
1-4244-0910-1/07/$20.00 ©2007 IEEE.

 Expected Time for Obtaining Dependable Data in Real-Time Environment

Yue Yu1, Shangping Ren1,2
Department of Computer Science

Illinois Institute of Technology
 { yyu8, ren}@iit.edu

1 Supported in part by NSF under grant CNS 0431832.
2 Supported in part by Air Force Summer Faculty Fellowship.

Abstract

In real-time environment, data usually has a
lifespan associated with it. The semantics and the
importance of the data depend on the time when data
is utilized. Hence, the process of getting a consensus
data from a group of replicated units must not take
longer time than the lifespan of the data. However, in
real environments, every unit, faulty or non-faulty,
may encounter delays when processing and sending
their data which inevitably increases the time of
acquiring a consensus. The latency for obtaining a
valid data hence depends not only on the time when
individual voters make their votes, but also on the
accuracy and credibility of the votes. Thus, a new
metric, i.e. credibility function, need be taken into
account in evaluating expected time and deciding
replications. This paper presents analytical solutions
for expected time under different voting schemes when
dependable data can be obtained. We also show that if
not all voters are truthful, adding more replications
does not improve much on the time of obtaining valid
results.

1. Introduction

In presence of hardware or software failures, which
may be caused by intentional attacks or unintentional
human errors, replicating the functional units and then
getting majority consensus of output data from these
replicated units is a widely used approach to prevent
the propagation of erroneous information to the
ultimate end-users. Different from other methods used
in achieving fault tolerance, such as stand-by sparring,
we treat values from different replicas as votes to
tabulate the consensus. Therefore, we refer to
individual replicas as voters. Real-time data usually
has a lifespan associated with it [10]. In other words,
the semantics and the importance of the data depend

on time. Data becomes stale, and using it beyond its
intended lifespan can be catastrophic. Hence, the
process of getting the consensus of the data from a
group of replicated units and delivering it to the data
client must not take longer than the lifespan of the
data.

However, as contended by Dr. Lee [12] that though
ironical, the advances in computer architecture and
software have made it difficult or impossible to
estimate or predict the execution time of software in a
networked and embedded system. Every embedded
unit, faulty or non-faulty, may encounter delays when
processing and sending their voting data which
inevitably increases the time to reach a consensus.
Most voting schemes use a deadline to mark the end of
the data’s lifespan [10]. If a deadline is reached before
the corresponding consensus is obtained, the data is
discarded and a new round of data solicitation is
initiated. This approach though guarantees data safety,
it does not guarantee data availability.

The precise execution time of software in a
networked and embedded system is difficult to predict;
yet aggravating the difficulty are potential malicious
attacks to the system. Although precise predictions are
unobtainable, the statistical behavior of software and
the network is, nevertheless, generally attainable. The
paper presents our use of statistical data to increase
real-time data availability based on: 1) the expected
values of decision time and, 2) how resource
availability may impact the time a decision is made.

The rest of the paper is organized as follows:
Section 2 presents the background in voting
mechanisms. Section 3 first gives formal definitions
and terms that our analysis is based on. Then the
analytical results on the expected time for obtaining
valid votes in different voting protocols are given.
Assuming all voters are truthful, we show how the
number of replicas as well as their voting probability
and credibility affect data safety and availability in

2

real-time environment. Moreover, in the situation
where not all voters are truthful, we show that adding
homogeneous resources does not improve much on the
time of getting valid voting results. Section 4 presents
how to adjust resource allocation to satisfy data
consistency constraints while maintaining
dependability and data availability in heterogonous
environments. Related work is discussed in section 5.
Section 6 summarizes our conclusions and future
work.

2. Background

In embedded systems, data sensed from the
environment may have a timeliness parameter. The
timeliness pertains to how soon data should be
delivered at the user since the occurrence of reference
datum it represents. It depicts that the data has a life
time after the expiry of which it is of no use [7].

Consider an example presented in [10], the
detection of an enemy plane flying at azimuthal
location 35.0°. A radar unit may report detection at a
reasonable close azimuth 35.1°. This report should be
delivered to the Command and Control center (C2)
within a few seconds of the presence of enemy plane at
the reported azimuth. With such tolerances in
reporting, a missile fired at the enemy plane by C2 can
still be within intended hit range. However, a faulty
radar unit may report the plane to be at, say, 55.0°
azimuth to prevent the plane from being hit or send an
accurate azimuth but so late that the plane has left the
hit range. To avoid single point of failure, multiple
radar systems are deployed and we use voting protocol
to decide the correct data.

The boolean expression (T(d) < ∆(d)) tests if the
time T(d) for the data d to reach its client meets the
timing constraint of ∆(d). A voting protocol should
validate d for reasonable accuracy and for timely
delivery with respect to ∆(d), even in the presence of
possible failures. For data safety reasons, if the
decision unit cannot decide on d with reasonable
assurance within the data delivery deadline ∆(d), it
discards the data d and initializes a new round of data
collection. This approach guarantees the data safety
with close to 100% assurance (at least from the
decision unit perspective), but the data availability is
not unrivaled especially when unexpected delays occur
at sensing, processing or transporting units.

As argued by Dr. Lee in his invited talk [12], a
precise timing estimation of software execution time in
embedded networked system is impossible. Instead,
what we may know is a statistical time within a range.
For instance, upon an enemy plane has emerged in the
region at time, it usually takes a non-faulty radar t1 to

t2 seconds to detect it and transmit the information to
the control center. In other words, normally, the
command and control center should receive the plane
information within the [t1, t2] time interval. However,
exactly when may only be known statistically even for
non-faulty units. Thus, knowing expected time when
valid data will arrive prepares the data end user for
appropriate actions if the expectation is not realized.
Further observation is that under non-faulty
circumstance, if data are only statistically certain,
increasing the number of replicas will increase
probabilistic guarantees.

3. Expected Time for Obtaining a Valid
Vote in Different Voting Protocols

In this section, our discussion is based on the
assumption that all the n voters provide datum Di to
the decision unit(s) and the inherently correct data
value is D. The information credibility may not be at
the fixed 100% level, that is, Di may not always be the
same as D. Instead, it may be time dependent. We use
a credibility function Ci(t) to describe the probability
that Di is the same as D at time t.

The following voting schemes are discussed here:
 1-out-of-n scheme. Under truthful assumption,

we have that Di = D, that is, every voter provides
correct data and Ci(t) = 1. In this case, once the
decision unit gets a datum Di from any voter, it
can deliver Di to the user without waiting for data
from other voters.

 k-out-of-n scheme. In the presence of faulty
voters, a datum Di given by a faulty voter may
not be in agreement with the data of non-faulty
voters. However, a datum Di given by a non-
faulty voter will be in close agreement with (or
simply the same as) the data D of all the other
non-faulty voters. We assume that the inherently
correct data D is in the majority so that D can be
determined by majority voting protocols. The
credibility function Ci(t) is given to be monotonic
with bound of [0, 1]. The monotonicity indicates
that with more time, we would get more
trustworthy data.

We further assume that the probability distribution
function for the time a voter i takes to obtain and
transmit data is given as Vi(t). In other words, the
probability that the decision unit get a datum from a
voter i by time t is given by Vi(t).

Given the variables above, our goal is to estimate
the expected time for the decision unit to get truthful
data from the voters.

3

To formulate the problem, let Xi be the random
variable representing if the decision unit get a vote
from the ith voter

1,
0,i

if
X

otherwise


= 


 the vote of the i'th voter is given

(1)
Thus, P{Xi = 1} = Vi(t), P{Xi = 0} = 1−Vi(t)

Moreover, we interpret data credibility as the

probability that a given data Di agrees with the
inherent correct data D. Let Yi be the random variable
representing whether the data Di agrees with D, that is

1,
0,i

if D
Y

otherwise


= 


 the vote given by the i'th voter is

(2)
Thus, P{Yi = 1| Xi = 1} = Ci(t), P{Yi = 0| Xi = 1} =

1−Ci(t)

Therefore, the probability that the decision unit get

a correct vote from the ith voter is

 { 1 1}
{ 1| 1} { 1} () ()

i i i

i i i i i

p P Y X
P Y X P X C t V t

= = ∩ =
= = = × = =

 (3)

and the probability that the decision unit cannot get a
correct vote (either the vote is not given, or the given
vote is incorrect) from the ith voter is

{ 0 0}

{ 1 1} 1 1 () ()
i i i

i i i i i

q P Y X

P Y X p C t V t

= = ∪ =

= = ∩ = = − = −
 (4)

When all voters are homogeneous, i.e., their Ci(t)
and Vi(t) are identical, the probability that at least k
similar (or the same as D) votes are collected is the
summation of binomial distributions:

1

1

() (1)

() ()

n n
i n i

i i
i i k

n

n
P X Y k p p

i
where
p p p C t V t

−

= =

  ∧ ≥ = −   
   

= = = =

∑ ∑
 (5)

Note that p is a function of t, it follows that
equation (5) is the probability that at least k similar
votes are collected before time t. Let random variable
T represent the time point at which enough similar
votes (at least k) are collected, i.e., the decision time,
we have,

{ }

{ }
1

0

(1)

1 (1) (1)

n
i n i

i k

n k
i n i i n i

i k i

n
P T t p p

i
and

n n
P T t p p p p

i i

−

=

−
− −

= =

 
≤ = − 

 

   
> = − − = −   

   

∑

∑ ∑
 (6)

Therefore, the expected time that at least k
same/similar votes are collected by the decision unit is

() ()

0

1

00

[] { }

() () 1 () ()
k

i n i

i

E T P T t dt

n
C t V t C t V t dt

i

∞

∞ −
−

=

= >

 
= − 

 

∫

∑∫

 (7)

Note that in (7), different k’s are used in distinct
voting schemes. In 1-out-of-n scheme where all voters
are truthful, we have that k=1. Whereas in k-out-of-n
scheme, we have k = (n+1)/2 in majority voting
protocols and k = 2n/3 in the more stringent
Byzantine voting protocols. In the following
subsections, we discuss these schemes separately,
assuming C(t) and V(t) are given.

3.1. Truthful Voters

Under this scheme, we have k = 1 and C(t) = 1 in
(7). Moreover, to get the probability distribution
function V(t) for voting time, we consider a situation in
which the data coming from the voters are at constant
rate (λ) for any unit interval, i.e., the number of data
within a unit time is constant over time. Based on
probability theory, we know that such event
probability distribution can be modeled as exponential
distribution, with probability distribution function
given below:

 () 1 , 0tV t e tλ−= − ≥ (8)

Substitute k, C(t), and V(t) in (7), we have

0

1 1[] n tE T e dt
n

λ

λ

∞
−= = ⋅∫ (9)

Equation (9) indicates that as n increases, E[T]
decreases. In other words, under truthful assumption,
resource availability positively impact data availability
and system dependability.

Similarly, if we assume that V(t) is uniformly
distributed over the interval [0, T1], i.e.,

 1
1

, (0,)
()

1,

t if t T
TV t

otherwise

 ∈= 


 (10)

Substitute k, C(t), and V(t) in (7), we have

4

()
1

1

1
10

1[] 1 1 1
1

nT
n

T

tE T dt dt T
T n

∞ 
= − + − =  + 
∫ ∫ (11)

Therefore, though the probability distribution
functions for voting time are different, if all the voters
are truthful, increasing n, i.e., the number of resources,
reduces the expected time to obtain assured votes.

More careful observation reveals that the voting
subsystem under truthful assumption is in fact a
parallel system where the probability that the decision
unit get at least one correct data from n voters is

1 1

1 1

{ () 1} 1 { () 0}

1 1 (1 () ())

n n

i i i i
i i

n n

i i i
i i

P X Y P X Y

q C t V t

= =

= =

∧ ≥ = − ∧ =

= − = − −

∑ ∑

∏ ∏
(12)

in which ∏qi characterizes a parallel system. In such a
system, voters work in a “co-operative” way.
Therefore, adding resources (more homogenous voters)
to the subsystem improves its performance and thus
reduces the expected decision time.

3.2. Untruthful Voters

Under untruthful voter scenario, we have k
determined by the specific majority voting protocol
(where k = (n+1)/2 in majority voting protocols and
k = 2n/3 in the more stringent Byzantine voting
protocols, and we use the former in the following
discussions). We further assume that C(t) is uniformly
distributed over the interval [0, T2] and V(t) = 13. From
(5), we can derive the probability of getting a valid
data before time t:

{ } ()2
2 2

1 [0,]
i n in

i k

n t tP T t t T
i T T

−

=

    
≤ = − ∈    

    
∑

 (13)
The following figures show the relationships

between P{T ≤ t} and n under different t:

3 Although it is unreasonable to assume V(t) = 1, i.e., a voter is

constantly giving out vote to the decision unit, we do this to simplify
calculations and because not V(t) alone but C(t)×V(t) characterizes
the possibility that the decision unit gets a vote valued D, which is
the inherently correct data.

 (a) t = 0.4 T2

 (b) t = 0.6 T2

Figure 1. The relationship between P(t) and n

As can be seen that when t = 0.4T2, which means
that C(t)V(t), i.e., the probability of getting a valid vote
from an individual voter by time t, is less than 50%,
adding more homogeneously untruthful resources only
makes it harder to get a consensus within given time.
Intuitively, if over 50% chance a voter is to lie, adding
more such voters only reduce the probability of getting
valid votes within a given time. However, when t =
0.6T2, which means that the probability of getting a
valid vote from an individual voter by time t is greater
than 50%, adding more homogeneous resources
facilitates the decision process, thus resulting in an
increasing probability of obtaining a valid vote. The
question now is: how does the resource availability
influence the average decision time and thus the data
availability?

Substitute C(t), and V(t) in (7), we have

5

() ()
2

2

2

1 1

0 02 20

1

0 2 20

[]

1 1 1 1

1

i n iT k k
i n i

i iT

i n iTk

i

E T

n nt t dt dt
i iT T

n t t dt
i T T

− ∞− −
−

= =

−−

=

      
= − + −      

      

    
= −    

     

∑ ∑∫ ∫

∑ ∫
(14)

Make the substitution x = t/T2 ⇒ dx = (1/T2)dt in
(14), we have,

()
11

2
0 0

[] 1
k

n ii

i

n
E T x x T dx

i

−
−

=

 
= − 

 
∑ ∫ (15)

Integrate by parts, we have,

() () ()

()

1 11
1 1

0
0 0

1
11

0

11 1 1
1

1
1

n i n i n ii i i

x

n ii

x x dx x x x d x
i

n i x x dx
i

− − −+ +

=

− −+

 
− = − − − +  

−= −
+

∫ ∫

∫
 (16)

Use mathematical induction on (16), we can prove
that,

()
1

0

!()!1
(1)!

n ii i n ix x dx
n

− −− =
+∫ (17)

Therefore, from (15) and (17), we have that,

1 1

2 2
0 0

1

2 2
0

!()! ! !()![]
(1)! !()! (1)!

1
1 1

k k

i i

k

i

n i n i n i n iE T T T
i n i n i n

kT T
n n

− −

= =

−

=

  − −= =  + − + 

= =
+ +

∑ ∑

∑

 (18)

Given that k = (n+1)/2 and n is large, we have that
E[T]=T2/2

2[] 2E T T= (19)

Therefore, in an open hostile environment where not
all voters are truthful, adding homogeneous resource
does not have impact on expected time of getting a
valid vote. The intuitive explanation for this result is
that in Figure 1, the effects of (a) and (b) are
neutralized.

Similarly, when the credibility function C(t) is
exponentially distributed on the interval (0,∞) with
average rate λ, that is,
 () 1 , (0,)tC t e tλ−= − ∈ ∞ (20)

Using equation (7), we have:

 () ()
1

0 0

[] 1
k i n it t

i

n
E T e e dt

i
λ λ

∞− −− −

=

 
= − 

 
∑ ∫ (21)

Make the substitution where x = e−λt ⇒ dx =
−λe−λtdt =−λxdt, we have,

()

()

01

0 1

11
1

0 0

1[] 1

1 1

k
i n i

i

k
i n i

i

n
E T x x dx

i x

n
x x dx

i

λ

λ

−
−

=

−
− −

=

 
= −  − 

 
= − 

 

∑ ∫

∑ ∫

 (22)

Integrate by parts and use mathematical induction,
we can prove that,

 ()

1
1

0

!(1)!1
!

i n i i n ix x dx
n

− − − −− =∫ (23)

Therefore, from (22) and (23), we have that,
1

0

1 1

0 0

1 !(1)![]
!

1 ! !(1)! 1 1
!()! !

k

i

k k

i i

n i n iE T
i n

n i n i
i n i n n i

λ

λ λ

−

=

− −

= =

  − −=  
 

− −= =
− −

∑

∑ ∑

 (24)

where k = (n+1)/2. The relationship between E[T]
and n in case of exponential distribution is illustrated
in Figure 2:

Figure 2. Expected Decision Time with λ=1

As can be seen, when the number of working voters

are small, increasing the number of voters generally
decreases expected decision time. However, since

(1) /2 1

0

1lim ln ln ln 2 0.6931
2

n

n i

nn
n i

+ −  

→∞ =

= − = ≈
−∑ (25)

The expected decision time converges at ln2/λ and no
further decrease can be achieved by adding more
resources. For example, with 11 voters, the expected
decision time is 0.7365/λ, while with 23 voters, the
expected decision time is 0.7144/λ  a 3.0% time
gain is at the cost of more than twice the resources.

6

4. Data Availability and Its Consistency
Constraints

In heterogonous environments, data comes from
different sources. However, they need to be coherent if
such data are different views of the same object.
Consider a setting in which two types of sensors are
deployed in a region to monitor potential targets. One
type is infrared (IR) sensors used for producing thermo
graphic images. Another type is radio wave (RW)
sensors used for measuring speed of targets. The IR
sensors produce clear and reliable data. However, due
to electromagnetic interferences, RW sensors produce
less reliable data and hence it is necessary to get a
consensus from other RW sensors deployed in the
region. Furthermore, in order for a soldier or
Command and Control Center to take critical actions,
the data from two different sources (IR and RW) must
be coherent  not only they provide the correlated
information, but also the information from two
different sources must arrive at the requester within a
limited time frame ∆, or these two sets of information
may not be related.

Now, assume that the external requests come at time
t0, and a valid datum from group IR becomes available
at t1 and a valid datum from group RW becomes
available at t2. Given the assumptions and results in
Section 3, together with the relative span requirement
∆, we have the following timing constraints:

1 0 1 1
1

2 0 2 2
2

1 2

1

ln 2

t t d
IR

t t d

t t

λ

λ

 − = ± ≤ ∆



− = ± ≤ ∆

 − ≤ ∆



 (26)

where the first two equations come from (9) and (24),
respectively, in which |IR| and |RW| are the number of
sensors under group IR and RW; d1 and d2 are the
deviations (e.g., the standard deviations or the
maximum possible deviations) from the expected
decision times4; ∆1 and ∆2 are the individual deadline
requirements for the two data, respectively, and ∆ is
the required maximum time span of the two different
types of replies. We further convert the constraints into
the form tj−ti ≤ d and construct the corresponding

4 Note that since we use expected values, the constraint

specification is in fact soft. A hard real-time specification which
requires that data be delivered with probability 1 will not be
appropriate here since it would take arbitrarily long time to make the
probability reasonably close to 1 under exponential distribution.

constraint graph G = (V, E) as shown in Figure 3,
where

{(,) | } (,)i j j i k i j kE v v t t d S and w v v d= − ≤ ∈ =
(27)

t1

t0 t2
ln2/ +d2

−1/(
|IR

|)+
d 1

−ln2/ +d2

1/(
|IR

|)+
d 1

Figure 3. Timing Constraint Graph

With such a constraint graph, the Bellman-Ford
algorithm can be used to detect if the graph has
negative-weight cycles. The existence of negative-
weight cycles in the constraint graph indicates that the
constraints are unsatisfiable [15]. For instance, the
cycle 0 1 1 1(1 (| |)),t t IR dλ + 1 2 (),t t ∆ 2 0 2 2(ln 2)t t dλ− + is
negative if

1 2
1 2

1 ln 2 0
| |

d d
IRλ λ

+ + ∆ − + < (28)

which indicates that the time-consistency constraint
between the two types of data is infeasible. This means
that group IR is so fast that group RW cannot match
with it. In this case, the system designers must
reconsider the specification or declare exception
handling to relocate resources (such as reduce the
number of sensors in group IR). However, such
resource reduction must not be at the cost of reduced
individual data availability level, that is, if 1/(λ1|IR|)
becomes too large because of decrease of |IR|, there
will be another negative cycle 0 1 1(),t t ∆

1 0 1 1(1 (| |))t t IR dλ− + if

1 1
1

1 0
| |

d
IRλ

− + + ∆ < (29)

which means that group IR cannot meet the individual
deadline requirement and thus dependability
requirement is violated.

Therefore, to adjust the cardinality of group IR to
satisfy the time-consistency constraint of data and
retain data availability, both (28) and (29) need to be
taken into account:

7

1 2
1 2

1 1
1

2

1 1 1 1 2 1 2

1 ln 2 0
| |

1 0
| |

1 1,
() ln 2 ()

d d
IR

d
IR

IR
d d d

λ λ

λ

λ
λ λ λ

 + + ∆ − + ≥

− + + ∆ ≥


 
⇒ ∈  ∆ + − ∆ + + 

(30)

Therefore, since the satisfaction of data availability
and consistency constraints depends solely on the
selection of parameter |IR|, i.e., the number of sensors
in group IR, (30) gives the tunable range of |IR| where
a feasible resource allocation strategy exists.

5. Related Work

It is important for a fault-tolerant distributed
computing system to reach agreement on data values
from non-faulty processes in the presence of faulty
ones. Therefore, voting is widely used in consistency
and agreement algorithms in distributed systems [18]
Many voting protocols have been studied elsewhere by
the research community under various application
settings and environments [3, 5, 19]. [14] gives a
profound summary of various issues in voting. The
four main components of a voting algorithm, namely
input data, output data, input votes, and output votes,
can be used to impose a binary 4-cube classification
scheme, leading to 16 classes [13]. Although we only
consider the expected decision time of the exact
consensus threshold voting, our methodology can be
applied to other voting classes.

One of the most important performance parameters
in evaluating voting schemes is latency. Latency is
defined as the length of the time interval between the
availability of the last input and the production of the
voter output. In most cases, the dominant factor of the
latency of a voting algorithm is not the computational
part of the algorithm but rather the multiple rounds of
communication [2, 6]. [17] discusses the possibility to
strike a balance between the overhead of tight
synchronization and the algorithmic complexity of
fully asynchronous operation via an intermediate
approach.

The idea that diagnostic decisions in dynamic
environments often require trade-offs between
decision accuracy and timeliness comes from [4].
Thus, the time required to obtain a correct vote in a
distributed system not only depends on the
communication latencies but also the time-dependent
accuracy. The vote accuracy is actually reflected in
this paper by the credibility function monotonically

increasing with time. That is, with more time, we
would get more trustworthy and accurate data.

6. Conclusion

In this paper, we study the expected decision times
under two different voting schemes. We assume that
the latency for obtaining a valid data depends not only
on the time that a voter gives a vote, but also on the
time-dependent accuracy of the vote. Assuming all
voters are truthful, we show how the number of
replicas and their voting probability affect the data
safety and availability. Moreover, we show that in an
environment where not all voters are truthful, adding
homogeneous resources may increase the trustworthy
of voting results, but it does not improve much on the
average time of getting valid voting results. We also
study how to use timing information of groups of
homogenous sensors to deal with the trade-off between
data consistency constraints and data availability
requirements in a heterogonous environment.

Our future work targets the following directions:
 Apply the methodologies presented in this paper

to more complicated voting schemes, such as
EDEC(explicit dissent explicit consent) and
ICED(implicit consent explicit dissent) voting
protocols [16] and algorithms for collaborative
target detection in a sensor network that are
efficient in terms of communication cost,
precision, accuracy, and number of faulty sensors
tolerable [1].

 To make the ideas in this paper more intuitive,
data credibilities are modeled by independent
uniform/exponential random variables. In real
scenarios, however, more complicated random
variables are used to model faults, such as in
sensor networks [8, 9]. With (7), we can derive
expected decision time for practical fault models.
Some experiments will also be conducted to
assess the theoretical results.

 Note that in Section 4, Eq. (30) could be
intrinsically infeasible when

2

1 1 1 1 2 1 2

1 1 2
2

1 2
2

1 1
() ln 2 ()
ln 2 2

ln 2

d d d

d d

d

λ
λ λ λ

λ

λ

>
∆ + − ∆ + +

⇒ > ∆ + ∆ + +

⇒ > ∆ + ∆ +

(31)

Equation (31) implies another negative cycle in the
constraint graph. This intrinsic infeasibility comes

8

from the fact that when not all voters are truthful, any
attempt to shorten the expected time of getting a valid
vote by adding homogeneous resource will be futile.
Under soft-deadline settings, with the probability
distribution function in (5), it is possible to relax the
point-based timing constraints as in (26) by adopting
the interval-based timing constraints [11, 20]. With
interval-based timing constraints, we can also
explicitly specify priorities of different constraints so
that in case not all constraints can be satisfied,
constraints with higher priorities are satisfied with
higher probability.

Moreover, in [20], the authors consider two event
occurrences to be monitored. If one considers a
distributed system, monitoring event pairs is not
sufficient. However, if more events are to be
considered, the complexity of the described approach
would increase in magnitude. The results in this paper
show how to give group statistical information from
that of individual components. Thus, monitoring
interval-based timing constraints in a distributed
system may be decomposed into two phases to reduce
complexity: (1) group homogenous components and
derive group statistical information; (2) study the
interval-based timing constraints with the group
statistical information.

References

[1] T. Clouqueur, K. K. Saluja, and P. Ramanathan. Fault

tolerance in collaborative sensor networks for target
detection. In IEEE Trans. Computers, vol. 53, no. 3,
pp. 320-333, March 2004.

[2] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark.
Reaching approximate agreement in the presence of
faults, In ACM Journal, vol. 33, no. 3, pp. 499-516,
July 1986.

[3] S. Hariri, A. Choudhary, and B. Sarikaya.
Architectural support for designing fault-tolerant open
distributed systems. In IEEE Computer, pp. 50-62,
June 1992.

[4] M. Hildebrandt and J. Meyer. When to act? Managing
time-accuracy trade-offs in a dynamic belief updating
task. In Proc. the 49th Annual Meeting of the Human
Factors and Ergonomics Society, 2005.

[5] P. Jalote and et al. Atomic actions on decentralized
data. Chap. 6, Fault-tolerant Systems, John-Wiley Publ.
Co., 1995.

[6] R. M. Kieckhafer and M. H. Azadmanesh. Reaching
approximate agreement with mixed-mode faults. In
IEEE Trans. Parallel and Distributed Systems, vol. 5,
no. 1, pp. 53-63, January 1994.

[7] H. Kopetz and P. Verissmo. Real time dependability
concepts. Chap. 16, Distributed Systems, S. Mullender,
Addison-Wesl. Co., 1993.

[8] F. Koushanfar, M. Potkonjak, A. Sangiovanni-
Vincentelli. On-line Fault Detection of Sensor
Measurements. In Proceedings of IEEE Sensors, 2003.

[9] B. Krishnamachari, S. Iyengar. Distributed Bayesian
Algorithms for Fault-Tolerant Event Region Detection
in Wireless Sensor Networks. In IEEE Trans.
Computers, vol. 53, no. 3, pp. 241-250, March 2004.

[10] K. A. Kwiat, K. Ravindran, and P. Hurley. Energy-
efficient replica voting mechanisms for secure real-
time embedded systems. In Proc. of the 6th IEEE
International Symposium on a World of Wireless
Mobile and Multimedia Networks, 2005.

[11] C. –G. Lee, A. Mok, and P. Konana. Monitoring of
timing constraints with confidence threshold
requirements. In Proc. of the 24th IEEE Real-Time
Systems Symposium, pp. 178-187, 2003.

[12] E. A. Lee. Building unreliable systems out of reliable
components: the real time story. Abstract of Invited
Plenary Talk, Monterey Workshop, Laguna Beach,
California, September 22, 2005.

[13] B. Parhami. A taxonomy of voting schemes for data
fusion and dependable computation. In Reliability
Engineering and System Safety, vol. 52, no. 2, pp. 139-
151, May 1996.

[14] B. Parhami. Voting: a paradigm for adjudication and
data fusion in dependable systems. Chap. 4,
Dependable Computing Systems, edited by H. B. Diab
and A. Y. Zomaya, John-Wiley Publ. Co., 2005.

[15] S. C. V. Raju, R. Rajkumar, and F. Jahanian.
Monitoring timing constraints in distributed real-time
systems. In Proc.� of� the� 13th� IEEE� Real-Time�
System�Symposium,�RTSS,�pp�57-67,�Phoenix,�AZ,�
Dec.�1992.

[16] K. Ravindran, K. A. Kwiat, and A. Sabbir. Adapting
distributed voting algorithms for secure real-time
embedded systems. In Proc. the 24th International
Conference on Distributed Computing Systems
Workshops, 2004

[17] K. G. Shin and J. W. Dolter. Alternative majority-
voting methods for real-time computing systems. In
IEEE Trans. Reliability, vol. 38, no. 1, pp. 58-64, April
1989.

[18] M. Spasojevic and P. Berman. Voting as the optimal
static pessimistic scheme for managing replicated data.
In IEEE Trans. Computers, vol. 24, no. 5, pp. 525-533,
May 1975.

[19] H. Y. Youn, J. Y. Lee, and A. D. Singh. Adaptive
unanimous voting scheme for distributed self-diagnosis.
In IEEE Trans. Computers, pp. 730-735, 1995.

[20] Y. Yu, S. Ren, and O. Frieder. Prediction of timing
constraint violation for real-time embedded systems
with known hardware failure model. In Proc. of the
27th IEEE Real-Time Systems Symposium, 2006.

