
Hardware Capacity Evaluation in Shared-Nothing Data Warehouses

Ricardo Antunes

Department of Informatics Engineering
Faculty of Science and Technology

University of Coimbra
rantunes@dei.uc.pt

Pedro Furtado*
Department of Informatics Engineering

Faculty of Science and Technology
University of Coimbra

pnf@dei.uc.pt

Abstract

Parallel data warehouses have mostly been seen as
dedicated decision support systems, but as the need for
cost effective multi-application business solutions grows,
non-dedication and adaptation to existing environments
become evermore tempting.

Data placement in such systems is a major problem seeing
as existing environments may have heterogeneous nodes,
which process data at different rates, and non-dedicated
environments can not promise full resource commitment
to execute a query. Therefore it is critical to distribute a
data warehouse’s information in such a way that no node
be overloaded or underestimated.

This paper presents the Capacity Evaluator (CE), an
application capable of measuring the system’s ability to
process information, which in turn helps the Data
Warehouse Parallel Architecture’s (DWPA) automatic
data placer determine exactly how much data should be
allocated to each node.

*

1. Introduction

Application areas, such as data mining, digital libraries,
multimedia services like video on demand, geographic
information systems, etc… require that computers be
capable of coping with the ever-growing need for speed
and space [1].

Data warehouses are no exception to the rule. Their
innate nature insists that they handle massive quantities of
data in the least amount of time possible.

* [1] This work was partially supported by the Auto-DWPA project –
FCT POSC/EIA/57974/2004

1-4244-0910-1/07/$20.00 ©2007 IEEE.

Presently data warehouses can be found residing
within a mainframe or a parallel server. Mainframes are
highly specialized monolithic systems that require large
investments. Parallel servers, on the other hand, are an
economically viable alternative, composed of tens to
hundreds of fast standard microprocessors interconnected
by a scalable network, with an aggregate memory that can
reach to thousands of gigabytes.

In today’s competitive and profit driven world,
companies seek to find decision support systems (data
warehouses) that are not only effective but also cheap.
This makes parallelization very attractive.

There essentially exist three architectures for designing
parallel database systems [2], being shared-nothing (SN)
the most popular, due to its high scalability.

The SN architecture can basically be described as an
agglomerate of autonomous processing nodes (PN), each
owning a private physical memory and running a separate
copy of the Database Management System (DBMS). In
implementing this environment the data warehouse has to
be partitioned among the PNs so that each DBMS
instance can directly access data from the local partition.
Access to non-local data requires that the PNs interchange
messages with each other through a network.

Various SN systems have been implemented
throughout the last couple of decades, ex: Bubba [3],
GAMMA [4], Tandem [5] and Volcano [6]. These all
contemplated a homogeneous environment, which meant
that a company who did not posses a homogenous cluster
of PNs would most likely have to purchase one.

Allied to the previous fact is that these systems were
designed to exclusively dedicate themselves to processing
the tasks at hand.

Such a system would only be justifiable if its mission
was critical and resource consumption by foreign services
was highly undesirable.

Recently researchers have begun to focus on parallel
solutions that are cost-effective and yet very efficient, ex:
Data Warehouse Striping (DWS) [7] and DWPA [8].

By introducing non-dedication and heterogeneity,
various problems arise to question the traditional view of
parallel processing. Probably one of the most pertinent is
how should data be distributed between the PN in a non-
dedicated and heterogeneous environment.

This paper provides a solution to this quandary by
introducing the CE, an application capable of determining
each PN’s availability to sift through data.

The remainder of this paper is organized as follows.
Section 2 introduces the DWPA architecture, for which
the CE is intended. Section 3 describes what exactly the
capacity evaluator does. This is followed by a short result
demonstration. Finally, conclusions and future work are
presented in Section 5.

2. DWPA

In general, DWPA functions in much the same way a
generic SN system would. Figure 1 illustrates this aspect
in a very simplistic manner.

A user sends a query to the data warehouse, without
knowing that it is distributed.

A submitter node receives the query (Phase A) and if
necessary rewrites it so as to allow intraquery parallelism,
i.e. some aggregate functions should not be locally
processed, requiring that they be derived into simpler
functions, ex: AVG() can be derived into SUM() and
COUNT(), before being shipped to the executer nodes,
i.e. rest of the nodes (Phase B).

After the query has been locally executed, the PNs
send the partial query results to a receptor node (Phase C).
The receptor’s goal is to merge the intermediate results,
and if necessary apply global aggregate operations that
were unable to be executed locally, ex: using the AVG
example given earlier, one could obtain an average by
summing the locally calculated SUM()’s and dividing that
result by the sum of the local COUNT()’s.

Finally the receptor node sends the result set to the
user. One should note that the submitter node usually
assumes the task of global receptor.

Although DWPA is based on a SN architecture its
main objective is to provide a data warehousing
framework capable of surpassing common SN flaws.
DWPA does this by focusing mainly on availability,
processing and partitioning aspects [9].

Availability in SN systems is always of great concern
because the data is spread through various nodes. If one
or a couple of nodes should happen to malfunction or be
temporarily put offline, the data warehouse becomes
incomplete. When queried, the system will return a
partial result to the end user. This is of course
unacceptable if one seeks exact answers. Furtado [10],
offers three replication strategies to avoid such problems:

Full Replicas, Fully Partitioned Replicas and Partitioned
Replicas.

Figure 1. Generic illustration of the DWPA query
processing mechanism.

Rapid and effective processing is essential to data

warehouses. Distribution and parallelization are in
themselves processing performance enhancements.
However one could optimize such features by using more
efficient algorithms. In [11], the author introduces the
Parallel Hash-Join and the Parallel Associative Join to
DWPA, both algorithms focus on decreasing the time
needed to repartition data between nodes.

An important resource management issue in SN
parallel database systems is data placement. Studies have
shown that performance and scalability are reliant on the
physical layout of the data across the nodes. A poor
placement strategy could result in a non-uniform
distribution of the load and the formation of bottlenecks
[12]. DWPA is aware of this problem and tries to resolve
it by placing data intelligently. The idea is to replicate all
small tables and hash partition the larger ones, thus the
architecture is able to avoid data imbalance and ultimately
speed up query responses [13].

One of DWPA’s forthcoming ventures is the
introduction of an automatic data placer. This feature will
be capable of deciding how data should be partitioned and
how much of it is designated to a certain node.

In a non-dedicated environment possibly containing
heterogeneous PNs, the data placer will need information
pertaining to each PN’s resource capacity as well as its
“processing habits”.

Phase A

Phase B

Phase C

Submitter Node

Send

local query

Node 1

Send local

result set

Global Receptor

Node n

User

Send query Receives result set

3. Capacity Evaluator

Although a good number of a PN’s resources are essential
to execute a query, of all, the most time-consuming are
the hard disk [14] and the network [15]. One could say
that the time used by the nuclear devices (CPU, RAM,
Buses), to process a query, is practically discardable
compared to those aforementioned.

Due to the above observation, the CE uses a set of tests
to measure how each PN’s hard disk and network
connection hold up under simulated scenarios.

These scenarios are devised to mimic actions any PN
would have to carry out while executing a parallel query.

3.1. Disk Benchmarks

The following enumeration states which actions are
carried out by the disk benchmarks as well as a possible
data warehouse scenario that it tries imitate:

- sequential reads – ex: sequence scans;

- sequential writes - used in table replication

and for writing intermediate results to disk, i.e.

for sorting purposes;

- random reads - common practice when the

DBMS retrieves tuples from a relation being

accessed through an unclustered index;

- random writes - indispensable for updating a

series of non-sequential tuples.

Note that other data warehousing operations could also
have been mentioned above.

Having the disk benchmark results of each PN,
DWPA’s automatic data placer could find out which hard
disks are fastest, and decide to place a greater information
load to that specific set of PNs.

Although the disk performance of a PN is only a small
part of a larger problem (how to best place data within a
parallel data warehouse), it is a crucial one.

3.2. Network Benchmarks

A network’s performance is usually disregarded when
designing an SN architecture. The reason for this is that
people usually assume that the PN’s will be
interconnected by some sort of high speed LAN topology.

The automatic data placer can not afford to assume
such a feature, especially if DWPA aspires to function in
any environment no matter how extreme. For example:
DWPA could hypothetically be run on clusters of PNs
geographically separated by thousands of kilometers, or
even in environments were large occurrences of network
congestions are verified.

These scenarios require that careful ponderation be
applied before deciding if and when network
communication should be applied.

Once again the CE tries to simulate such possibilities
by periodically testing how the parallel data warehouse’s
network connections cope with typical message passing
between PNs.

The CE has contemplated a set of possible situations
where network communication is necessary.

These situations are as follows:

- 1 to 1 communication - usually necessary

when a PN is replicating a relation, or part of

it, to another PN [10];

- 1 to N communication – applied in two

different situations:

a. Data repartitioning between a

“producer” PN and various

“consumer” PNs;

b. Partial data replication of one PN to

various PNs, as described in [10];

- N to 1 communication – used in intermediate

result set merges, i.e. occurs when various PNs

have finished executing their local query and

the results need to be shipped to the global

receptor node;

- M to N communication – similar to 1 – N a.

communication, except for the fact data

repartitioning occurs with various “producer”

PNs sending parcels of data to various

“consumer” PNs.

As was mentioned with the disk benchmarks, so too
are the network benchmarks a small piece of a larger
puzzle. But nevertheless it could determine the data
placer’s decision on how much of the data warehouse’s
information should be stored within a specific PN.

3.3. PN Profiles

The previous sub-sections have briefly described the tests
the CE uses to determine a node’s resource capacity.
However these results refer only to a PN’s current state.
A snapshot of a system’s resources should never be used
to determine how much information it could process,
especially in a non-dedicated environment, because that
snapshot only reveals a momentary capacity that could
very well change the following second, ex: due to the
execution of a foreign task.

Aware of this problem, the CE is programmed to
periodically re-launch the tests executed on the PNs. This
periodicity is dictated by the parallel data warehouse’s
administrator.

The CE maintains a resource histogram for each PN,
which he updates with every received benchmark result.
In doing so, an individualized profile of each PN is
maintained.

By resorting to a much more substantiated method of
measurement, the CE is now able to decide on how data
should be placed, with a greater degree of confidence.

4. Experimental Results

After the implementation phase, CE was tested on a small
cluster of PNs.

The experimental environment was composed of 5
PNs with the following characteristics:

- Nodes 1,2,4 and 5 – Each had a Pentium IV at

3.0 gigahertz (GHz) processor, with 2

gigabytes (GB) of RAM and two hard disks

containing 200 GB of capacity each, running

at 7200 rotations per minute (RPM). The

operating system run on all four nodes was

Windows XP Professional Service Pack 2

(SP2). Nodes 1 and 2 had gigabit per second

(Gbps) network cards, while nodes 4 and 5 ran

with 100 megabits per second (Mbps) network

cards;

- Node 3 – Had a Pentium Centrino at 1.6 GHz,

with 512 megabytes (MB) of RAM and one 60

GB hard disk running at 4200 RPM. The PN’s

operating system was a Windows XP Home

Edition SP2. The network card had a nominal

capacity of 100 megabits per second (Mbps);

- The interconnecting network topology for all

five PNs was a Gigabit Ethernet.

The objective of this section is to demonstrate that the

CE, as a concept, works. Only a few results will be
discussed due to writing space constraints.

4.1. Test 1 – 1 to 1 Throughput

This test aims at calculating the real network throughput
between nodes 3 and 1. Node 3 is going to transfer 300
MB of memory resident data to node 1. For illustrative
purposes this test will be run three times.

Fig. 1 displays a bar chart with the results obtained
from each run. Each result is represented as kilobytes per
second (KBps). One must note that this is only a
captured moment in the nodes daily routine, and that no
conclusions should be withdrawn from its analysis, seeing
as non-dedicated environments may vary their
performance.

Figure 2. 1 to 1 network throughput test using
three runs between PN 3 and PN 1.

Several more tests were executed with the same

parameters, so as to introduce more information for the
profiles. The result is displayed in fig 3.

Figure 3. A 1 to 1 communication network profile
between PN 3 and PN 1.

The histogram categorizes the run results into bins.
Every time a result falls within a bin’s interval, that bin is
incremented by one. The above histogram shows us that
the througput between both nodes never exceeds 12,5
MBps. Knowing that the gigabit ethernet network has a
throughput of 125 MBps we can conclude that node 3’s
network card is slowing the data transfer between both
PNs. Another conclusion that can also be withdrawn, is
that the communication throughput is fairly constant,
meaning that very little of node 3’s network bandwidth is
used by foreign applications.

The DWPA auto data placer could use this information
to allocate less data on node 3, or in the case of an
intensive information exchange enviroment it could opt to
replicate relations so as to avoid network exchange.

4.2. Test 2 – N to M Throughput

This test tries to simulate data repartitioning from N PNs
to M destination PNs. Nodes 3 and 5 are going to

reparation 300 MB of disk generated data to the rest of
the cluster’s PNs. Fig. 4 illustrates the data interchange
between the nodes.

Figure 4. PNs 3 and 5 repartition their data
between the remaining PNs in the cluster.

The operation is complex because it involves swapping

sections of data sets between PNs. As was said earlier
(Section 1), the SN architecture divides the data
warehouse throughout the nodes. In some queries PNs
need to process tuples that are not locally situated on their
hard drives, meaning that these PNs will have to import
the missing tuples from their peers. The amount of data
transferred could be voluminous.

Both network and hard disk devices are challenged in
this operation because quasi simultaneous disk reads and
writes occur while network receptions and emissions are
being carried out.

Figure 5. Network throughput results of PNs 3
and 5 repartitioning effort.

Fig. 5 is a graphic generated result of node 3 and 5’s

repartitioning efforts. Both nodes have a 100 Mbps
bandwidth, which they split between each destination PN.

Analysing the aforementioned figure, one can claim
various conclusions. The most obvious would be that the
sum of the throughputs of each destination PN is no larger

than the source node’s nominal bandwidth 100 Mbps
(12,5MBps). Another assertion is that the disk transfer
rates are not influential in data repartitioning when the
available bandwidth is relatively low. This could however
have a different outcome if the PN outputting the data
were to have a 1Gbps network card, seeing as few hard
disks can reach a transfer rate of 125 MBps (≈ 1Gbps).

4.3. Test 3 – Disk Transfer Rate

This test tries to measure a local PN’s disk transfer rate

for various types of actions (see section 3), commonly
executed within a data warehouse.

The test results shown below are withdrawn from node
3’s profile. All four disk actions were performed using
300 MB of data as their threshold.

Table 1. Disk performance results on PN 3.

Action Result (KBps)

Write Throughput 5346.59

Read Throughput 5247.61

Random write throughput 553.10

Random read throughput 378.49

The results presented here can in some ways contradict

the analyses made earlier in test 2: “Another assertion is
that the disk transfer rates are not ...”. It is easily seen
that if a large amount of data were to be read randomly,
the bottleneck would be found on the hard disk device,
instead of the network’s throughput.

Depending on the type of query processing being
carried out by each PN, some devices will be more
affected than others, ultimately dictating how the PNs
perform.

5. Conclusions and Future Work

Today’s companies hold a panoply of computer

programs and services that all require sufficient resources
to function properly, but does this mean that each
program or service should reside in an individual
computer or cluster of computers? The ideal answer
would probably be yes, but to invest in so much hardware
when existing systems can probably handle the load, is a
misuse of a business’s funds.

People tend to be cost aware when they have already
acquired computer systems in a no so distant past, and are
many times reluctant to buy new hardware just to
accommodate a new service.

DWPA is an architecture that tries to use the existing
environment to its advantage, seeking to constantly adapt
in order to perform well. Adaptation requires that data be
placed as best possible, and this is impossible if the

PN1

PN5

PN3

PN4

PN2

architecture is unaware of what each PN is capable of
doing.

The CE was introduced to inform DWPA of how fast
the slowest hardware devices, network and disk, of a PN
could perform. With the collected results, the automatic
data placer could now base its placement strategy on real
capacity values instead of nominal or factory based
values.

Non-dedication adds complexity to an already
complicated problem resolution. The CE tries to diminish
the difficulty by creating profiles that reflect the PN’s
daily routine, which would then be used to decide how the
DWPA architecture should distribute the query’s
processing.

The next step in the CE’s lifecycle is to integrate it
with the DWPA architecture. At the present moment the
CE is an autonomous program that does not feed its
managed profiles to DWPA.

REFERENCES

[1] E. Rahm, “Dynamic Load Balancing in Parallel Database
Systems”, in Proceedings EURO-PAR, 1996, pp. 37-52

[2] D.J. DeWitt and J. Gray, “Parallel Database Systems: The
Future of High Performance Database Systems”, in
Communications of the ACM, vol. 35, number 6, 1992, pp.
85-98.

[3] Brown, K., Carey, M., Dewitt, D., Mehta, M. and Naughton,
J., “Resource Allocation and Scheduling for Mixed
Database Workloads”, Computer Sciences Technical
Report #1095, Department of Computer Sciences,
University of Wisconsin, Madison, July 1992.

[4] DeWitt, D. et al., “The Gamma Database Machine Project”,
IEEE Transactions on Knowledge and Data Engineering,
2(1), March 1990.

[5] Tandem Performance Group, “A benchmark of non-stop
SQL on the debit credit transaction”, Proc. ACM SIGMOD
Conf., Chicago, Ill, June 1988.

[6] Graefe, G., “Volcano: An extensible and parallel dataflow
query processing system”, Computer Science Technical
Report, Oregon Graduate Center, Beaverton, Ore, June
1989.

[7] Bernardino, J., "Técnicas para o Aumento do Desempenho e
da Disponibilidade em Data Warehouses", Ph.D thesis,
University of Coimbra, Coimbra, Portugal, December
2000.

[8] Furtado, P. , "Algorithms for Efficient Processing of
Complex Queries in Node-Partitioned Data Warehouses",
in Proc. of the IEEE Computer Society Press in the
proceedings of the Eighth International Database
Engineering and Applications Symposium (IDEAS04),
Eighth International Database Engineering & Applications
Symposium, Coimbra, July 2004

[9] P. Furtado, “Efficient and Robust Node-Partitioned Data
Warehouses”, in Data Warehouses and OLAP: Concepts,
Architectures and Solutions, Eds. Idea Group, 2007

[10] P. Furtado, “Replication in Node Partitioned Data
Warehouses”, in Proceedings of the LNCS, VLDB Ws. on

Design, Implementation, and Deployment of Database
Replication, 2005.

[11] P. Furtado, “Algorithms for Efficient Processing of
Complex Queries in Node-Partitioned Data Warehouses”,
in IDEAS '04: Proceedings of the International Database
Engineering and Applications Symposium, 2004, pp. 117-
122

[12] M. Mehta, D. DeWitt, “Data placement in shared-nothing
parallel database systems”, VLDB Journal: Very Large
Databases, vol. 6(1), pp. 53-72, 1997

[13] P. Furtado, "Experimental Evidence on Partitioning in
Parallel Data Warehouses", in DOLAP 04 - WORKSHOP
of the International Conference on Information and
Knowledge Management (CIKM), 2004, pp. 23-30

[14] H. Garcia Molina, Database Systems: The Complete Book,
Prentice Hall, 2002

[15] A. Leon-Garcia, I. Widjaja, Communication Networks:

Fundamental Concepts and Key Architectures, McGraw-
Hill, 2001.

