environments to
improve cross-organisational scheduling decisions.
Key components that are of interest to us here are
illustrated in Figure 4:

• Distributed Resource Management system:As
previously stated, the resource management
system is responsible for managing a collection
of resources at each site, allocating resources
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Fig. 4. Architecture of Clusters embedded in a Grid.

to tasks, according to policies determined by
the resource owners.

• Submission services:These components pro-
vide a service abstraction for job scheduling
and resource allocation at each site offering
means for clients to delegate the responsibility
of managing and allocating resources in the
local environment to a scheduler or job queue
local to the site. Jobs are submitted to these
services in the form of a job description and
associated input files and executables.

• Information services:Such services will pro-
vide descriptions of underlying resources, such
as availability and characteristics of the re-
sources available at a site. These enable remote
clients to determine the suitability of a resource
and the potential utilisation they may obtain
from a site before submitting their job for
execution.

• Meta-schedulers:Meta-schedulers are respon-
sible for managing the use of resources at mul-
tiple sites on behalf of a user. They are respon-
sible for the process of resource selection and
job distribution across sites. Meta-schedulers
can take various forms, from web-based portals
providing an interface through which a user can
submit jobs, to local applications responsible
for generating and managing jobs according to
a computational workflow specified by the user.

It is the meta-scheduling process that we are
specifically concerned with here. Faced with a po-
tentially large number of sites providing resources
of comparable capabilities and matching the job
requirements, careful selection is required to max-

imise the throughput of jobs submitted by the user.
Relying solely on information currently made avail-
able by the resource information services is not
sufficient to determine the suitability of a particular
site and we must also avoid potential starvation of
the meta-schedulers awaiting resources. Taking into
account predicted utilisation patterns can consider-
ably improve the meta-scheduling process.

By making more informed decisions as to where
to submit the job, we can reduce the waiting time
and global scheduling overhead of the job and as
a consequence increase the throughput of the meta-
scheduler.

The attributes that will affect the duration of
the lifetime of a job at a site between submission
and completion can vary according to scheduling
policies in place and the process by which resources
are allocated to competing users and tasks. Beyond
the capacity of the individual resources, which will
directly affect the length of the execution of a
job, other job length indicators can be considered.
For example, in the context of a simple batch
queuing system operating on a FIFO basis, such
as the Portable Batch System, we can potentially
rely on the number of jobs in the queue to be a
direct factor of how long a specific job will have
to wait before being served. However, this figure
may be misleading if we do not take into account
past utilisation trends. Whilst a site may have a
larger queue than another at any particular time,
an analysis of utilisation trends using Kalman filter
forecasting techniques might reveal that the queue
length varies much more rapidly at one site and con-
sequently that jobs queued are potentially shorter,
making it a much more suitable choice for the meta-
scheduler. On the other hand, Condor – as we will
see in the following section – operates according
to a policy-based resource allocation mechanism,
where resource claims are a more suited choice of
indicator.

The selection of job length indicators should be
adapted to policies in place, but it may also be
beneficial to consider other attributes of the environ-
ment, such as network bandwidth: jobs submitted
may require or can produce considerable amounts
of data, and the amount of time needed to transfer
that data may have an impact on the overall job
length.

Forecasting by using Kalman prediction requires
regular readings of the state of the resources, or,
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more specifically, the selected job length indicators,
to be made at the targeted cluster in regular inter-
vals. For this purpose, it can be very valuable for
the predictions to be built within the administra-
tive domain of the site before being communicated
to remote meta-schedulers. A prediction service
residing within the domain, may have access to
finer grain utilisation data such as per user job
activities and specific job type characteristics that
a site may not be willing to share with an external
observer. However, because the Kalman filters do
not require the past history of the system, it is
perfectly possible for an external observer, such
as the meta-scheduler itself, to build predictions
based on information obtained from the Resource
Information services, around the period of time
desired. Whilst coarser grain utilisation data may
have to be relied upon, such as general resource
availability, an external service operating on behalf
of a user can restrict its observations to the spe-
cific subset of resources at a site that will match
the job requirements of this user, and fine tune
the parameters of the prediction according to the
specification of the overall computational process.
We also cannot assume that a prediction service will
be available at every accessible site. The ability to
conduct these predictions independently and with
minimal input from site providers is an important
characteristic of our approach in an environment
where site autonomy and heterogeneity is the norm.

D. Condor Implementation

We have used the Condor job scheduling and
resource management system and GridSAM to im-
plement a meta-scheduling environment that relies
on the above Kalman filter forecasting techniques
and architecture to select suitable clusters of Condor
resources on which to schedule jobs.

We build on previous work [14] that involved
incorporating web service support into the Condor
architecture, by exposing key functionality of Con-
dor, such as resource information and job submis-
sion as individual web services. We have also, in
the context of this work, created a Condor plugin
for GridSAM. The GridSAM service enables users
to remotely submit jobs to a wide range of un-
derlying resource management systems in the form
of Job Submission Description Language (JSDL)
documents, an emerging GGF standard [18]. Jobs

submitted to GridSAM are delegated to DRMs
through a collection of DRM-specific plugins. By
implementing a plug-in for GridSAM that relies on
Condor’s web service interface to remotely interact
with Condor, we have provided it with the capability
to schedule jobs across multiple sites and it is on this
service that we rely here to act as a meta-scheduler
for our system.

We can relate our implementation to the above
architecture as follows:

• Distributed Resource Management System:The
Condor resource management system is re-
sponsible for managing the site at the resource
level.

• Job Submission Service:The Condor scheduler,
for which there may be multiple in a single
Condor cluster, is responsible for managing
a queue of jobs on behalf of the user and
managing their remote execution in the local
cluster. As part of our previous work on Con-
dor, we have exposed the scheduler as a web
service, providing functionality for remote job
submission, job monitoring and file transfer –
enabling remote meta-schedulers to submit jobs
and accompanying input and executable files
for execution on the cluster.

• Information Services:The Condor Collector is
responsible for collecting and providing meta-
data about the current state of resources in the
cluster – which may be either static charac-
teristics (e.g. OS, total memory, etc.) or dy-
namic characteristics such as current availabil-
ity. Meta-data queries can be issued by remote
meta-schedulers through the collector’s Web
Service interface.

• Kalman Prediction service:Alongside the
above services, we have created an additional
Kalman Prediction Service. This service is re-
sponsible for obtaining, periodically, meta-data
from the resource information services, and use
this meta-data to construct predictions as to
future resource availability.

• Meta-scheduler:We rely on the GridSAM ser-
vice and our Condor plug-in to provide meta-
scheduling capabilities. We have extended
GridSAM with the ability to query either re-
source information services or Kalman predic-
tion services at one or more specified sites in
order to determine the most suited location to
which to submit an incoming job.
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The scheduling and allocation process of Condor
needs to be carefully studied in order to deter-
mine the factors that influence the length of a
job once submitted. Condor clearly separates the
process of allocation and scheduling. Jobs submitted
to a Condor scheduler are maintained in a user
specific queue of jobs. During a regular negotiation
cycle, the Condor central manager will allocate
available resources to jobs enqueued by the various
schedulers according to user priorities and other
community policies - such as fair share policies. The
scheduler, once allocated one or more resources,
will claim these resources on behalf of the user,
and maintain these claims until it no longer requires
them. It may also request more resources from the
central manager at regular intervals. In an environ-
ment where numerous users will be competing for
available resources, and when no resources are im-
mediately available, the waiting time will primarily
be constituted of the estimated amount of time it
will take for a resource to be freed or released by a
previous owner, or the amount of time it may take
for a user’s jobs to complete on resources that have
already been claimed by that user.

Condor does support much more complex poli-
cies that are not in use in our Condor environment,
allowing for example preemption of claims and jobs
in favour of higher priority users. In such cases, a
new single or combination of job length indicators,
adapted to the policies in place, should be selected
to perform the prediction. This may include other
environmental factors, such as bandwidth. We hence
rely solely on claims as the primary job length
indicator.

The prediction service will – on a specified time
interval – read the current number of unclaimed
resources and use that information to update the
state space model of our predictor. This will provide
an estimate of the number of unclaimed resources
that will be available at the next time step. Where
several clusters might appear to be full, the ability
to predict the number of resources that will be freed
in the next time interval, can make a considerable
difference. We can, if needed, use the Kalman filter
forecasting technique to forecast availability several
steps beyond the specified time interval, by simply
feeding predictions back into the predictor. Our
current implementation of the service will enable
meta-schedulers to specify the number of steps it
may wish to consider in advance, though there

is of course a trade off between accuracy of the
prediction and the time frame that we take into
account.

Other parameters that may affect the accuracy of
the prediction, such as the periodic time interval,
the degree of correction when calculating the state
of the current dynamic system of our predictor
(i.e., the value ofRt and Qt), and the amount
of time that may be required to run the predictor
before it identifies utilisation patterns accurately,
will also require fine tuning and experimentation to
define an optimal level of accuracy suited to various
workloads. In particular the selection of the values
of Rt and Qt will affect the adaption of the time
series of predicted values in presence of fluctuations,
essentially defining how the filter should respond
to strong variations in the readings. The setting of
these two values, alongside the initial value of the
state, are the only steps required to bootstrap the
filter.

As such, the meta-scheduling process works as
follows: users will submit their jobs to a host
running a GridSAM service. Upon receipt of the
job description document, the GridSAM service will
query all the Kalman prediction services at the
sites specified by the user and obtain their latest
prediction for resource availability. It will select the
site that provides the highest number predicted of
unclaimed resources in the next time interval, and
submit the job accordingly.

It should be noted that it is not necessary for
submissions to be restricted to specific time slots
that match the periodic time interval used by the
Kalman service to construct predictions, as the pre-
diction does not just indicate the potential number
of available resources in the near future, but also
the general trend of the time series.

III. E VALUATION

A. Experiment Design

To evaluate our Condor-based predictive meta-
scheduling framework, we use an experimental eval-
uation technique and set up a replicated experiment
that compares predictive scheduling with scheduling
based on current resource availability (i.e., current
queue lengths).

Figure 5 shows an overview of the experimental
test-bed. The test-bed comprises two Condor clus-
ters of 23 nodes each. Whilst this is a considerably
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Fig. 5. Test-bed Architecture.

lower count than the UCL cluster of 1,100 nodes,
these clusters are still average-sized (the grid de-
scribed in [4] only has 16 nodes per cluster) and is
sufficient for our evaluation.

We assume that each cluster has local users,
which are simulated using a workload generator
based on the utilisation patterns observed at the
UCL Condor cluster that we have discussed above.

It is important to define our experimental space:
Kalman prediction is of most benefit where clear
and distinct patterns of use may emerge for each
resource. As we have seen in section II, job submis-
sions will present such patterns. In scenarios where
multiple users submit independently, the combined
collection of workloads will result in a new pat-
tern. Based on the multiple experiments that we
have conducted using various combinations of usage
patterns observed in our pool, we have always ob-
tained some level of improvement using prediction.
However, where all resources present near identical
patterns of use we can, of course, expect little or
no improvement over the use of current resource
availability, primarily as there would be no real
benefit to choosing one resource over another: jobs
submitted to either site would take on average an
equal amount of time. The closer the usage patterns,
the less gain there is to be had from using prediction.

In order to corroborate these claims, we detail two
of the experiments we have performed that represent
two extremes. The first one uses very different
workloads that have been discussed in Section II.
We expect the Kalman filter prediction to perform
very well in this experiment. The second one uses
near identical workloads on both clusters and we
expect to see no significant improvement but want
to validate with the inclusion of this example that

there are no disadvantages from using Kalman filter
prediction.

For the first experiment, we have specifically
chosen local workloads that mimic Sally and Dino
due to the very different utilisation patterns that both
present. By extrapolating job length distributions
from our logs, the workload generator mimics the
patterns of these users using sleeper jobs aiming to
occupy the resources for varying periods of time.
Though the workloads have been adapted propor-
tionally to the size of our new clusters, they will
retain the same characteristics:

• Sally: Sally’s workloads are submitted accord-
ing to a workflow process, which will submit
large collections of short jobs organised in
various subsets. A description of the scientific
objectives of the process and the computations
actually performed is outside the scope of the
paper – we refer the reader to [10]. It is
sufficient to know that in a first stage a small
collection of jobs will launch the process. The
length of these may vary from a minute to
several hours. Each completion will immedi-
ately trigger a further 200 submissions of jobs,
which are characterised by very short execution
times (between one and five minutes). The
total process in a single session can reach a
maximum of 7200 job submissions. The result
is a pattern similar to what is illustrated on the
right-hand side of Figure 6. For our purpose,
we have only selected a particular subset of the
workflow suited to our test-bed environment,
with a more manageable number of simultane-
ous submissions (up to 30).

• Dino: In contrast, Dino will submit collec-
tions of long running jobs. Though the number



11

Resource availability on pool A (Dino)

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91 10 111

Time unit (4 min)

U
n

c
la

im
e
d

 r
e
s
o

u
rc

e
s

 

Current availability

Prediction

Resource availability on pool B (Sally)

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91 10 111

Time unit (4 min)

U
n

c
la

im
e
d

 r
e
s
o

u
rc

e
s

Current availability

Prediction

Fig. 6. Real vs. Predicted Resource Availability.

of simultaneous submissions is considerably
smaller than Sally’s, the length of the jobs
can exceed 20 hours. Upon completion of
individual job instances, a new job might be
submitted to further refine the produced data.
The resulting pattern can be seen on the left-
hand side of Figure 6. Again for the purpose
of our experiment, we have selected a subset
of Dino’s workflow where the execution length
is more manageable on our test-bed, with indi-
vidual jobs last between 40 and 60 minutes.

B. Prediction Quality

Figure 6 shows a comparison between the real
and predicted resource availability on the two clus-
ters. Table I represents the overall level of accuracy
of the prediction obtained at each site. As a starting
value for the Kalman filter we use an initial reading
of the state of the pool on beginning the experiment.
Upon computing predictions, we also calculate the
confidence interval of the predicted value using the
formula presented in Section II-B.4. This interval
can be used as an early indicator of the validity of
the prediction.

The actual level of accuracy that we obtained can
be represented by the standard deviation of the error
of the prediction. As expected, the accuracy of the
prediction was greater when dealing with Dino’s
workload than Sally’s due to the high variability
of the latter. The average of the error is around 0
in both cases, implying that the filter is not over
nor under-estimating the future utilisation of the
clusters.

C. Improvement of Scheduling Quality

In order to demonstrate that knowledge of fu-
ture availability can improve meta-scheduling per-
formance considerably compared to using current

utilisation indicators, we have set up two GridSAM
nodes which will submit jobs on a regular time
interval to the clusters. One of these nodes, Grid-
SAM node A, in Figure 5, will rely on information
obtained from the Kalman prediction service at each
site to determine which resource will have lower
future utilisation. In contrast, GridSAM node B will
base its selection solely on current utilisation data
obtained from the resource information services at
each site.

The jobs submitted by GridSAM nodes A and
B, have the sole purpose to allow us to measure
the amount of time they will remain enqueued
before a resource is freed. In order to ensure that A
and B encounter the same exact environment when
scheduling these jobs, these will be made to operate
simultaneously and with the same time intervals for
job submission. These jobs will run exactly for 10
seconds, once allocated a resource and their overall
impact on the site workloads will be negligible. For
a hundred submissions, the time of submission and
completion of a GridSAM job will be recorded, and
these figures will then be used to determine which
meta-scheduler provided us with the highest overall
throughput.

We do make several assumptions as to the nature
of the environment and jobs. First of all, data related
issues, such as data transfer and network bandwidth
are not taken into account. We will assume that
the bandwidth required for data transfers is neg-
ligible and that it is unnecessary to use predicted
bandwidth availability as a criteria for selection.
We also assume a homogeneous environment, where
execution times for the same job will be equal
regardless of the performance of the selected re-
source as our focus here is on reducing waiting
times. In terms of policies, we assume that there
is no pre-emption and priority is always in favour
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Kalman Predictor on Cluster A on Cluster B
Selected periodic time interval [min] 4 4
Average prediction error 0.0206 -0.02511
Standard deviation 2.922 5.5
Average confidence interval 0.607 0.607
Qt 0.01 0.01
Rt 0.1 0.1

TABLE I

EXPERIMENT RESULTS– SCHEDULING QUALITY .

of the incoming GridSAM job. This implies that the
maximum amount of time a job will have to wait is
the amount of time that it will take for Dino or Sally
to release a resource. It should also be noted that
when a GridSAM service identifies an equal number
of available resources, it will randomly select the
target site.

The results obtained from our experiment are
covered in Table II. The GridSAM node that used
Kalman filter prediction to determine where to sub-
mit to obtained on average a 135% improvement
in job execution times over the meta-scheduler that
relied solely on current utilisation meta-data, which
is a considerable improvement.

The main reason for the difference observed is
the overall choice of resources. Jobs submitted to
the cluster running Dino’s workload (Cluster A)
took considerably longer than those submitted to
Cluster B due to the lengthy running times of Dino’s
jobs. However, because GridSAM node B had no
knowledge of future resource availability, it failed
to perceive that fact and submitted several jobs to
that particular cluster at inappropriate times.

D. Control experiment

As we have seen above, the use of Kalman filter
prediction considerably improves the throughput of
the meta-scheduler when there are clearly distin-
guishable patterns that can be forecast by the predic-
tion service. However, as previously mentioned, we
can expect that in scenarios where resources present
similar patterns of use, little or no improvement will
be made over the simple use of current availability,
due to the minimal gain to be made in using one
resource over another.

To illustrate this point, we detail here a control
experiment, where we have adjusted Dino’s work-
load in order to reduce the large gap in waiting
times between each pool of resources. The result

can be observed in Figure 7. Though there is still a
difference between both patterns, this difference is
no longer as marked as in our previous experiment.
Dino’s workloads are limited to jobs with a range
of 15 to 20 minutes with larger pauses between re-
submissions.

As we can see from Table III, we do still obtain
an improvement of 35% when using Kalman predic-
tion, though this improvement is not quite as sig-
nificant as that obtained in the previous experiment.
This is primarily due to the fact that waiting times
on Cluster A (Dino) are not as long as our previous
experiment – even though jobs submitted to that re-
source do take slightly longer. It is also interesting to
note that when the GridSAM node with prediction
capabilities did select that cluster, it did so less often
than the node without prediction capabilities and at
seemingly more appropriate times, since the average
length of its jobs on that cluster is considerably
lower. The fact that there is negligible overhead
associated with the Kalman prediction – as the state
maintained by the filters is minimal and the past
history does not have to be maintained – implies
that even when the improvement is only moderate,
we can only benefit from the use of this technique.

IV. D ISCUSSION ANDCOMPARISON TO

RELATED WORK

Different approaches to meta-scheduling across
organisational boundaries have been explored in
the literature. Client side job-scheduling tools such
as Condor-G [23], or the Community Scheduler
Framework (CSF) [16], provide means of schedul-
ing the submission of jobs to one or more grid
resources – and remote job monitoring capabili-
ties. They do not or provide very basic resource
selection mechanisms: Condor-G can for example
perform basic matchmaking using user defined grid
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Kalman Filter Resource Availability
Average job length [sec] 139.33 328.4
No. jobs submitted 100 100
Submission interval [min] 4 4
Experiment duration [h] 6.7 6.7
No. jobs submitted to Cluster A (Dino) 4 16
Average length of jobs on Cluster A (Dino) 620 1522
No. jobs submitted to Cluster B (Sally) 96 84
Average length of jobs on Cluster B (Sally) 125 108.9

TABLE II

EXPERIMENT RESULTS
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Fig. 7. Real vs. Predicted Resource Availability for similar workloads.

Kalman Filter Resource Availability
Average job length [sec] 167.53 226.3
No. jobs submitted 92 92
Submission interval [min] 4 4
Experiment duration [h] 6.1 6.1
No. jobs submitted to Cluster A (Dino) 39 52
Average length of jobs on Cluster A (Dino) 236.18 312.67
No. jobs submitted to Cluster B (Sally) 52 39
Average length of jobs on Cluster B (Sally) 119.2 116.76

TABLE III

EXPERIMENT RESULTS FOR WORKLOADS SHOWING SIMILAR CHARACTERISTICS.

resource characteristics and a ’by the numbers’ load-
balancing technique that will ensure that only a
specific number of submissions to a grid resource
can occur simultaneously. Alternatively, the EzGrid
broker [22] has the ability to take into account static
and current dynamic parameters alongside policy
information such as authentication and authorization
policies. The EzGrid broker does not, however,
attempt any form of prediction to complement their
observations of the dynamic data and determine the
correctness of their observations.

Other approaches such as [5] have relied on eco-
nomic incentives and models to provide brokering
capabilities in a grid infrastructure. The focus, how-

ever, has been on maximizing economical efficiency
in an environment where it is assumed that resources
can guarantee a particular quality of service. We,
on the other hand, assume a potentially variable
quality of service due to multiple users sharing
underlying resources, and make meta-scheduling
decisions based on predictions of the level of service
that will be obtained.

The specific use of predictions in grid and dis-
tributed environments has been explored by mul-
tiple researchers, though not necessarily for meta-
scheduling purposes. In [8] the authors present a
comparison between different classic linear models
for time series forecasting used to predict load on
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a single Unix machine. However, the parameters
of these models need to be selected by the user
according to the characteristics of the particular time
series of values that is taken into consideration.
This process may be long and time-consuming since
the user must first choose the model to use and
then tune all the parameters for the specific time
series. The use of state space models forecast-
ing techniques does not require this setup phase;
the model that we have envisaged can be applied
to various deployment scenarios characterised by
different utilisation patterns. Moreover, forecasting
techniques are applied only to evaluate the load of
a single machine and not in the context of cross-
organisational scheduling in grid environments.

Similarly, the use of auto-regressive methods, as
explored in a grid setting in the Network Weather
Services [26] also require a training phase to tune
the parameters. These services can alternatively also
rely on mean and median based approaches to pre-
diction, which would also require a training phase.
The fact that historical data does not have to be
maintained for our approach results in a lightweight
framework – whose applicability to global schedul-
ing was demonstrated in an experimental manner.

Smith et al. in [21] use a classification method
based on the similarity of sets of past workload
traces. The authors classify each application using
genetic algorithm searches to define good templates
for workloads set of templates. Then they calculate
the average running time for each type of template.
The queue waiting times are predicted using these
estimations. This technique is applied to improve
the scheduling performance in a local environment.
In theory, estimates of queue waiting times could
also be used as a basis for the selection of sites in
a grid environment. However, this approach cannot
adapt dynamically to new patterns, since it is based
on a finite set of templates derived from the previous
workload history. It requires a possibly large set of
observations for different types of applications to
achieve valid estimations for each possible template
from as statistical point of view. In an environment
as dynamic as the grid, it is quite difficult to
categorise the wide range of applications and users
in advance, specifically when we do not have control
over the environment.

An alternative predictive technique for scheduling
of resources in parallel systems is presented in [27]
based on the prediction of the future CPU loads.

The approach is essentially based on the variance
of the loads, assuming that the jobs have the same
characteristics and this is not generally true in a
Grid setting. In fact, according to our experience, as
described in Section III, different utilisation patterns
can be observed. Moreover, a method purely based
only on load variance can lead to very inaccurate
estimations, especially in presence of high fluctua-
tions [6].

V. CONCLUSIONS ANDFUTURE DIRECTIONS

We believe our findings have a number of im-
plications for grid scheduling. Using an experi-
mental approach based on existing workloads in a
grid environment, we have shown that grid meta-
schedulers and portals will be able to add real value
to job submission by identifying the clusters that
will allow users to obtain results more rapidly –
encouraging the adoption of predictive scheduling
and bringing the vision of the grid a step closer to
reality. Furthermore, resource owners are now able
to predict the time it will take before they are able to
start executing a job relatively precisely, without any
significant overhead. This paves the way for quality
of service aware grid scheduling as resource owners
are able to undertake quality of service guarantees
without having to over-provision to the same extent
as without such prediction. It also further facilitates
the simultaneous use of resources across sites in
settings where direct co-allocation through advance
reservation is not directly supported.

By identifying the monitored resource parameters
to satisfy a wide range of underlying resource man-
agement systems, and relying on potential combina-
tions of parameters – for example by using a utility
function – we can design flexible prediction mech-
anisms suited to heterogeneous grid and distributed
environments a heterogeneous grid environment. We
can also further refine our forecasting approach
by adopting trend and seasonal components [3],
which will most likely increase the accuracy of the
prediction where periodic patterns are observed.

The use of predictions is an important building
block for a larger grid federation framework. In
order to be able to aggregate resources effectively
across organisations one must take into account
the decentralised nature of the grid environment.
The autonomous operation of individual resource
management systems relied upon in a grid envi-
ronment is pushing for the identification of novel
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approaches to compensate for the lack of direct
control over resources and the potentially divergent
behaviour of the underlying systems. As we have
demonstrated, by relying on Kalman filter prediction
techniques, we can considerably improve the use of
resources in a global, and possibly autonomous, grid
infrastructure.
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