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Abstract 
 

In real-time environment, data usually has a 
lifespan associated with it. The semantics and the 
importance of the data depend on the time when data 
is utilized. Hence, the process of getting a consensus 
data from a group of replicated units must not take 
longer time than the lifespan of the data. However, in 
real environments, every unit, faulty or non-faulty, 
may encounter delays when processing and sending 
their data which inevitably increases the time of 
acquiring a consensus. The latency for obtaining a 
valid data hence depends not only on the time when 
individual voters make their votes, but also on the 
accuracy and credibility of the votes. Thus, a new 
metric, i.e. credibility function, need be taken into 
account in evaluating expected time and deciding 
replications. This paper presents analytical solutions 
for expected time under different voting schemes when 
dependable data can be obtained. We also show that if 
not all voters are truthful, adding more replications 
does not improve much on the time of obtaining valid 
results. 
 
1. Introduction 
 

In presence of hardware or software failures, which 
may be caused by intentional attacks or unintentional 
human errors, replicating the functional units and then 
getting majority consensus of output data from these 
replicated units is a widely used approach to prevent 
the propagation of erroneous information to the 
ultimate end-users. Different from other methods used 
in achieving fault tolerance, such as stand-by sparring, 
we treat values from different replicas as votes to 
tabulate the consensus. Therefore, we refer to 
individual replicas as voters. Real-time data usually 
has a lifespan associated with it [10]. In other words, 
the semantics and the importance of the data depend 

on time. Data becomes stale, and using it beyond its 
intended lifespan can be catastrophic. Hence, the 
process of getting the consensus of the data from a 
group of replicated units and delivering it to the data 
client must not take longer than the lifespan of the 
data. 

However, as contended by Dr. Lee [12] that though 
ironical, the advances in computer architecture and 
software have made it difficult or impossible to 
estimate or predict the execution time of software in a 
networked and embedded system. Every embedded 
unit, faulty or non-faulty, may encounter delays when 
processing and sending their voting data which 
inevitably increases the time to reach a consensus. 
Most voting schemes use a deadline to mark the end of 
the data’s lifespan [10]. If a deadline is reached before 
the corresponding consensus is obtained, the data is 
discarded and a new round of data solicitation is 
initiated. This approach though guarantees data safety, 
it does not guarantee data availability. 

The precise execution time of software in a 
networked and embedded system is difficult to predict; 
yet aggravating the difficulty are potential malicious 
attacks to the system. Although precise predictions are 
unobtainable, the statistical behavior of software and 
the network is, nevertheless, generally attainable. The 
paper presents our use of statistical data to increase 
real-time data availability based on: 1) the expected 
values of decision time and, 2) how resource 
availability may impact the time a decision is made. 

The rest of the paper is organized as follows: 
Section 2 presents the background in voting 
mechanisms. Section 3 first gives formal definitions 
and terms that our analysis is based on. Then the 
analytical results on the expected time for obtaining 
valid votes in different voting protocols are given. 
Assuming all voters are truthful, we show how the 
number of replicas as well as their voting probability 
and credibility affect data safety and availability in 
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real-time environment. Moreover, in the situation 
where not all voters are truthful, we show that adding 
homogeneous resources does not improve much on the 
time of getting valid voting results. Section 4 presents 
how to adjust resource allocation to satisfy data 
consistency constraints while maintaining 
dependability and data availability in heterogonous 
environments. Related work is discussed in section 5. 
Section 6 summarizes our conclusions and future 
work. 
 
2. Background 
 

In embedded systems, data sensed from the 
environment may have a timeliness parameter. The 
timeliness pertains to how soon data should be 
delivered at the user since the occurrence of reference 
datum it represents. It depicts that the data has a life 
time after the expiry of which it is of no use [7]. 

Consider an example presented in [10], the 
detection of an enemy plane flying at azimuthal 
location 35.0°. A radar unit may report detection at a 
reasonable close azimuth 35.1°. This report should be 
delivered to the Command and Control center (C2) 
within a few seconds of the presence of enemy plane at 
the reported azimuth. With such tolerances in 
reporting, a missile fired at the enemy plane by C2 can 
still be within intended hit range. However, a faulty 
radar unit may report the plane to be at, say, 55.0° 
azimuth to prevent the plane from being hit or send an 
accurate azimuth but so late that the plane has left the 
hit range. To avoid single point of failure, multiple 
radar systems are deployed and we use voting protocol 
to decide the correct data.  

The boolean expression (T(d) < ∆(d)) tests if the 
time T(d) for the data d to reach its client meets the 
timing constraint of ∆(d). A voting protocol should 
validate d for reasonable accuracy and for timely 
delivery with respect to ∆(d), even in the presence of 
possible failures. For data safety reasons, if the 
decision unit cannot decide on d with reasonable 
assurance within the data delivery deadline ∆(d), it 
discards the data d and initializes a new round of data 
collection. This approach guarantees the data safety 
with close to 100% assurance (at least from the 
decision unit perspective), but the data availability is 
not unrivaled especially when unexpected delays occur 
at sensing, processing or transporting units. 

As argued by Dr. Lee in his invited talk [12], a 
precise timing estimation of software execution time in 
embedded networked system is impossible. Instead, 
what we may know is a statistical time within a range. 
For instance, upon an enemy plane has emerged in the 
region at time, it usually takes a non-faulty radar t1 to 

t2 seconds to detect it and transmit the information to 
the control center. In other words, normally, the 
command and control center should receive the plane 
information within the [t1, t2] time interval. However, 
exactly when may only be known statistically even for 
non-faulty units. Thus, knowing expected time when 
valid data will arrive prepares the data end user for 
appropriate actions if the expectation is not realized. 
Further observation is that under non-faulty 
circumstance, if data are only statistically certain, 
increasing the number of replicas will increase 
probabilistic guarantees. 

 
3. Expected Time for Obtaining a Valid 
Vote in Different Voting Protocols 
 

In this section, our discussion is based on the 
assumption that all the n voters provide datum Di to 
the decision unit(s) and the inherently correct data 
value is D. The information credibility may not be at 
the fixed 100% level, that is, Di may not always be the 
same as D. Instead, it may be time dependent. We use 
a credibility function Ci(t) to describe the probability 
that Di is the same as D at time t.  

The following voting schemes are discussed here: 
 1-out-of-n scheme. Under truthful assumption, 

we have that Di = D, that is, every voter provides 
correct data and Ci(t) = 1. In this case, once the 
decision unit gets a datum Di from any voter, it 
can deliver Di to the user without waiting for data 
from other voters.  

 k-out-of-n scheme. In the presence of faulty 
voters, a datum Di given by a faulty voter may 
not be in agreement with the data of non-faulty 
voters. However, a datum Di given by a non-
faulty voter will be in close agreement with (or 
simply the same as) the data D of all the other 
non-faulty voters. We assume that the inherently 
correct data D is in the majority so that D can be 
determined by majority voting protocols. The 
credibility function Ci(t) is given to be monotonic 
with bound of [0, 1]. The monotonicity indicates 
that with more time, we would get more 
trustworthy data. 

We further assume that the probability distribution 
function for the time a voter i takes to obtain and 
transmit data is given as Vi(t). In other words, the 
probability that the decision unit get a datum from a 
voter i by time t is given by Vi(t).  

Given the variables above, our goal is to estimate 
the expected time for the decision unit to get truthful 
data from the voters. 
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To formulate the problem, let Xi be the random 
variable representing if the decision unit get a vote 
from the ith voter 

 
1,
0,i

if
X

otherwise


= 


 the vote of the i'th voter is given        

(1) 
Thus, P{Xi = 1} = Vi(t), P{Xi = 0} = 1−Vi(t) 
 
Moreover, we interpret data credibility as the 

probability that a given data Di agrees with the 
inherent correct data D. Let Yi be the random variable 
representing whether the data Di agrees with D, that is 

 
1,
0,i

if D
Y

otherwise


= 


 the vote given by the i'th voter is       

(2) 
Thus, P{Yi = 1| Xi = 1} = Ci(t), P{Yi = 0| Xi = 1} = 

1−Ci(t) 
 
Therefore, the probability that the decision unit get 

a correct vote from the ith voter is 
 

 { 1 1}
{ 1| 1} { 1} ( ) ( )

i i i

i i i i i

p P Y X
P Y X P X C t V t

= = ∩ =
= = = × = =

     (3) 

and the probability that the decision unit cannot get a 
correct vote (either the vote is not given, or the given 
vote is incorrect) from the ith voter is 
 

{ 0 0}

{ 1 1} 1 1 ( ) ( )
i i i

i i i i i

q P Y X

P Y X p C t V t

= = ∪ =

= = ∩ = = − = −
  (4) 

When all voters are homogeneous, i.e., their Ci(t) 
and Vi(t) are identical, the probability that at least k 
similar (or the same as D) votes are collected is the 
summation of binomial distributions: 

 

1

1

( ) (1 )

( ) ( )

n n
i n i

i i
i i k

n

n
P X Y k p p

i
where
p p p C t V t

−

= =

  ∧ ≥ = −   
   

= = = =

∑ ∑
  (5) 

Note that p is a function of t, it follows that 
equation (5) is the probability that at least k similar 
votes are collected before time t. Let random variable 
T represent the time point at which enough similar 
votes (at least k) are collected, i.e., the decision time, 
we have,  

 

{ }

{ }
1

0
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1 (1 ) (1 )
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i k i

n
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i
and
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i i

−

=

−
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 
≤ = − 

 

   
> = − − = −   

   

∑

∑ ∑
 (6) 

Therefore, the expected time that at least k 
same/similar votes are collected by the decision unit is 

( ) ( )

0

1

00

[ ] { }

( ) ( ) 1 ( ) ( )
k

i n i

i

E T P T t dt

n
C t V t C t V t dt

i

∞

∞ −
−

=

= >

 
= − 

 

∫

∑∫

 (7) 

Note that in (7), different k’s are used in distinct 
voting schemes. In 1-out-of-n scheme where all voters 
are truthful, we have that k=1. Whereas in k-out-of-n 
scheme, we have k = (n+1)/2 in majority voting 
protocols and k = 2n/3 in the more stringent 
Byzantine voting protocols. In the following 
subsections, we discuss these schemes separately, 
assuming C(t) and V(t) are given. 
 
3.1. Truthful Voters 
 

Under this scheme, we have k = 1 and C(t) = 1 in 
(7). Moreover, to get the probability distribution 
function V(t) for voting time, we consider a situation in 
which the data coming from the voters are at constant 
rate (λ) for any unit interval, i.e., the number of data 
within a unit time is constant over time. Based on 
probability theory, we know that such event 
probability distribution can be modeled as exponential 
distribution, with probability distribution function 
given below: 

 ( ) 1 , 0tV t e tλ−= − ≥                       (8) 

Substitute k, C(t), and V(t) in (7), we have 

0

1 1[ ] n tE T e dt
n

λ

λ

∞
−= = ⋅∫                       (9) 

Equation (9) indicates that as n increases, E[T] 
decreases. In other words, under truthful assumption, 
resource availability positively impact data availability 
and system dependability. 

Similarly, if we assume that V(t) is uniformly 
distributed over the interval [0, T1], i.e., 

 1
1

, (0, )
( )

1,

t if t T
TV t

otherwise

 ∈= 


 (10) 

Substitute k, C(t), and V(t) in (7), we have 
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( )
1

1

1
10

1[ ] 1 1 1
1

nT
n

T

tE T dt dt T
T n

∞ 
= − + − =  + 
∫ ∫           (11) 

Therefore, though the probability distribution 
functions for voting time are different, if all the voters 
are truthful, increasing n, i.e., the number of resources, 
reduces the expected time to obtain assured votes. 

More careful observation reveals that the voting 
subsystem under truthful assumption is in fact a 
parallel system where the probability that the decision 
unit get at least one correct data from n voters is 

 

1 1

1 1

{ ( ) 1} 1 { ( ) 0}

1 1 (1 ( ) ( ))

n n

i i i i
i i

n n

i i i
i i

P X Y P X Y

q C t V t

= =

= =

∧ ≥ = − ∧ =

= − = − −

∑ ∑

∏ ∏
(12) 

in which ∏qi characterizes a parallel system. In such a 
system, voters work in a “co-operative” way. 
Therefore, adding resources (more homogenous voters) 
to the subsystem improves its performance and thus 
reduces the expected decision time. 
 
3.2. Untruthful Voters 
 

Under untruthful voter scenario, we have k 
determined by the specific majority voting protocol 
(where k = (n+1)/2 in majority voting protocols and 
k = 2n/3 in the more stringent Byzantine voting 
protocols, and we use the former in the following 
discussions). We further assume that C(t) is uniformly 
distributed over the interval [0, T2] and V(t) = 13. From 
(5), we can derive the probability of getting a valid 
data before time t: 

 

{ } ( )2
2 2

1 [0, ]
i n in

i k

n t tP T t t T
i T T

−

=

    
≤ = − ∈    

    
∑

 (13) 
The following figures show the relationships 

between P{T ≤ t} and n under different t: 
 

                                                        
3 Although it is unreasonable to assume V(t) = 1, i.e., a voter is 

constantly giving out vote to the decision unit, we do this to simplify 
calculations and because not V(t) alone but C(t)×V(t) characterizes 
the possibility that the decision unit gets a vote valued D, which is 
the inherently correct data. 

 
 

              (a) t = 0.4 T2 

 
 

              (b) t = 0.6 T2 
 

Figure 1. The relationship between P(t) and n 
 

As can be seen that when t = 0.4T2, which means 
that C(t)V(t), i.e., the probability of getting a valid vote 
from an individual voter by time t, is less than 50%, 
adding more homogeneously untruthful resources only 
makes it harder to get a consensus within given time.  
Intuitively, if over 50% chance a voter is to lie, adding 
more such voters only reduce the probability of getting 
valid votes within a given time. However, when t = 
0.6T2, which means that the probability of getting a 
valid vote from an individual voter by time t is greater 
than 50%, adding more homogeneous resources 
facilitates the decision process, thus resulting in an 
increasing probability of obtaining a valid vote. The 
question now is: how does the resource availability 
influence the average decision time and thus the data 
availability? 

Substitute C(t), and V(t) in (7), we have 
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∑ ∫
(14) 

Make the substitution x = t/T2 ⇒ dx = (1/T2)dt in 
(14), we have, 

 

( )
11

2
0 0

[ ] 1
k

n ii

i

n
E T x x T dx

i

−
−

=

 
= − 
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Integrate by parts, we have, 

( ) ( ) ( )

( )

1 11
1 1

0
0 0

1
11

0

11 1 1
1

1
1
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x

n ii
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i
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i
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=
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 
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+

∫ ∫

∫
 (16) 

Use mathematical induction on (16), we can prove 
that, 

( )
1

0

!( )!1
( 1)!

n ii i n ix x dx
n

− −− =
+∫  (17) 

Therefore, from (15) and (17), we have that, 
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1
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0
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1
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k

i
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−

=
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 (18) 

Given that k = (n+1)/2 and n is large, we have that 
E[T]=T2/2  

2[ ] 2E T T=  (19) 

Therefore, in an open hostile environment where not 
all voters are truthful, adding homogeneous resource 
does not have impact on expected time of getting a 
valid vote. The intuitive explanation for this result is 
that in Figure 1, the effects of (a) and (b) are 
neutralized. 

Similarly, when the credibility function C(t) is 
exponentially distributed on the interval (0,∞) with 
average rate λ, that is, 
           ( ) 1 , (0, )tC t e tλ−= − ∈ ∞                  (20) 

Using equation (7), we have: 
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Make the substitution where x = e−λt ⇒ dx = 
−λe−λtdt =−λxdt, we have, 
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             (22) 

Integrate by parts and use mathematical induction, 
we can prove that, 
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Therefore, from (22) and (23), we have that, 
1
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−
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     (24) 

where k = (n+1)/2. The relationship between E[T] 
and n in case of exponential distribution is illustrated 
in Figure 2: 

 
Figure 2. Expected Decision Time with λ=1 
 
As can be seen, when the number of working voters 

are small, increasing the number of voters generally 
decreases expected decision time. However, since 

( 1) /2 1

0

1lim ln ln ln 2 0.6931
2

n

n i

nn
n i

+ −  

→∞ =

= − = ≈
−∑     (25) 

The expected decision time converges at ln2/λ and no 
further decrease can be achieved by adding more 
resources. For example, with 11 voters, the expected 
decision time is 0.7365/λ, while with 23 voters, the 
expected decision time is 0.7144/λ  a 3.0% time 
gain is at the cost of more than twice the resources. 
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4. Data Availability and Its Consistency 
Constraints  
 

In heterogonous environments, data comes from 
different sources. However, they need to be coherent if 
such data are different views of the same object. 
Consider a setting in which two types of sensors are 
deployed in a region to monitor potential targets. One 
type is infrared (IR) sensors used for producing thermo 
graphic images. Another type is radio wave (RW) 
sensors used for measuring speed of targets. The IR 
sensors produce clear and reliable data. However, due 
to electromagnetic interferences, RW sensors produce 
less reliable data and hence it is necessary to get a 
consensus from other RW sensors deployed in the 
region. Furthermore, in order for a soldier or 
Command and Control Center to take critical actions, 
the data from two different sources (IR and RW) must 
be coherent  not only they provide the correlated 
information, but also the information from two 
different sources must arrive at the requester within a 
limited time frame ∆, or these two sets of information 
may not be related.  

Now, assume that the external requests come at time 
t0, and a valid datum from group IR becomes available 
at t1 and a valid datum from group RW becomes 
available at t2. Given the assumptions and results in 
Section 3, together with the relative span requirement 
∆, we have the following timing constraints:  

 

1 0 1 1
1

2 0 2 2
2

1 2

1

ln 2

t t d
IR

t t d

t t

λ

λ

 − = ± ≤ ∆



− = ± ≤ ∆

 − ≤ ∆



              (26) 

where the first two equations come from (9) and (24), 
respectively, in which |IR| and |RW| are the number of 
sensors under group IR and RW; d1 and d2 are the 
deviations (e.g., the standard deviations or the 
maximum possible deviations) from the expected 
decision times4; ∆1 and ∆2 are the individual deadline 
requirements for the two data, respectively, and ∆ is 
the required maximum time span of the two different 
types of replies. We further convert the constraints into 
the form tj−ti ≤ d and construct the corresponding 

                                                        
4  Note that since we use expected values, the constraint 

specification is in fact soft. A hard real-time specification which 
requires that data be delivered with probability 1 will not be 
appropriate here since it would take arbitrarily long time to make the 
probability reasonably close to 1 under exponential distribution. 

constraint graph G = (V, E) as shown in Figure 3, 
where 

{( , ) | } ( , )i j j i k i j kE v v t t d S and w v v d= − ≤ ∈ =   
(27) 

t1

t0 t2
ln2/ +d2

−1/(
|IR

|)+
d 1

−ln2/ +d2

1/(
|IR

|)+
d 1

 
 

Figure 3. Timing Constraint Graph 
 

With such a constraint graph, the Bellman-Ford 
algorithm can be used to detect if the graph has 
negative-weight cycles. The existence of negative-
weight cycles in the constraint graph indicates that the 
constraints are unsatisfiable [15]. For instance, the 
cycle 0 1 1 1(1 ( | |) ),t t IR dλ +  1 2 ( ),t t ∆  2 0 2 2( ln 2 )t t dλ− + is 
negative if 

1 2
1 2

1 ln 2 0
| |

d d
IRλ λ

+ + ∆ − + <   (28) 

which indicates that the time-consistency constraint 
between the two types of data is infeasible. This means 
that group IR is so fast that group RW cannot match 
with it. In this case, the system designers must 
reconsider the specification or declare exception 
handling to relocate resources (such as reduce the 
number of sensors in group IR). However, such 
resource reduction must not be at the cost of reduced 
individual data availability level, that is, if 1/(λ1|IR|) 
becomes too large because of decrease of |IR|, there 
will be another negative cycle 0 1 1( ),t t ∆  

1 0 1 1( 1 ( | |) )t t IR dλ− + if 
 

1 1
1

1 0
| |

d
IRλ

− + + ∆ <                       (29) 

which means that group IR cannot meet the individual 
deadline requirement and thus dependability 
requirement is violated.  

Therefore, to adjust the cardinality of group IR to 
satisfy the time-consistency constraint of data and 
retain data availability, both (28) and (29) need to be 
taken into account: 
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1 2
1 2

1 1
1

2

1 1 1 1 2 1 2

1 ln 2 0
| |

1 0
| |

1 1,
( ) ln 2 ( )

d d
IR

d
IR

IR
d d d

λ λ

λ

λ
λ λ λ

 + + ∆ − + ≥

− + + ∆ ≥


 
⇒ ∈  ∆ + − ∆ + + 

(30) 

Therefore, since the satisfaction of data availability 
and consistency constraints depends solely on the 
selection of parameter |IR|, i.e., the number of sensors 
in group IR, (30) gives the tunable range of |IR| where 
a feasible resource allocation strategy exists. 
 
5. Related Work 
 

It is important for a fault-tolerant distributed 
computing system to reach agreement on data values 
from non-faulty processes in the presence of faulty 
ones. Therefore, voting is widely used in consistency 
and agreement algorithms in distributed systems [18] 
Many voting protocols have been studied elsewhere by 
the research community under various application 
settings and environments [3, 5, 19]. [14] gives a 
profound summary of various issues in voting. The 
four main components of a voting algorithm, namely 
input data, output data, input votes, and output votes, 
can be used to impose a binary 4-cube classification 
scheme, leading to 16 classes [13]. Although we only 
consider the expected decision time of the exact 
consensus threshold voting, our methodology can be 
applied to other voting classes. 

One of the most important performance parameters 
in evaluating voting schemes is latency. Latency is 
defined as the length of the time interval between the 
availability of the last input and the production of the 
voter output. In most cases, the dominant factor of the 
latency of a voting algorithm is not the computational 
part of the algorithm but rather the multiple rounds of 
communication [2, 6]. [17] discusses the possibility to 
strike a balance between the overhead of tight 
synchronization and the algorithmic complexity of 
fully asynchronous operation via an intermediate 
approach. 

The idea that diagnostic decisions in dynamic 
environments often require trade-offs between 
decision accuracy and timeliness comes from [4]. 
Thus, the time required to obtain a correct vote in a 
distributed system not only depends on the 
communication latencies but also the time-dependent 
accuracy. The vote accuracy is actually reflected in 
this paper by the credibility function monotonically 

increasing with time. That is, with more time, we 
would get more trustworthy and accurate data. 
 
6. Conclusion 
 

In this paper, we study the expected decision times 
under two different voting schemes. We assume that 
the latency for obtaining a valid data depends not only 
on the time that a voter gives a vote, but also on the 
time-dependent accuracy of the vote. Assuming all 
voters are truthful, we show how the number of 
replicas and their voting probability affect the data 
safety and availability. Moreover, we show that in an 
environment where not all voters are truthful, adding 
homogeneous resources may increase the trustworthy 
of voting results, but it does not improve much on the 
average time of getting valid voting results. We also 
study how to use timing information of groups of 
homogenous sensors to deal with the trade-off between 
data consistency constraints and data availability 
requirements in a heterogonous environment. 

Our future work targets the following directions: 
 Apply the methodologies presented in this paper 

to more complicated voting schemes, such as 
EDEC(explicit dissent explicit consent) and 
ICED(implicit consent explicit dissent) voting 
protocols [16] and algorithms for collaborative 
target detection in a sensor network that are 
efficient in terms of communication cost, 
precision, accuracy, and number of faulty sensors 
tolerable [1]. 

 To make the ideas in this paper more intuitive, 
data credibilities are modeled by independent 
uniform/exponential random variables. In real 
scenarios, however, more complicated random 
variables are used to model faults, such as in 
sensor networks [8, 9]. With (7), we can derive 
expected decision time for practical fault models. 
Some experiments will also be conducted to 
assess the theoretical results. 

 Note that in Section 4, Eq. (30) could be 
intrinsically infeasible when 

 

2

1 1 1 1 2 1 2

1 1 2
2

1 2
2

1 1
( ) ln 2 ( )
ln 2 2

ln 2

d d d

d d

d

λ
λ λ λ

λ

λ

>
∆ + − ∆ + +

⇒ > ∆ + ∆ + +

⇒ > ∆ + ∆ +

          

(31) 

Equation (31) implies another negative cycle in the 
constraint graph. This intrinsic infeasibility comes 
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from the fact that when not all voters are truthful, any 
attempt to shorten the expected time of getting a valid 
vote by adding homogeneous resource will be futile. 
Under soft-deadline settings, with the probability 
distribution function in (5), it is possible to relax the 
point-based timing constraints as in (26) by adopting 
the interval-based timing constraints [11, 20]. With 
interval-based timing constraints, we can also 
explicitly specify priorities of different constraints so 
that in case not all constraints can be satisfied, 
constraints with higher priorities are satisfied with 
higher probability. 

Moreover, in [20], the authors consider two event 
occurrences to be monitored. If one considers a 
distributed system, monitoring event pairs is not 
sufficient. However, if more events are to be 
considered, the complexity of the described approach 
would increase in magnitude. The results in this paper 
show how to give group statistical information from 
that of individual components. Thus, monitoring 
interval-based timing constraints in a distributed 
system may be decomposed into two phases to reduce 
complexity: (1) group homogenous components and 
derive group statistical information; (2) study the 
interval-based timing constraints with the group 
statistical information. 
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