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Abstract

In this paper, we present a new fault tolerance system
called DejaVu for transparent and automatic checkpointing,
migration, and recovery of parallel and distributed applica-
tions. DejaVu provides a transparent parallel checkpointing
and recovery mechanism that recovers from any combina-
tion of systems failures without any modification to parallel
applications or the OS. It uses a new runtime mechanism
for transparent incremental checkpointing that captures the
least amount of state needed to maintain global consistency
and provides a novel communication architecture that en-
ables transparent migration of existing MPI codes, without
source-code modifications. Performance results from the
production-ready implementation show less than 5% over-
head in real-world parallel applications with large memory
footprints. 1

1 Introduction

Enabling the next generation of computational infras-
tructures, in particular the envisioned national cyberinfras-
tructure, requires fundamental advances in transparent fault
recovery. The large component count inherent in the in-
creasingly popular cluster-based systems increases the in-
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stability of the resource as a whole due to the combinatorial
dependency of the integrated system on single-component
failure rates. Table 1 clearly illustrates that systems with
large numbers of cores can expect high failure rates. In such
an environment some form of Checkpoint/Restart (CP/R) is
the only mechanism that can guarantee large computational
jobs will finish. For example in December 2001 LANL ran
a complete nuclear explosion simulation on ASCI which
consumed 2000 processors for 4 months. Custom applica-
tion level checkpointing code recorded the job’s state every
70 minutes and during the course of that 4 month period the
job was restarted over 100 times [12]. Engendering stabil-
ity in ever-growing, networked, collections of cluster sys-
tems needs a software solution that provides reliable access
to computing resources through transparent, efficient, and
automatic checkpointing and recovery (CPR) mechanisms,
a view echoed in the recent emphasis on recovery-oriented
computing [16].

We present a new system called DejaVu for transpar-
ent and automatic checkpointing, migration and recovery of
parallel and distributed applications. DejaVu provides (a)
a transparent parallel checkpointing and recovery mecha-
nism that recovers from any combination of systems failures
without modification to parallel applications. (b) a novel
instrumentation and state capture mechanism that transpar-
ently captures application state, (c) novel runtime mech-
anisms for transparent incremental checkpointing, to effi-
ciently capture the least amount of state required to main-
tain global consistency, (d) a novel communications archi-
tecture that enables transparent migration of existing MPI
codes without source-code modifications, and (e) recover-
able IO subsystems that can be tailored to specific storage
environments.

In this paper, we concentrate on a subset of the capa-



System # CPUs Reliability
ASCI 8,192 MTBI: 6.5 Hours, 114 unplanned outages/month.
Q Hardware outage sources: storage, CPU, memory.
ASCI 8,192 MTBF: 5 hours (2001) and 40 hours (2003).
White HW outage sources: storage, CPU, 3rd-party HW.
NERSC 6,566 MTBI: 14 days. MTTR: 3.3 hours.
Seaborg SW is the main outage source.

Table 1. Reliability and Availability of Large-Scale HPC Systems [18]. (MTBI: Mean Time Between
Interruptions, MTBF: Mean Time Between Failures, MTTR: Mean Time To Recovery)

bilities of DejaVu. We present the core algorithm behind
DejaVu, proof of global consistency, and its performance
on several applications on a cluster with Infiniband inter-
connect and a shared GPFS file system.

The rest of the paper is organized as follows. Section 2
presents an overview of related work. Section 3 describes
the high level architecture and theoretical basis of DejaVu.
Section 4 describes the implementation of DejaVu on x86-
based Linux systems interconnected with Infiniband. Sec-
tion 5 presents the results of several experiments used to
validate the performance of the CPR framework. Section
6 concludes the paper and presents directions for ongoing
work.

2 Related Work

In this section, we present a brief overview of the re-
lated work in the area of checkpointing and recovery of
distributed systems. The survey presented in [9] provides
a much more comprehensive evaluation of the large vol-
ume of work in the area of rollback-recovery protocols for
distributed systems. From the perspective of our work,
rollback recovery protocols can broadly be classified along
two dimensions — coordination model and implementation
level.

2.1 Coordination Model

Checkpoint coordination model describes how a dis-
tributed CP/R system orchestrates the individual check-
points taken by each process to create a consistent aggregate
global checkpoint. CP/R system’s coordination models are
classified as either uncoordinated or coordinated. Uncoordi-
nated checkpointing methods do not synchronize the check-
points of individual processes, rather each process sched-
ules and takes its checkpoints independently. Dependency
information is tracked to determine the set of individual
checkpoints that comprise a globally consistent state. Each
process must maintain multiple (if not all) sequential check-
points, as a dependency will most likely exist from some

process’s most recent checkpoint to an older checkpoint of
another process. Uncoordinated checkpointing is vulnera-
ble to the domino effect [9] that can cause the system to roll
all the way back to its initial state. Uncoordinated check-
pointing schemes were conceived when network communi-
cation operations were more expensive then storage I/O (the
inverse is now true), and have all but vanished in modern
systems.

Coordinated checkpointing methods synchronize the in-
dividual checkpoints of each process to ensure that their ag-
gregate is a globally consistent state of the system. Coordi-
nated checkpointing is not susceptible to the domino effect
and only requires the most recently recorded checkpoint of
each process. This characteristic places an upper bound
of one checkpoint interval (period of time between check-
points) on the amount of compute time lost to a failure.

Coordinated checkpointing is the method used by most
if not all modern checkpointing systems and the most com-
monly implemented algorithm is Distributed Snapshots [4].
This is a global state detection mechanism that achieves co-
ordination through the use of marker messages. It relies on
a fundamental assumption that the communication channels
of the distributed system are reliable, FIFO (First In First
Out) queues that guarantee all messages sent by one pro-
cess to another are received in-order and without error. The
marker messages flush each communication channel (and
thereby the network) of all messages thereby restricting the
state of the distributed computation that must be recorded
to that of the individual processes. In practice, some imple-
mentations will go a step further and also tear down all the
flushed connection endpoints prior to checkpointing, and re-
create them after the checkpoint is finished, to enable migra-
tion [19].

DejaVu is a coordinated checkpointing system, but un-
like Distributed Snapshots it uses a novel runtime mecha-
nism described in §3.2 to capture the state of communica-
tion channels as part of the checkpoint and does not incur
the overhead associated with flushing the network. DejaVu
also virtualizes all communication channel endpoints (e.g.
sockets) used by an application to enable migration without
tearing down and restarting channels.



2.2 Implementation Level

The implementation level of a distributed CP/R system
refers to how it integrates with applications, communication
middleware, and the OS. This integration can be classified
as application level, user level, and system level.

Due to the lack of a standardized, portable, transpar-
ent checkpointing solution, the most common approach to
checkpointing today is the application level. Application
level checkpointing does not require any modifications to
the OS and when implemented properly, minimizes the
amount of state stored for each checkpoint. Some applica-
tion developers add snapshot ability to their codes that peri-
odically dumps the state of the computation in a format that
is reloaded in the case of a failure. Other developers struc-
ture their applications such that users may split their sim-
ulations into intervals that fall underneath the Mean Time
Between Failures (MTBF) of the deployment environment
and pipeline the output of one run into the next. The first
method is error-prone, and oftentimes inflexible. It requires
application developers to design and implement behaviors
that fall outside their domain expertise and the precise in-
terface for CP/R operations is non-standard. Both methods
place an undesirable burden on the application end-user to
learn and then operate the CP/R facilities.

User level frameworks are an attempt to provide fault-
tolerance to applications while requiring minimal effort on
the part of application developers and end-users. Some-
times they do not require any modifications to the OS. To
a varying extent they are transparent to the end-user and
applications. The least transparent methods are checkpoint
libraries that provide a checkpoint API that application de-
velopers can insert into their codes at the appropriate places.
These require developers to manually instrument their code.
Compiler-based methods [2] run application source code
through a special translator that attempts to infer the opti-
mal points in execution to take checkpoints. These are able
to minimize the amount of state recorded in a checkpoint,
but require access to application code and do not permit
truly asynchronous checkpointing, as checkpoints are taken
at specific locations in execution.

Communication middleware implementations are be-
coming more prevalent amongst user-level CP/R frame-
works and embed distributed checkpoint behaviors in an
MPI library. These implementations [1] [11] [19] typically
focus on the synchronization of checkpoints and either rely
on integration with a single process checkpointer (poten-
tially in the OS) to complete the framework or perform in-
memory checkpointing for applications with small memory
footprint. These are transparent in that they require no ac-
cess to application codes, but they tie deployment environ-
ments to a specific implementation of a messaging-passing
API.

DejaVu is a transparent user level CP/R system. What
differentiates DejaVu from the other user-level frameworks
described above is the higher degree of transparency that it
achieves. It requires no access to application codes and its
complete BSD socket virtualization supports any MPI im-
plementation built on socket communication. For the high-
performance Infiniband interconnect (where native perfor-
mance is desired) we provide a version of MVAPICH [14]
modified at the ADI layer to implement the DejaVu algo-
rithm.

System level checkpoint implementations are housed in
the operating system and have the advantage of being com-
pletely transparent to the user application. For instance, the
AIX operating system from IBM provides CP/R capabil-
ities. There are several implementations [7] [10] for the
Linux operating system kernel. These systems are typically
single process checkpointers and must be paired with a user-
level mechanism for checkpoint coordination. Portability is
a major issue for system-level checkpointers. Even on a sin-
gle OS platform, any revision (even minor ones) to the OS
potentially requires porting work.

3 Architecture

3.1 Transparent User-Level Framework

DejaVu is a transparent user-level CPR framework. We
believe that transparent user-level frameworks are more de-
sirable then either application-level solutions or system-
level frameworks. Application-level solutions by nature
are non-standard and for reasons described in §2.2 often
ad-hoc and error-prone. At the opposite end of the spec-
trum, system-level frameworks offer extreme standardiza-
tion but are not portable across different operating sys-
tems, and oftentimes even across different versions or dis-
tributions of the same operating system. As described in
§2.2 the many other user-level frameworks are the combi-
nation of a specialized MPI implementation and a single
process checkpointer. These frameworks are application
transparent and operate at the communication layer mid-
dleware to implement the Distributed Snapshots algorithm.
Due to a novel global state detection mechanism combined
with BSD socket virtualization, DejaVu is able to virtual-
ize at the OS interface, making it transparent to both ap-
plications and any sockets-based communication middle-
ware. This feature allows users to provide their jobs with
standardized fault-tolerance. Figure 1 depicts the integra-
tion of the DejaVu framework with a typical distributed
application. DejaVu intercepts system library calls made
by either the application or any middleware libraries it is
linked against, requiring no modification to legacy bina-
ries. Consistency is achieved through a transparent online
logging protocol, which relaxes the tight synchronization



Figure 1. DejaVu virtualizes the application
layer by intercepting system calls between
the application/middleware and the operating
system.

requirements of Distributed Snapshots. We also provide
a customized version of the MVAPICH library which im-
plements the DejaVu algorithm to enable fault tolerance of
MPI codes running on Infiniband networks while maintain-
ing native performance.

3.2 Online Logging Protocol

DejaVu utilizes an online logging protocol to ensure that
the state of a communication channel and the two processes
at either end remain consistent during a checkpoint. Its de-
sign springs from a single fundamental observation that is
completely opposed to the assumption made by distributed
snapshots based systems, that all communication channels
are reliable FIFO queues. In contrast, DejaVu assumes that
all communication channels provided by the OS are inher-
ently unreliable, providing no guarantee of delivery or cor-
rectness of order. This is a strange assumption to make in
light of the last decade’s proliferation of high performance
system area interconnects. The fundamental observation is
that in such an environment, it is impossible to determine
whether the loss, out-of-order delivery, or duplication of
a message is due to a failure of the sender’s OS, the fail-
ure of the interconnection network, the failure of the OS on
the node at the remote end of the communication channel,
the failure of the process executing on that remote end, or
inconsistencies that occurred during the checkpoint itself.
The implications of this observation are profound in that
the problem of coordinating tightly coupled distributed sys-
tems to ensure consistency reduces to that of reliable trans-
mission over unreliable channels. Therefore DejaVu does
not explicitly checkpoint state within the OS nor in-flight
over the communication fabric. Nor does DejaVu engage in
coordinated “flushing” of messages out of the OS and com-
munication fabric before checkpointing, as do many con-

ventional systems. Instead, the online logging implemented
by DejaVu’s user-level library masks any loss/corruption
of state within the operating system and the interconnection
network during the checkpoint operation as a message loss
that would be dealt with in the normal flow of communica-
tion over an unreliable channel.

All communication operations invoked by either the ap-
plication or middleware are intercepted by the checkpoint
library. These requests are carried out utilizing the com-
munication primitives provided by the underlying OS. All
communication channels are assumed to be unreliable, and
DejaVu ensures correct delivery of messages through use
of online logging protocol. In the following description
all actions taken by a sending process Ps and a receiving
process Pr are undertaken by the DejaVu framework on
behalf of the application. Ps “commits” any message mi

(where i is the sequence number) it transmits to a local
log. Upon receipt of mi, Pr replies with an acknowledg-
ment ai to inform Ps of successful delivery. This action,
taken by Pr, “uncommits” the message from Ps’s log. A
unique, monotonically increasing sequence number i is as-
sociated with each message so that messages received in the
wrong sequence may be re-ordered properly by Pr . The se-
quence numbers allow a receiver to detect that a message
was lost (a gap in sequence numbers of messages received),
as well as the receipt of duplicate messages. Duplicate mes-
sages are discarded (as they were already received and pro-
cessed), while lost messages/acknowledgments are handled
by a timeout mechanism. Messages that are in the sender
log are known as “outstanding” messages. In order to per-
mit the use of a finite buffer for the log, a limit is placed
on the number of outstanding messages that are allowed at
any one time. If this limit is reached, Ps ceases sending
messages until the oldest outstanding message is acknowl-
edged.

A major deterrent to aggregating uncoordinated local
checkpoints from Ps and Pr at either end of a communica-
tion channel into a globally consistent checkpoint has been
the inherent difficulty in preventing inconsistencies in the
communication channel state from occurring upon restart.
The following inconsistencies that can arise due to a check-
point taken while Ps is sending a message mi to Pr are:

• mi was sent prior to the checkpoint taken by Ps, but
received after the checkpoint taken by Pr . Upon restart
Ps has sent a message that will never be received.

• mi was sent after the checkpoint taken by Ps but re-
ceived prior to the checkpoint taken by Pr. Upon
restart Pr has received a message that was never sent.

• As DejaVu also introduces a secondary acknowledg-
ment message ai from Pr to Ps there is a third possible
inconsistency when ai is sent prior to the checkpoint



taken by Pr but received after the checkpoint taken by
Ps. Upon restart Ps has sent a message that will never
be acked.

In the first failure mode, Ps is restarted in a state after
having sent mi and Pr is restarted in a state prior to the
receipt of mi, and as such mi will never be received by Pr.
The online logging protocol prevents this inconsistency by
detecting the loss of mi. As an outstanding message in the
log, the timer associated with mi will expire and mi will be
retransmitted. Pr now receives the second transmission of
mi and uncommits it from the log by replying with ai.

In the second failure mode, Ps is restarted in a state prior
to mi having been sent and Pr is restarted in a state where
mi has already been received, creating an orphan message.
The online logging protocol prevents this inconsistency by
detecting the successful delivery of mi. Ps undertakes what
it believes to be the first transmission of mi, and Pr will
recognize from the sequence number that it is a duplicate
message. The message will be acknowledged by Pr and
discarded.

The third mode of failure is prevented by a combination
of the previous two mechanisms. As ai is never received,
Ps will timeout and retransmit mi. When Pr receives mi it
will be detected as a duplicate and ai will be retransmitted.

The mechanics of the online logging protocol also pro-
vide DejaVu with the the ability to transparently migrate
processes at restart time to any host in the distributed sys-
tem. Typically migration is non-trivial since the applica-
tions and/or communication middleware contain state that
refers to OS communication channels tied to the network lo-
cation of a specific host. Since DejaVu virtualizes all com-
munication channels to implement the online logging pro-
tocol, all that is required to enable migration is to also vir-
tualize network addresses, meaning that all application and
middleware requests for OS communication interfaces are
satisfied with addresses generated by DejaVu. Internally,
these addresses are mapped to the actual network addresses
of the compute nodes. Upon a restart the mapping of vir-
tual to real addresses is regenerated to match the new host
locations.

3.3 Global Coordination of Checkpoints

The online logging protocol described above clearly
ensures the consistent state of a communication channel
shared by two processes when restarting from a checkpoint.
DejaVu augments this with a mechanism to coordinate the
checkpoints taken by all of the individual processes in a dis-
tributed job to ensure that the aggregate result is globally
consistent. This mechanism works as follows. At some
point during a job’s execution (most likely periodically) a
checkpoint is invoked by sending a signal to any one pro-
cess in the distributed system. This process, called the Proot

then initiates a global checkpoint operation by broadcasting
a checkpoint command to all processes taking part in the
distributed computation. Proot may be any one of the pro-
cesses taking part in the computation or a “third-party” pro-
cess such as a scheduling entity. The broadcast command
contains an identifier called an epoch identifier, which is
a monotonically increasing number that identifies a check-
point interval. Upon receiving the broadcast each process
Pi enters a “freeze” period. The freeze does not imply a
halt in local execution, just that all inter-process communi-
cation is suspended and queued. The online logging pro-
tocol ensures that any messages lost/discarded during the
freeze are recoverable. After freezing Pi commits the local
state that comprises its checkpoint. Pi then concludes the
checkpoint operation by entering a “barrier”. The barrier
is implemented by each Pi notifying Proot out-of-band that
Pi’s state has been committed. The barrier operation is rel-
atively quick, since all processes of the distributed system
involved in the computation receive their checkpoint mes-
sage separated by no more than the network latency, and
hence enter the barrier temporally close to each other. When
Proot receives commit confirmation from each Pi included
in the computation, it transmits an out-of-band broadcast
declaring the checkpoint operation successful. Upon re-
ceipt of this broadcast each process Pi exits the barrier, “un-
freezes” and resumes inter-process communication. In con-
trast to prior systems DejaVu’s entire checkpoint phase is
only loosely coordinated by a terminating barrier.

3.4 Proof of Global Consistency

Consider a distributed computation comprised of n pro-
cesses. A global state of the system can be abstractly de-
fined as the union of the individual state of each process
Pi and the state of the network. For the purposes of this
proof we will assume that the distributed system is a mes-
sage passing system, but it should be noted that the proof
is also correct for shared memory systems where commu-
nication between processes is facilitated through the mod-
ification of shared memory locations. We denote the lo-
cal state of Pi as S

proc
i and consider it to contain all user-

level state such as stack contents, heap contents, register
contents, global data (including the data segments of shared
libraries), the sender logs associated with open communica-
tion channels and all the meta-data pertaining to virtualized
operating system primitives. The set of individual process
states is defined as

Sproc
=

n⋃

i=1

S
proc
i (1)

We denote the state of a communication channel from
Pi to Pj as Scomm

ij and consider it to contain all state that
exists end-to-end between the two processes including any



state in OS kernel buffers, NIC buffers, or in transit on the
wire. Scomm

ij can therefore be defined as a set of messages
where each message has been sent by either Pi or Pj and
not yet received by the corresponding process. If we define
mi to be a message sent from Pi to Pj and snir−1

to be
the sequence number of the last mi received by Pj and snis

to be the sequence number of the last mi sent by Pi then
the set of messages sent from Pi to Pj but not received is
defined as

Mi = {mik
|k ∈ {snir

, . . . , snis
}} (2)

for messages sent from Pj to Pi we also define

Mj = {mjk
|k ∈ {snjr

, . . . , snjs
}} (3)

The state of a communication channel between Pi and
Pj is thus defined as

Scomm
ij = Mi

⋃
Mj (4)

The state of the network can be considered as the set of
the state of all communication channels defined as

Scomm
=

n⋃

i=1,j=1,i6=j

Scomm
ij (5)

Then for distributed computation running on such a sys-
tem the global distributed state Sglobal can be defined as

Sglobal
= Sproc

⋃
Scomm (6)

Due to the use of the online logging protocol, every mes-
sage belonging to Scomm

ij has been committed to the sender
at either Pi or Pj or both. Recall that the contents of the
online log associated with sender Pi is contained in S

proc
i .

This means that the state of the communication channel
Scomm

ij is completely contained in the individual process
states S

proc
i and S

proc
j . The global distributed state then

reduces to
Sglobal

= Sproc (7)

The role of each process Pi in the global checkpoint op-
eration has been reduced to executing a local checkpoint
operation to record S

proc
i . In order to ensure the consis-

tency of Sglobal no state S
proc
i may change during the local

checkpoint operation. More specifically upon entering the
global checkpoint operation no process Pi may change (a)
its local state and (b) the state of any other process Pj until
the global checkpoint operation is finished. The only self-
inflicted cause of local state change is local computation.
Likewise the only manner for Pi to change the state of Pj is
to send a message.

Given these criteria, recall that upon entering the global
checkpoint process Pi stops local computation and enters

a “freeze period” during which all interprocess communi-
cation is suspended. Pi then executes the local checkpoint
operation and exits the global checkpoint operation by en-
tering the loosely synchronized out-of-band barrier opera-
tion. At no point during its part in the global checkpoint
operation does Pi alter its state or send a message to any
process Pj that would alter Sj . While in the loosely syn-
chronized barrier operation, Pi will refrain from any inter-
process communication. This ensures that Pi does not alter
the state of any process Pj that may still be taking part in
the global checkpoint operation. Only after every process
enters the barrier does Pi resume interprocess communica-
tion, thus satisfying the requirements for global consistency
of checkpoints taken by DejaVu.

4 Implementation

The current implementation of DejaVu is in the form of
a dynamically linked library, libdv.so. This library exports
all the POSIX (and non-POSIX) symbols that correspond to
library and system calls that DejaVu needs to virtualize. At
runtime the LD PRELOAD environment variable is used to
instruct the linker to load the DejaVu library into the appli-
cation. The linker resolves all application and other mid-
dleware library system calls to the exported symbols of De-
jaVu. During execution either a checkpoint or preemption
(checkpoint followed by an exit) operation can be instan-
tiated by signaling the DejaVu linked processes with pre-
defined POSIX operating system signals. These operations
can therefore be controlled with something as simple as a
parallel shell and the UNIX killall command. All config-
uration of DejaVu’s runtime behavior is accomplished via
environment variables.

Our current version of DejaVu includes several check-
pointing optimizations and features that exceed the scope
of this paper. The aggregate of the following list differen-
tiate it from any other checkpoint/restart framework we are
aware of.

• Permits completely asynchronous checkpoint requests.
There are no critical sections or operations during which
checkpoints are not allowed. Many application/user
level frameworks only permit checkpoints at certain
points in execution.

• Completely decoupled from any specific queuing sys-
tem or framework. All interaction with DejaVu takes
place through environment variables and signals, per-
mitting easy integration with pre-existing queuing envi-
ronments.

• Application and OS transparent. DejaVu requires no
modification of application binaries or operating system
kernels. This renders it extremely portable to any plat-
form running a POSIX compliant operating system.



• Support for anonymous mmap(). DejaVu permits and
tracks all anonymous mmap()’s including those made
by an application to some fixed location. This increases
complexity as dynamically allocated memory can fall
almost anywhere in the entire virtual memory space as
opposed to just the brk region, but it is absolutely re-
quired of a production-capable system.

• MPI over Infiniband Support. The current implemen-
tation intercepts MPI operations at the ADI layer in
MPICH using a modified version of Ohio State Univer-
sity’s MVAPICH stack [14]. All results in §5 were from
MPI jobs running over an Infiniband network.

• Support for rolling back file I/O operations. DejaVu in-
cludes a filesystem rollback module that intercepts all
UNIX VFS filesystem calls including both buffered and
unbuffered operations. As part of the restart protocol
it rolls back all changes made to the filesystem since
the last checkpoint took place. It uses a copy-on-write
method to track inode mutations and also tracks changes
to the filesystem hierarchy.

• Incremental checkpointing. DejaVu utilizes OS memory
protection mechanisms to detect the minimal amount of
changed state between checkpoints, modeled after the
scheme in [17].

• Asynchronous concurrent checkpointing. DejaVu uti-
lizes an optimized low-latency concurrent checkpoint-
ing system somewhat similar to that put forth in [13].
DejaVu uses an asynchronous storage thread that over-
lays computation with checkpoint storage thereby mini-
mizing the impact on application efficiency. Several en-
vironment variables can be set to tune the parameters of
the disk I/O operations to the deployment environment.
DejaVu performs all disk access with standard POSIX
system calls and does not require raw disk access.

• Fixed upper bound on stable storage requirement. In-
cremental checkpoints taken by DejaVu are patched into
the checkpoint file resulting from the previous check-
point. Thus DejaVu never stores more then one copy of
any given virtual memory page. This allows us to place
an upper bound on storage requirements that is defined
by the memory footprint of the application. This is in
contrast to systems that save each incremental check-
point independently, resulting in multiple copies of the
same page on disk and unbounded storage requirements.

• Support for forked processes. DejaVu will record when
new processes are created with fork() and enable check-
point/restart for them too. At checkpoint time the en-
tire process tree will be checkpointed and restarted cor-
rectly. IPC mechanisms using file descriptors that are
shared between forked processes (e.g., pipes and socket
pairs) are correctly restored during restart by reopening
them before the child processes are respawned. There

is additional on-going work to support all IPC mecha-
nisms including: semaphores and shared memory. Fork
support allows checkpoint/restart functionality for com-
mercial HPC applications that typically spawn addi-
tional processes.

• Configurable page size for checkpoint performance. To
improve the performance of checkpointing large mem-
ory applications to disk, DejaVu can increase the page
size it will fault application memory on. Larger val-
ues improve checkpoint performance when checkpoint-
ing to file systems with larger optimal file block size.

• Migration capable. As described in §3.2 DejaVu vir-
tualizes all location specific information such as open
sockets so that a distributed job may be restarted on any
set of nodes in the system that is equivalent in size to
the set on which it was originally executing.

5 Evaluation

To evaluate the performance overhead of application vir-
tualization and checkpointing we performed tests with High
Performance Linpack (HPL), Chombo, and Sander. HPL is
an implementation of the LINPACK benchmark that “gen-
erates, solves, checks and times the solution process of a
random dense linear system of equations on distributed-
memory computers.” [6] The additional error residual
check at the end of each HPL run certifies that the com-
puted result is correct, verifying that DejaVu has correctly
restored all memory and register locations. Choosing to
evaluate our performance against HPL allowed us to test
a code with high temporal and spatial locality.

Chombo is a set of C++ classes designed to facilitate de-
velopment of applications that use block-structured Adap-
tive Mesh Refinement (AMR) [5]. Our tests used the cell-
centered Poisson solver sample application distributed with
Chombo. This application rigorously tested DejaVuś mem-
ory allocation virtualization. Sander is a FORTRAN appli-
cation that is released as part of the AMBER [3] package of
molecular simulation programs. Sander writes continuous
streams of atomic coordinates and velocities to output files
during execution. Sander was used to validate DejaVu’s
ability to transparently virtualize both FORTRAN applica-
tions as well as applications that perform large amounts of
file I/O.

The majority of our experimental evaluations were done
on the National Energy Research Scientific Computing
Center’s Dual 2.2GHz AMD64 Opteron cluster running the
Linux operating system. This cluster had four compute
nodes and one head node. Each node had 6GB of PC3200
DDR memory. The nodes were interconnected with high-
speed 4X Infiniband and a secondary Gigabit Ethernet con-
trol fabric. Each node was also connected using IP over IB



to a shared IBM General Parallel File System (GPFS) with
300GB of accessible disk space and 200 MB/sec of per-
node storage bandwidth. The cluster was deployed with the
PBS batch queue system.

We also used an eight node Dual 2.0GHz AMD64
Opteron Linux cluster for our scale up test to sixteen pro-
cessors. Each node had 4GB of PC2700 DDR memory
and they were interconnected with high-speed 4X Infini-
band with a secondary Gigabit Ethernet control fabric. The
cluster did not have a parallel file system so checkpoints
were dumped to the local hard drives in each node.

Checkpoint overhead was measured by taking a single
“full checkpoint” during the run of a multi-process job.
Measuring the checkpoint overhead of the first checkpoint
in an incremental checkpointing system will typically pro-
vide an upper bound for the worst checkpoint case. With in-
cremental checkpointing, only pages modified after the first
checkpoint must be committed to disk in the next check-
point. In the following experiments, the runtime of any sin-
gle run was under an hour of wall-clock time and the prob-
lem size was selected to fill the maximum available memory
on each node. We assume that a reasonable periodic check-
point interval for a fault-tolerant system would be set to a
period greater than or equal to an hour. Therefore, by mea-
suring the overhead of a single checkpoint within the first
hour of runtime using the maximum memory resources, we
can assume that our overhead will remain consistent or de-
crease if the job were to run longer.
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Figure 2. Comparison of DejaVu overhead for
HPL vs. normal execution without DejaVu

The most important overhead that a transparent check-
point recovery system must reduce is the overhead from vir-
tualization. The virtualization overhead — caused by sys-
tem call interception and state capture — is a constant cost
over the entire execution of the application. Therefore, un-
like checkpoint overhead, which can be reduced by chang-
ing the checkpoint interval, virtualization imposes a contin-
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Figure 3. Comparison of DejaVu overhead for
Chombo vs. normal execution without De-
jaVu
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Figure 4. Comparison of DejaVu overhead for
Sander vs. normal execution without DejaVu

uous overhead. Figures 2, 3, and 4 show the combination
of virtualization overhead and single checkpoint overhead
for HPL, Chombo, and Sander respectively. Virtualization
overhead is measured by comparing runtimes of the appli-
cation with DejaVu loaded and the baseline without DejaVu
loaded. This overhead shows the cost required for doing
message logging on high-speed IB networks. Checkpoint
overhead was measured by comparing runtimes with and
without a single checkpoint taken. In figure 2 it is clear
that for HPL the virtualization overhead is less than 1% for
page sizes greater than 64KB. In figure 3 the overhead for
Chombo is less than 5%. Memory thrashing exhibited by
Chombo leads to slightly more overhead than HPL. Figure 4
shows that the overhead was mainly from the virtualization
which is not surprising given that Sander is CPU bound and
had a small memory footprint. For all the applications the
combined overhead at the larger DejaVu page sizes is less



than 5%, which is relatively low for a transparent check-
point recovery system [13].
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Figure 5. Checkpoint overhead of varying De-
jaVu page size for several applications

Figure 5 shows the checkpoint overhead on the perfor-
mance of High Performance Linpack, Chombo, and Sander
running with between 4 and 16 processors. The problem
size of the NP=4 HPL run was set to a 22,000 x 22,000 ma-
trix so the total memory size of the job was at least 3.87
gigabytes; the NP=16 HPL run was set to a 32000 x 32000
matrix with total size of 8.19 gigabytes. The problem size
for the Chombo runs was a 64 element cell that resulted
in 9.6 gigabytes of total memory. The Sander run had a
smaller memory footprint as that application is mostly CPU
bound. The HPL runs were configured to run for approxi-
mately 50 minutes so the results reflect the expected check-
point overhead with a checkpoint interval of once an hour.
The Chombo and Sander tests ran for about 15 minutes
and the results were extrapolated to show the same over-
head amortized over a 60 minute period, or one checkpoint
per hour. Figure 5 shows the percentage overhead with re-
spect to the runtime configurable page size used in DejaVu.
The overhead for a 4KB page size was proportionally much
higher and has been omitted from figure 5 so that the re-
maining data points are visible. It is clear from figure 5 that
page sizes greater than 64KB provide the best performance
in terms of reduced overhead. The checkpoint overhead at
page sizes greater than 64KB was less than 2.0%. The larger
page sizes reduce the number of page faults that the appli-
cation must incur. For an application like HPL that has high
spatial locality this larger page size results in greater per-
formance. Additionally, on fast parallel file systems like
GPFS the optimal block size for file operations is typically
much larger than the default 4k operating system page size.
Increasing the DejaVu page size allows DejaVu to perform
larger writes to the checkpoint file which improves file I/O

performance.
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Figure 6. Overhead of increased checkpoints
per hour for Chombo

To illustrate the cost of decreasing the checkpoint inter-
val, we have measured the cost of performing an increasing
number of checkpoints within a single time period as shown
in figure 6. The results show that increasing the number of
checkpoints taken per hour increases the checkpoint over-
head; in fact, the increase is nearly linear for Chombo. Of
course, these results depend heavily upon how frequently
the application will dirty memory between the incremental
checkpoints. Chombo performed frequent large memory al-
locations and deallocations that caused a large amount of
the memory space to become dirty between checkpoints.
Therefore, each incremental checkpoint required a signifi-
cant number of memory regions to be saved to disk thereby
increasing the overhead of the frequent checkpoints. If an
application modified memory at a slower pace, then over-
head of frequent interval checkpointing would improve.
Therefore, a periodic checkpointing system must choose a
reasonable checkpoint interval that provides the maximum
efficiency from restart capability while not degrading over-
all system performance from overly-frequent checkpoint-
ing.

The overhead from a restart operation has not been in-
cluded in this evaluation since it is a relatively infrequent
operation compared to the common case of a correctly exe-
cuting system[15]. The overhead of application virtualiza-
tion and checkpointing represent the major portion of the
runtime costs for a checkpoint/restart system.

6 Conclusions and Future Work

Studies [8] have shown that as distributed systems con-
tinue building up towards the peta-scale class, rollback-



recovery mechanisms will become an increasingly neces-
sary component of efficient deployments. In this paper, we
presented DejaVu, a new fault tolerance system for transpar-
ent and automatic checkpointing, migration and recovery of
parallel and distributed applications. It is a concurrent, in-
cremental checkpointing system and includes a recoverable
IO subsystem. It is transparent to applications, the operating
system, and does not require specialized MPI implementa-
tions for socket based networks. We implemented the De-
jaVu system for AMD64 based distributed systems running
the GNU/Linux operating system and interconnected over
Infiniband. Results from a performance evaluation over a
range of real world applications/benchmarks shows that the
overhead of DejaVu is suitable for deployment in produc-
tion systems. We found in all cases that with some tuning
of DejaVu’s runtime behavior, the overhead of checkpoint-
ing a distributed system with per-process memory footprints
in the GB+ range is below 5%.

We are currently developing an implementation of De-
jaVu using MPICH-MX for native performance on Myrinet
networks and we are also exploring new unified methods
of virtualizing MPI libraries transparently, regardless of the
underlying interconnect technology. Finally, we are devel-
oping a queuing system called DejaQu that integrates seam-
lessly with DejaVu enabling preemptive scheduling of com-
puting resources.
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