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Abstract1 

 
Scalable resource monitoring and discovery are essen-

tial to the planet-scale infrastructures such as Grids and 
PlanetLab. This paper proposes a scalable Grid monitor-
ing architecture that builds distributed aggregation trees 
(DAT) on a structured P2P network like Chord. By lever-
aging Chord topology and routing mechanisms, the DAT 
trees are implicitly constructed from native Chord routing 
paths without membership maintenance. To balance the 
DAT trees, we propose a balanced routing algorithm on 
Chord that dynamically selects the parent of a node from its 
finger nodes by its distance to the root.  

This paper shows that this balanced routing algorithm 
enables the construction of almost completely balanced 
DATs, when nodes are evenly distributed in the Chord 
identifier space. We have evaluated the performance and 
scalability of a DAT prototype implementation with up to 
8192 nodes. Our experimental results show that the bal-
anced DAT scheme scales well to a large number of nodes 
and corresponding aggregation trees. Without maintaining 
explicit parent-child membership, it has very low overhead 
during node arrival and departure. We demonstrate that 
the DAT scheme performs well in Grid resource monitor-
ing.  

 
1. Introduction 

 
Scalable resource monitoring and discovery are essential 

to the planet-scale infrastructures such as Grids[10] and 
PlanetLab[5]. In these distributed environments, adminis-
trators need to continuously monitor some global system 
properties for capacity planning or system diagnostics.  
Users or applications need to monitor the real-time status of 
resources, and to discover the appropriate ones that are of 
their interests. However, resource monitoring and discov-
ery in Grids are quite challenging due to their increasing 
scales. For example, the current PlanetLab consists of 706 
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machines at 340 sites[5], and the planet-scale Grid will 
have 100,000 CPUs in 2008[19]. P2P Grid such as the SETI 
@Home[11] achieves massively distributed computing by 
aggregating CPU cycles from millions of contributing 
computers. 

Most existing systems in Grids maintain a centralized 
server [3][8][15] or a set of hierarchically organized serv-
ers[9][13] to aggregate and index resource information. For 
example, R-GMA[8], GridRM[3] and CoMon[15] use a 
centralized server to monitor all resource information. In 
contrast, Globus MDS2[9] and Ganglia[13] employ a set of 
hierarchical servers, such as LDAP-based directory server. 
The centralized server might become both a bottleneck and 
a single point of failure in a planet-scale environment. 
Zhang et al[23] show that GIIS in MDS2 and Manager in 
Hawkeye can only manage up to 100 GRIS or Agent serv-
ers. On this scale, both GIIS and GRIS need to enable data 
caching with large time-to-live (TTL) values, which is not 
suitable for real-time status such as CPU load. In addition, 
the partitioning scheme in hierarchical systems is often 
predefined and can not adapt to the dynamic change of Grid 
environments. For example, if the upper level GIIS fails, 
the low level GRIS needs to be manually redirected.  

To overcome the above shortcomings, several peer-to- 
peer (P2P) schemes, e.g. MAAN[6], NodeWiz[4] and 
SWORD[14], have been proposed to index and discover 
Grid resources in a structured P2P network. By using ap-
propriate routing schemes, search queries are routed to the 
nodes that are responsible for indexing the corresponding 
resources. Therefore, these schemes scale well to large 
number of participating nodes. On the other hand, their flat 
indexing structures pose a major challenge to the global 
resource monitoring in Grids due to its large-scale and 
decentralized nature. 

Distributed aggregation is an essential building block for 
global resource monitoring in large-scale Grids. By em-
ploying a distributed aggregation tree (DAT), the global 
resource status can be calculated by recursively applying an 
aggregate function on a subset of local status. A distributed 
aggregation scheme has to meet three requirements on 
scalability, adaptiveness, and load balance. First, to scale to 
a large number of nodes, each aggregation should only 
introduce a limited number of messages with respect to the 
network size. The DAT tree should have low construction 



and maintenance overhead. Second, the aggregation 
scheme has to adapt to the dynamics of node arrival and 
departure. Third, the aggregation workload should be dis-
tributed evenly among all nodes without any performance 
bottleneck. Load balancing is thus essential for both 
workload fairness and system scalability.  

This paper proposes a P2P-based architecture for Grid 
resource monitoring and discovery. Our scheme extends 
P2P-based Grid resource discovery with DAT trees for 
global resource monitoring. The DAT trees are constructed 
among nodes by leveraging a structured P2P network, i.e. 
Chord[18]. In DAT, all nodes use a balanced routing 
scheme to build a balanced DAT tree towards the root node. 
We have implemented a prototype DAT system running on 
top of RPC protocol or on a discrete event simulation en-
gine. We evaluated the performance of the DAT system on 
Grid resource monitoring with up to 8192 nodes.  

The remainder of this paper is organized as follows: 
Sec.2 describes the P2P-based Grid resource monitoring 
architecture. We present the DAT construction algorithms 
in Sec. 3 and a prototype implementation in Sec. 4. The 
performance results of the DAT system are reported in Sec. 
5. We discuss the related work in Sec. 6 and conclude this 
paper in Sec. 7. 

 
2. P2P-based Grid Monitoring Architecture 

 
In this section, we present a scalable P2P-based Grid 

monitoring architecture. This architecture leverages a 
multi-attribute addressable network for indexing resources 
and a distributed aggregation tree for summarizing global 
resource information. 

 
2.1. Architecture   

 
The P-GMA architecture extends the Grid Monitoring 

Architecture (GMA) proposed by the Global Grid Forum 
[20] with two important components, i.e. P2P-based re-
source indexing and aggregation. Fig. 1 shows the layered 
architecture of P-GMA. The seven layers in P-GMA are 
sensor, producer, indexing, aggregation and consumer 
layers. As suggested by Zanikolas and Sakellariou[22], a 
sensor monitors the status of one or more resources and 
generates events to producers. The sensor could be simply 
some scripts that collect the system status from the /proc 
file system.  In GMA, a producer is a process that sends 
events to a directory service or consumers. A producer may 
also accept search queries from its local users or applica-
tions. Several systems have implemented their own pro-
ducers, such as MDS GRIS, Ganglia monitor daemon 
(gmond), and Hawkeye Agent.  

The key different between P-GMA and ordinary GMA is 
on the design of the registry or directory service. The GMA 
assumes a centralized registry or a hierarchically organized 
directory service like LDAP. In contrary, P-GMA leverages 

the recent research efforts on P2P-based indexing tech-
niques to index and search resource information in a scal-
able P2P network. The indexing layer of P-GMA can be 
implemented by using various alternate schemes, such as 
MAAN[6], NodeWiz[4], or SWORD[14]. Applications in 
the consumer layer can directly search resources or monitor 
their status by issuing multi-attribute range queries to any 
nodes in the P2P indexing network. To monitor the global 
resource status, P-GMA builds an aggregation layer on top 
of the indexing layer with distributed aggregation trees. We 
will discuss the details of building a balanced aggregation 
tree in the rest of this paper. The consumer layer of P-GMA 
includes various essential applications for Grids, such as 
application scheduling, system diagnostics and capacity 
planning.  

 

 
Figure 1: The architecture of P2P-based Grid re-
source monitoring 

 
2.2. Multi-Attributed Addressable Network  

 
We have proposed a multi-attribute addressable network 

called MAAN[6] to index Grid resources in a structured 
P2P network like Chord. In MAAN, a Grid resource is 
represented with a list of attribute-value pairs, such as 
(<cpu-speed, 2.8GHz>, <memory-size, 1GB>, <cpu-usage, 
95%>, ...). MAAN stores each Grid resource on the Chord 
successor nodes of its attribute values. Suppose a resource 
has m pairs <ai, vi> and Hi(v) is the hash function for at-
tribute ai. Each resource will be stored at node ni = suc-
cessor(H(vi)) for each attribute value vi, where 1 ≤ i ≤ m. A 
registration message for attribute value vi is routed to its 
successor node using the Chord successor routing algo-
rithm[18]. Thus, the routing hops for resource registration 
is O(m log n) for a resource with m attributes in a network 
of n nodes. Since numeric attribute values in MAAN are 
mapped to the Chord identifier space by using a locality 
preserving hash function H, numerically close values for 
the same attribute are stored on nearby nodes. Given a 
range query [l, u] where l and u are the lower bound and 
upper bound respectively, nodes that contain attribute value 
v∈[l, u] must have an identifier equal to or larger than 



successor(H(l)) and equal to or less than successor(H(u)). 
Suppose a node wants to search for a resource with at-

tribute value v∈[l, u] for attribute a. It first uses the Chord 
routing algorithm to route it to node nl, the successor of H(l). 
Node nl  then finds its locally matched resources, and for-
wards the query to its successor if it is not the successor of 
H(u), denoted by nu. Otherwise, node nu sends back the 
query result to the query originator. There are total O(log n 
+ k) routing hops to resolve a range query for one attribute, 
where k is the number of nodes between nl and nu. 
Multi-attribute range queries are resolved by using a sin-
gle-attribute dominated approach that only does 1-iteration 
around the Chord identifier space. It takes O(log n + n×smin) 
routing hops to resolve the query, where smin is the mini-
mum selectivity of all sub-queries. 

 
2.3. Distributed Aggregation Tree 

 
In P-GMA, the aggregation problem can be formulated 

as follows. Consider a network of n nodes, each node i 
holds a local value xi(t) ∈ X in time slot t, where 1 ≤ i ≤ n. 
For a given aggregate function f: X+ → X, the goal is to 
compute the aggregated value g(t) of all local values in time, 
i.e. g(t) = f(x1(t), x2(t), ..., xn(t)) in a decentralized fashion. 
To solve the above aggregation problem, we propose a 
distributed aggregation tree (DAT) approach that builds a 
tree structure implicitly from the native routing paths of 
Chord. In DAT, each node applies the given aggregate 
function f on the values of its child nodes, and sends the 
aggregated value to its parent node. By recursively aggre-
gating the values through the tree in a bottom-up fashion, 
the root node will calculate the global aggregated value 
very efficiently since it only needs to collect the values 
from its direct children.  

However, it is challenging to build aggregation trees 
explicitly by maintaining the parent-child membership [12]. 
First, explicit tree construction has limited scalability on a 
large number of aggregation trees since the parent-child 
maintenance overhead increases linearly with the number 
of trees. Second, the membership overhead will be further 
exaggerated when nodes dynamically join or leave the 
network. Instead of maintaining explicit parent-child 
membership, the DAT scheme uses the existing neighbor-
ing information of Chord to organize nodes into a tree 
structure in a bottom-up fashion. When a node joins or 
leaves the network, the Chord protocol will update its 
neighbors automatically using the finger stabilization al-
gorithm [18]. Therefore, the DAT scheme does not have to 
repair the parent-child membership and significantly re-
duces the tree maintenance overhead.  

In DAT, all nodes aggregate towards the global infor-
mation with regard to a given object key called rendezvous 
key. A rendezvous key is the Chord identifier of a given 
aggregate index similar to the "Group By" clause in the 
SQL language. The rendezvous key is determined by DAT 

applications. For example, in Grid resource monitoring 
systems, the aggregated global resource attributes are in-
dexed by different attribute names, e.g. CPU usage.  In this 
case, the rendezvous key is the SHA1 hash value of the 
attribute name.  

 
3. Load-Balancing DAT Algorithms 

 
This section presents the design and analysis of two 

DAT construction algorithms based on different Chord 
routing schemes. The basic scheme builds a DAT tree from 
the finger routes of all Chord nodes to a given root node. To 
further balance the aggregation load among nodes, a new 
balanced routing scheme is proposed in Algorithm 1 to 
build more balanced DAT trees.   

 
3.1. Structured P2P Network Model 

 
We assume that the nodes will be self-organized into a 

Chord network [18]. We model the Chord network as an 
undirected graph G with n nodes. For a node v, let ID(v) 
denote the unique identifier of v in a b-bit identifier space, 
where ID(v) ∈ [0, 2b). In Chord, the identifier space is 
structured as a cycle of 2b, and the distance between two 
identifiers i1 and i2 is DIST(i1, i2) = (i1 + 2b −i2) mod 2b. 
Similar to [18], we use the term node to refer to both the 
node and its identifier. Chord assigns objects to nodes using 
a consistent hashing scheme. For an object stored in Chord, 
let k be its key in the same identifier space as nodes, i.e. k ∈ 
[0, 2b). Key k is assigned to the first node whose identifier is 
equal to or follows k in the circular space. This node is 
called the successor node of key k, denoted by successor(k).  

All Chord nodes organize themselves into a ring topol-
ogy according to their identifiers in the circular space. 
Besides its immediate predecessor and successor, each 
node also maintains a set of finger nodes that are spaced 
exponentially in the identifier space. The j-th finger of node 
v, denoted by FINGER(v, j), is the first node that succeeds v 
by at least 2j−1 in the identifier space, where 0 ≤ j < b. A 
lookup message for key k is forwarded to its successor node 
by using the finger routing scheme. Let v be the successor 
node of k, and fu,v be the finger routing path (i.e. finger route) 
from u to v. Suppose fu,v is of the form < w0, w1, ..., wq−1, wq 
> , we have (1) w0=u, wq=v, and (2) for any 0 < i < q, wi+1 = 
FINGER(wi,j), such that wi+1 ∈ (wi, k] and DIST(wi+1,k) 
=min{ DIST(FINGER(wi, j), k), 0 < j ≤ b }. Since the fingers 
of u are spaced exponentially in the identifier space, each 
hop in the finger route covers at least half of the identifier 
space (clockwise) between u and v. 

 
3.2. Basic DAT Construction 

The basic construction scheme builds a DAT tree on 
Chord in a bottom-up fashion. Let k be the rendezvous key 
of a given aggregation, and r be the root node of the DAT 



tree for this aggregation. The successor node of k is auto-
matically selected as the root node via the same consistent 
hashing scheme as Chord, i.e. r=successor(k). Since con-
sistent hashing has the advantage of mapping keys to nodes 
uniformly, this root selection scheme is capable of building 
multiple DAT trees in a load-balanced fashion. Besides the 
automatic selection of a root node, applications still have 
the flexibility of designating a given Chord node as the root 
by using its identifier as the rendezvous key.  

Considering a Chord network of n nodes, F is the set of 
finger routes from all nodes to a given root node r. We have 
F={fv,r|1 ≤ v ≤ n}, where fv,r is the finger route from v to r as 
we specified in Sec. 3.2. To build a tree rooted at node r, 
each node uses the next hop of its finger route towards key k 
as its parent node. Intuitively, all finger routes destined to k 
will implicitly build a DAT tree, called Basic DAT. Let p(v,i) 
be the next hop of v in  fi,r from i to r, assuming p(v,i) is 
empty if v is not in fi,r or v is the last hop of fi,r. We have: (1) 
for any Chord finger route fv,r= < w0,w1,...,wq > from node v 
to r, we have wi ≠ wj where i ≠ j and 0 ≤ i, j ≤ q; (2) for any 
node v ≠ r, the next hop of v in any finger route fi,r is the 
same, where v ∈ fi,r and 1 ≤ i ≤ n.  

Thus, each finger route is loop-free and each node except 
r has a unique parent node. Each node v has the same next 
hop p(v,i) towards r regardless of finger route fi,r. We can 
simply use p(v,i) as the parent node of v to build a basic 
DAT tree T(r). It is quite obvious that this scheme will 
construct a DAT tree rooted at r since each finger route is 
loop-free and each node except r has a unique parent node.  
Figure 2 illustrates an example of constructing a basic DAT 
rooted at node N0 in a Chord network of 16 nodes with 4-bit 
identifiers. In Fig. 2(a), the label on each link, denoted by 
FINGER(Ni, j), represents that the j-th finger node of Ni is 
selected as the next hop of Ni towards the root node N0. In 
this example, each finger route towards N0 from a Chord 
node Ni corresponds to the path from Ni to the root in the 
basic DAT. For example, the finger route from N1 to N0 is < 
N1,N9, N13, N15, N0 > in Fig. 2(b), and the basic DAT has the 
same path from N1 to N0 as shown in Fig.2(b). Since N0 is 
the next hop of N8, N12, N14, and N15, it has four child nodes 
correspondingly.  

This basic DAT construction algorithm can be easily 
extended to a distributed setting. Actually distributed nodes 
do not need to build DAT trees explicitly. Instead, all the 
nodes know its parent directly by using the Chord finger 
routing; i.e., the next hop in the forwarding route is the 
parent. Since Chord has a very nice stabilization algorithm 
to update its fingers during node arrival and departure, the 
resultant DAT tree will adapt to node dynamics accordingly. 
Next, we will analysis two important properties of basic 
DAT: namely the tree height and branching factor.  

 
3.3. Analysis of Basic DAT Properties 

 
The height and branching factor of a DAT tree are im-

portant for the scalability and load-balance of distributed 
aggregation. The tree height determines the maximal 
number of nodes an aggregation message must traverse 
before reaching the root. The branching factor of a node is 
the number of children of the node. Since each node in 
basic DAT is responsible for aggregating the information 
from its children, its branching factor indicates the aggre-
gation load of the node. 

 

 
(a) Finger routing paths to N0 in Chord 

 
(b) Constructed Basic DAT tree rooted at N0 

 

 Figure 2:  Basic DAT tree construction using  
 Chord finger routes to N0 in a 16-node overlay. 

.  
In basic DAT, the tree height of is O(log n) for a network 

of n nodes. This is because the tree height is equal to the 
length of the longest Chord finger route, which is O(log n) 
hops in a network of n nodes. From the example in Fig. 2(b), 
we know that the branching factor of a node is related to the 
distance between the node and the root. Let FINGER+(i, j) 
denote the j-th outbound finger of node i, we have FIN-
GER+(i, j) = i +2j−1(mod 2b), where j=1,2,...,b. Symmetri-
cally, if v=FINGER+(i, j), we define i as the j-th inbound 
finger of v, denoted by FINGER−(v, j). Therefore, we have 
FINGER−(v, j)=v−2j−1(mod 2b). In the following proof, we 
assume that all arithmetic operations on Chord node iden-
tifiers are modulo operations of 2b.   

For a given node i, let PARENT(i) be the outbound finger 



of i that most closely precedes r. The children of i must be a 
subset of its inbound fingers. Not all inbound fingers of i 
will choose i as their parents since they may have other 
outbound fingers that are more close to r. Suppose node r is 
the root node, and B(i, n) is the branching factor of node i in 
a basic DAT with n nodes. We consider n=2b and with 
index i=0,1,2,...,2b−1.  As shown in Fig. 3(a), the identifier 
space is divided into four disjoint intervals: (i) ( , 2 ]jr i − , (ii) 
( 2 , 2 ]j ji r− − , (iii) ( 2 , )jr i− , and (iv) [i, r], where j=⎡log2 
(d+1)⎤. Fig. 3(b) identifies the parents of nodes in interval 
(i), (ii), and (iii). Consider a basic DAT tree in which n 
nodes are evenly distributed in identifier space, the 
branching factor of node i is computed as follows: B(i, n) = 
log2 n − ⎡log2 (d / d0 + 1)⎤, where d=DIST(i, r) and d0 is the 
distance between any two adjacent nodes.  

 

 
(a) Four disjoint intervals of the Chord ID space 

                  
(b) Parent fingers of nodes in (i), (ii), and (iii) 

 

Figure 3: Illustration of the parent fingers of 
nodes in different identifier spaces 

 
The rigorous mathematical proof of this theorem is quite 

involved, details are given in our technical report [10]. We 
sketch the proof in two cases: (1) 1< d < 2b−1, and (2) 2b−1 ≤ 
d <2b. For case (2), B(i, n) = log2(n) − ⎡log2(d+1)⎤ = 0. For 
case (1), the children of i are its inbound fingers in 

( , 2 ]jr i − , where j = ⎡log2 (d+1)⎤. Thus, for case (2), node i 
has B(i, n) = log2 n − j = log2 n − ⎡log2(d +1)⎤ children. 
When n < 2b, we shrink the key space by a factor of d0=n/2b 
to yield B(i,n)=log2(n) −⎡log2(d/d0 + 1)⎤.  Thus, The 
branching factor of a basic DAT is not the same for all 
nodes. For example, the root node has the maximal 
branching factor of log2(n). However, the minimal 
branching factor of non-leaf nodes is 1 for nodes in the 
interval of [r−nd0/4, r−nd0/2). Thus, the basic DAT is not 
balanced and some nodes need to aggregate information 
from many more child nodes than others.  This prompts us 
to build more balance DAT trees.  

 
3.4.  Balanced DAT Construction 

 
The imbalance of the basic DATs is due to the greedy 

strategy applied in the Chord finger routing algorithm. A 
Chord node always forwards a message to the closest pre-
ceding node in its finger table. For example, the node N8 in 
Fig.2 forwards its update to the node N0 directly, using the 
finger 23 away in the identifier space from itself.  To build a 
balanced DAT with a constant number of branches, we 
propose a balanced routing scheme to construct the routing 
paths from all nodes to a given root node. 

 Instead of selecting a parent finger from the entire finger 
table, node i only considers a subset of fingers that are at 
most 2g(x) away from i, where g(x) is a function of the 
clockwise distance x between i and the root r in the identi-
fier space. We call g(x) the finger limiting function of node i. 
In Fig. 4, the solid arrows represent the fingers that could be 
used as a parent finger of i in the balanced routing scheme. 
The dashed arrow represents the parent finger that other-
wise would be used by the ordinary finger routing scheme.  

Next, we derive a function g(x) such that all balanced 
routing paths (i.e. balanced routes) to r will build a bal-
anced DAT tree with a constant branching factor, given 
nodes are evenly distributed in the identifier space. Intui-
tively, any given node i should have at most two contiguous 
inbound fingers that will use i as their parent fingers to r. 
For the ease of exposition, we will also assume that n=2b 
and i=0,1,2,...,2b−1. Let d=DIST(i, r), and j=⎡log2(d+2)⎤. 
Suppose node u and v are the j-th and j+1-th inbound fin-
gers of i respectively. The whole space can be divided into 
four disjoint intervals: (i) (r, i−2j), (ii) [i−2j, i−2j−1], (iii) 
(i−2j−1, i], and (iv) (i, r] as shown in Fig. 4(b).  

To have a constant branching factor for each node, we 
will let u and v be the only two child nodes of a given node 
i. Therefore, the inbound fingers of i in interval (i) and (iii) 
must not use i as their next hop to r. For node v, we have  

 

         

2log ( 2)
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( 2 ) 2
( ) log ( 2)

djx r i d
g x j d
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⎨
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                       (1) 



 
(a) Finger subset intervals 

 
(b) Parent fingers of nodes in 4 intervals 

 

Figure 4: Subset of fingers used in balanced 
Chord routing scheme 

 
Solving the above equation, we have g(x)= 

⎡log2((x+2)/3)⎤. In Sec. 4.2, we will show that each node 
has at most two children, i.e. the j-th and j+1-th inbound 
fingers. When n < 2b, we shrink the identifier space by a 
factor of d0=n/2b since nodes are evenly distributed. 
Therefore, g(x)=⎡log2((x+2d0)/3)⎤, where d0 is the distance 
between two adjacent nodes. Algorithm 2 specifies the 
construction of a balanced DAT.  

 
Algorithm 1  Balanced DAT Construction  
1: INPUT:   rendezvous key k, finger table FINGER(i, j) 

of each node i, where i=1,2,...,n, and  
               j=0,1,...,b-1. 

2: OUTPUT: a balanced DAT tree T rooted at node 
r=successor(k) 

3: d0 ← average distance between two adjacent nodes 
4: for i←1 to n do              
5:     if DIST(k, i) < DIST(PRED(i), i) then  
6:         ROOT(T) ← i 
7:     endif 
8:     x ← DIST(i, k)    
9:     max ← ⎡log2((x+2d0)/3)⎤ 
10:     for j←max  downto 0 do 
11:         if DIST(i, FINGER(i, j)) ≤ DIST(i, k) then  
12:             PARENT(i) ← FINGER(i, j) 
13:         endif 
14:     endfor 
15: endfor 

 
Figure 5(a, b) demonstrate this balanced routing scheme 

and the almost balanced DAT tree. In Fig. 5(a), node N8 
only selects the closest preceding finger from the fingers 

that are at most 22 hops away from itself, since x=0−8 mod 
24=8, and g(x) = ⎡log2(8 + 2)/3⎤ = 2. Therefore, node N1 
now is the next hop of N8, while node N0 was its next hop in 
Fig. 2(a) when the ordinary finger routing algorithm was 
used. The routing of all other nodes remain unchanged and 
the balanced DAT tree is balanced with a maximum 
branching factor of 2 as shown in Fig. 5(b). 

 

 
(a) Balanced routing paths to N0 

 
(b) Balanced DAT tree rooted at N0 

 

Figure 5: Building a balanced DAT trees by using 
the balanced routing scheme 
 
3.5. Analysis of Balanced DAT Properties 

 
We now analyze the branching factor and tree height of 

balanced DAT. When all nodes are evenly distributed in the 
identifier space, we show that the resulting DAT from 
balanced routing is indeed a well balanced tree with 
maximum branching factor of 2. Consider a balanced DAT 
tree with evenly distributed node identifiers, its tree height 
is at most log2(n) for n nodes. As shown in Fig. 4(b), node u 
is the closest child to i and DIST(u, i) = 12 j− . We prove 
DIST(u,i)≥ d in the following two cases: (a) d=2k, and (b) 
d=2k−1, where k=0,1,...,2b−1. When d=2k, DIST(u,i) = 

2log ( 2) 12 d + −⎡ ⎤⎢ ⎥ = 2k = d. Similarly, when d = 2k−1, DIST(u,i) = 
2log ( 2) 12 d + −⎡ ⎤⎢ ⎥  = 2k = d+1 > d. Since the distance between i 



and its child is at least the same as the distance between i 
and r, the length of any balanced routing path is at most 
log2(n) in a network of n nodes. Therefore, the tree height of 
balanced DAT is at most log2(n) as well.    

For any given node i, only its j-th and j+1-th inbound 
finger in (r,i) are the children of i in a balanced DAT. We 
discuss the following four cases:  
(1) ∀w ∈ (r, i−2j), we have i ≠ PARENT(w) since w+2j < i; 
(2) ∀w ∈ (i−2j−1, i), we have i ≠ PARENT(w) since w+2j−1 

∈ (i,r);  
(3) w=i−2j−1, we have i =PARENT(w) since 1( 2 )jg d −+ = 

2log ( 2) 1
2log (( 2 2) / 3)dd + −⎡ ⎤⎢ ⎥⎡ ⎤+ +⎢ ⎥  

= 
2log ( 2) 1d + −⎡ ⎤⎢ ⎥ =j-1;  

(4) w=i−2j, we have i=PARENT(w) since ( 2 )jg d + = 
2log ( 2)

2log (( 2 2) / 3)dd +⎡ ⎤⎢ ⎥⎡ ⎤+ +⎢ ⎥
 = 2log ( 2)d +⎡ ⎤⎢ ⎥ = j .  

In addition, a DAT must be a balanced tree if its tree 
height is log2(n) and the branching factor is at most 2. For 
any given node i, its left sub-tree should have at most one 
more node than its right sub-tree, and vice versa. Otherwise, 
the overall tree height will be more than log2(n) for a tree of 
n nodes  since the branching factor is at most 2.        

Thus, if the ranges between two immediately adjacent 
nodes are the same, the balanced routing scheme will lead 
to a balanced DAT tree. However, if the interval of a ran-
domly selected node is split as that in Chord, the ranges will 
not be uniformly distributed [1]. The ratio of the maximal 
and minimal ranges is O(log n), where n is the network size. 
To ensure the ranges among nodes distributed uniformly, 
Adler et al[1] proposed an identifier probing approach in 
which each joining node probes O(log n) neighbors of a 
randomly selected node and splits the one with the maximal 
interval. The ratio of the maximal and minimal ranges in 
this approach is bounded by a constant factor. Our simula-
tion results in Sec. 6.2 show that with node identifier 
probing, the maximal branches in the balanced DAT will be 
a constant as well.  

 
4. DAT Prototype Implementation 

 
Based on the above DAT construction algorithms, we 

implemented a prototype system of DAT, called libdat, in C 
language on both Linux and FreeBSD. Next, we will de-
scribe the architecture of our DAT implementation, and 
detailed mechanisms on identifier probing and aggregation 
synchronization. Fig. 6 shows the implementation archi-
tecture of our DAT prototype. In this implementation, each 
DAT node consists of three layers, i.e. RPC, Chord and 
DAT layers. The RPC layer implements the low-level 
mechanisms of remote procedure call for the communica-
tion among distributed nodes. A RPC manager module is 
implemented ar the socket-level to send and receive UDP 
packets. To simplify the testing and evaluation of our DAT 
prototype, we also implemented a discrete event simulation 
engine that provides the same interface to the Chord and 

DAT layers. A heap-based event queue is used to insert and 
fire those events in a chronological order. Without modi-
fying the upper layers, the simulator can be used to evaluate 
the performance of libdat with large number of nodes as we 
show in Sec. 5.  

 

 
Figure 6: DAT Implementation Architecture 

 
The Chord layer extends the original Chord protocols 

with extensions on identifier probing and maintaining extra 
information about fingers. It consists of three components, 
i.e. Chord procedures, finger table and finger stabilization. 
Each node keeps not only the information of its direct fin-
gers, but also the information of its fingers of finger (FOF). 
When a node joins the network, it first sends a join request 
with a random identifier to a well-known node. Then the 
request is forwarded to the successor of the random identi-
fier. The successor splits the maximal interval of its fingers 
and returns the designated node identifier to the joining 
node. Finally the node uses the same node join operation as 
in Chord [18] to join the network.  

The DAT layer implements both on-demand and con-
tinuous aggregate modes for different aggregation func-
tions. It leverages the three underlying Chord routines, i.e. 
route, broadcast and upcall. To support multiple DAT trees 
simultaneously, each DAT node also maintains an aggre-
gation table that keeps track of the current active DAT trees 
as shown in Fig. 6.  When a node initializes an aggregate for 
a given rendezvous key, it adds a new entry in the aggre-
gation table for this aggregate, and computes its child nodes 
based on the information in the Chord finger table.   

 
5. Experimental Results  

 
In this section, we measure the performance and scal-

ability of our DAT prototype system with three metrics, 



including tree properties, message overhead, and effects of 
load balancing. 

 
5.1. Experiment Setup 

 
To faithfully evaluate the DAT system at different scales, 

we have implemented a UDP-based RPC module as well as 
a discrete event simulator. We deployed the DAT system in 
an 8-node cluster at the USC Internet and Grid Computing 
Lab. The cluster nodes are dual Xeon 3.0 GHz processors 
with 2 gigabytes of memory running Linux kernel 2.6.9 and 
connected via a 1-Gigabit Ethernet switch. We ran up to 64 
DAT instances on each machine to create a network of 512 
nodes. For larger networks up to 8192 nodes, we ran the 
DAT prototype in the event-driven simulator. Note that 
both RPC-based and simulator-based setups use the same 
Chord and DAT layers. They indeed have the consistent 
results for the metrics we measured in this section. 

 
5.2. Measured DAT Tree Properties 

 
We examine the DAT tree properties with various net-

work sizes from 16 to 8192. We studied three different 
properties of DAT trees, i.e. maximum and average 
branching factors. Fig. 5(a) shows the maximal branching 
factor as a function of network size for both basic and bal-
anced DATs. The maximal branching factor of the basic 
DAT increases on a log scale with the number of nodes. 
Note that the network size is in log scale. When probing is 
used to balance node identifiers, the maximal branching 
factor decreases significantly, e.g. 16 vs. 43 for 8192 nodes. 
However, it still increases on a log scale with network size. 
In contrast, the maximal branching factor of balanced DAT 
is almost a constant of 4 when node identifiers are uni-
formly distributed by probing O(log n) neighbors. However, 
without identifier probing, balanced DAT trees still have 
the maximal branching factor that increases on a log scale. 
This is due to the ratio of the maximal and minimal ranges 
between adjacent nodes is O(log n) when node identifies 
are randomly chosen.  

Figure 5(b) shows that the average branching factors of 
balanced DAT are constant as the network size increases. 
When identifier probing is used, two DAT trees have al-
most the same constant average branching factor of 2. 
However, they increase to 3 and 3.2 respectively if there is 
no identifier probing, although they remain constant as 
network size increases.  

 
5.3. Effects of Load Balancing  

 
Besides the average message overhead per node, the 

distribution of aggregation messages among nodes is an-
other important metric to evaluate the performance of the 
DAT system. Apparently, the evener the messages are 
distributed among nodes, the better the aggregation process 

is load balanced. Fig. 9(a) plots the distributions of aggre-
gation message in a network of 512 nodes for three dif-
ferent schemes. In this figure, the DAT nodes are sorted in 
the descending order of the number of aggregation mes-
sages. We define node rank as the position of a node in this 
sorted node list.  As shown in Fig. 8(a), the message dis-
tribution of the centralized scheme without DAT is quite 
skewed. Note that the y-axis is in a log-scale. For example, 
the root node is the most loaded one with 511 aggregation 
messages, which is almost the same as the total number of 
nodes in the network. This is because each node in the 
network except the root node itself must send their local 
values to the root node directly.  In addition, the closer a 
node precedes the root node in the Chord identifier space, 
the more aggregation messages it has to forward for other 
nodes due to the nature of the Chord finger routing algo-
rithm.  

 

 
(a) Maximum branching factor vs. network size. 

 
(b) Average branching factor vs. network size 

 

Figure 7: Comparison of tree properties for dif-
ferent DAT schemes 

 
In contrast, distributed aggregation in the network with 

DAT trees significantly reduces the imbalanced load at the 
root monitor. Each intermediate node in the DAT tree only 
processes the aggregation messages from its direct children 
instead of every node in the sub-tree. For example, the most 
loaded nodes in basic and balanced DATs have only 24 and 
4 messages respectively. Since basic DAT is not a balanced 
aggregation tree, the root has more children than other 
nodes. Therefore, the distribution of message overhead in 



basic DAT is still more skewed than that in balanced DAT.  
 

 
(a) Distribution of aggregation messages among nodes 

 
(b) Imbalance of aggregation messages vs. network size 

 

Figure 8: Comparison of load balance for cen-
tralized, basic and balanced DAT schemes 

 
We define the imbalance factor of message overhead as 

the ratio between the maximum and average number of 
aggregation messages on each node. The aggregation is 
well balanced if the imbalance factor is close to 1. Fig. 8(b) 
shows the imbalance factor as a function of the network 
size varying from 100 to 1000 for three difference aggre-
gation schemes. The imbalance factor of the centralized 
scheme increases almost linearly with the network size 
since the root node has to process O(n) aggregation mes-
sages. The imbalance factor of the basic DAT only in-
creases on a log-scale with the network size. For example, 
the imbalance factors are 4.2 and 8.5 for the networks of 
100 and 1000 nodes respectively. The balanced DAT has an 
almost constant imbalance factor under different network 
sizes, e.g. 1.9 and 2.0 for 100 and 1000 nodes respectively. 
This further validates our theoretical analysis of the DAT 
tree properties in Sec. 4.2 and Sec. 4.4. 

 
5.4. Accuracy of Grid Resource Monitoring 

 
Figure 9 illustrates an example of aggregating the global 

average CPU usage in a simulated Grid with 512 nodes. We 
collected a 2-hour long trace of the CPU usages on an 
8-processor Sun Fire v880 server at USC. We then simu-
lated a Grid with 512 nodes, and each node has the same 

CPU usage as in the trace. Fig. 9(a) plots the total CPU 
usages over the time period of 2 hours. The solid and dotted 
lines show the actual and aggregated usages respectively. 
Fig. 9(b) plots the actual vs. aggregated CPU usages where 
the solid line shows the equality. As most points are clus-
tered around the diagonal, our DAT scheme achieves a very 
accurate aggregation of the global CPU usages. 

 

 
(a) Aggregated total CPU usage in a time period of 2 hours 

 
(b) Aggregated vs. actual total CPU usage 

 

Figure 9: Aggregated CPU usage in 2 hours for a 
simulated Grid with 512 nodes  
 
6. Related Work 

 
Many Grid resource monitoring and discovery systems 

[3][4][6][8][9][13][14][15] are related to our research. 
Zanikolas and Skellariou[22] has surveyed these systems in 
a scope-oriented taxonomy with great details. Due to the 
limited space, we will not discuss them in this paper.  

Our work on DAT is related to several previous research 
efforts on aggregating the global information in distributed 
systems. Astrolabe [16] provides a DNS-like distributed 
management service by grouping nodes into 
non-overlapping zones and specifying a tree structure of 
zones. Several aggregation schemes have been proposed to 
leverage the topology information of structured P2P net-
works [2][12][17][24]. SOMO[24] offers an information 
gathering and disseminating infrastructure on top of arbi-
trary DHTs. The SOMO tree is built by recursively dividing 
the DHT identifier space into disjoint regions and assigning 
each region to a DHT node. DASIS[2] and Willow[17] use 



a similar scheme to build a single aggregation tree on hy-
percube-based DHTs, such as Pastry. By aggregating the 
depth information, DASIS improves the node joining al-
gorithm for better load balance[2].  

Li et al [12] build an aggregation tree by mapping nodes 
to their parents in the tree with a parent function. By ad-
justing parameters in a parent function, their approach can 
build multiple interior-node-disjoint trees to tolerate single 
points of failure. SDIMS[21] is the most closely related 
project to our work. In SDIMS, each attribute is hashed on 
to a key and corresponding aggregation tree is built from 
Plaxton routes to the key. The aggregation trees in SDIMS 
are similar to the basic DATs built from Chord finger routes. 
Our work focuses more on the construction algorithms of 
more balanced aggregation trees.  

 
7. Conclusions  

 
We have presented the DAT algorithms, prototype im-

plementation, performance evaluation and application on 
P2P-based Grid resource monitoring. Our work extends 
previous methods for distributed information aggregation. 
Summarized below are four major contributions: (1) We 
proposed a P2P-based architecture for scalable Grid re-
source monitoring and discovery; (2) A balanced DAT 
scheme is developed on Chord overlays to aggregate the 
global information in an efficient and load-balanced fash-
ion. (3) The prototype DAT has been successfully evalu-
ated with good tree properties, message overheads, and load 
balancing. (4) We demonstrate that the DAT scheme per-
forms well in Grid resource monitoring and other applica-
tions.  

For continuing efforts, we suggest to investigate the 
performance of DAT under extreme node dynamics. For 
example, it would be meaningful to test the DAT prototype 
system through benchmark experiments in a wide-area 
environments such as the PlanetLab or the DETER testbed. 
With the introduction of scalable aggregation schemes, 
many killer applications are now enabled to explore dis-
tributed resources in P2P and Grid computing systems.    
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