
Period-Dependent Initial Values for Exact Schedulability Test of Rate

Monotonic Systems

Wan-Chen Lu
1
, Kwei-Jay Lin

2
, Hsin-Wen Wei

1
, and Wei-Kuan Shih

1

 1
National Tsing Hua University

2
University of California, Irvine

Dept. of Computer Science Dept. of Electrical Engineering and

Hsinchu, Taiwan Computer Science, CA

{wanchen, bertha, wshih} klin@uci.edu

@rtlab.cs.nthu.edu.tw

Abstract

Real-time systems using Rate Monotonic fixed priority

scheduling can be checked for schedulability either by

pessimistic schedulability conditions or exact testing.

Exact testing provides a more precise result but cannot

always be performed in polynomial time. Audsley et al.

proposed one of the earliest methods by iteratively

deriving the job response times. Other researchers have

improved the efficiency of their exact test method by using

different initial values. All currently proposed initial

values do not use the relationship between task periods. In

this paper we define initial values using the largest and

the second largest periods in a system. We show that the

new initial values can significantly improve the exact test.

1. Introduction

The schedulability of real-time periodic tasks using the

Rate Monotonic (RM) fixed priority scheduling algorithm

can be checked using the total utilization factor of all tasks

in a system [6, 8, 12]. For a periodic task set, each

periodic task i is defined with two parameters (ci, pi),

where ci and pi are the worst case computation time and

the period of task i respectively. The utilization factor of

task i is defined by ui = ci/pi. If the total utilization of a

system is less than or equal to a bound, the system is

guaranteed to be schedulable.

The utilization bound provides a pessimistic testing

since tasks may be schedulable even if they do not meet

the bound condition. Lehoczky et al. [7] is among the first

to propose the exact-test concept for rate monotonic

analysis (RMA). In the RMA process, one needs to check

if the total computation time needed by a task set before a

time instance (after all tasks are ready) can be completed

before that time. When the time demand at any time t (pi)

is equal to t, we call this type of time point as time

demand schedulable (TDS) point for task i in this paper.

Audsley et al. [1] proposes another idea for RMA, in

which the worst-case response time WRi of task i is

derived by iteratively calculating the following formula:

WR(l+1) = ci + ()1
1 WR p cli

j jj

until WR(l+1) either converges to a constant number (i.e.,

WRi) or is beyond the deadline of task pi, where WR(0) =

WRi-1+ci. In this paper, this RMA method is referred to as

the response time analysis (RTA).

Although exact tests provide a better schedulability

testing for RM tasks, they require the task response time

to be calculated iteratively [1, 2, 3, 7, 11]. In recent years,

researchers have proposed several methods to improve the

run time of RMA tests [2, 3, 11]. Bini and Buttazzo [2]

proposed a way to balance the required run time of the

time demand analysis method and the false-identification

rate of schedulable tasks. Bril et al. [3] proposed a new

initial value WR(0) = max{WRi-1+ci, ci/(1-(u1+u2+ ... +ui-1))}

used by RTA. More recently, Lu et al. [11] proposed an

RTA iterative formula to derive WR(l+1) for l 0.

This paper studies the initial values used in RTA and

proposes new initial values with a much better

performance. Previous works [1, 3] try to find the first

TDS point in the critical interval of i (see Def. 4).

However, using our proposed initial values, the TDS point

identified is not necessarily the first TDS, but maybe the

kth TDS point (k is greater than 1) in the interval. We

show in this paper that the task set is schedulable as long

as some TDS point exists in the critical interval of i. We

propose the initial value as max{pi-pi-1, pi/2, ci/(1-

(u1+u2+ ... +ui-1))}.The performance of the proposed initial

value has been tested and compared to earlier works [1, 3].

1-4244-0910-1/07/$20.00 ©2007 IEEE

The result shows that our RTA method may achieve a

saving of up to 78.2% in the number of iterations. When

the number of tasks in a system is large, our method can

significantly reduce the number of iterations.

The remainder of this paper is organized as follows. In

Section 2, we define the notions for real-time periodic

tasks. Section 3 presents some new initial values for the

RTA schedulability test, an extended testing algorithm

and its correctness. Section 4 shows the simulation results

for the proposed initial values used for RTA. The paper is

concluded in Section 5 with a comparison of all initial

values proposed so far.

2. Definitions and Motivation

Before we show our new result, we first present some

formal definitions about RM scheduling.

Definition 1. [8] Let T = { 1, 2, ... , i} be a set of i

periodic tasks. Each task j (j = 1, ... , i) is a tuple (cj, pj),

where cj and pj are the maximum computation time and

the period of task j, respectively. The utilization of j,

denoted by uj, is equal to cj/pj. The total utilization of 1,

2, ... , i is denoted as Ui. Without loss of generality, we

may assume that tasks in T are indexed in the order of

increasing periods, and hence task i has the longest period

of all tasks.

Definition 2. [9] Feasible and Schedulable: Suppose a

task set is scheduled by S scheduling algorithm, the

schedule for the task set is feasible if all the jobs in each

task can meet their corresponding deadlines under S

scheduling. A task set is schedulable if there exists a

feasible schedule.

Definition 3. [9] Rate Monotonic Scheduling: Rate

monotonic (RM) algorithm is an optimal fixed-priority

scheduling algorithm, which means RM algorithm can

always generate a feasible schedule if a task set is

schedulable. Under RM scheduling, the individual task

priorities are assigned inversely proportional to their

respective periods. In other words, a task with shorter

period is assigned with a higher priority (and can be

scheduled earlier).

Definition 4. [8] The Critical Instant and Critical Interval:

The critical instant of a periodic task is the beginning of

the period when its computation time is requested

simultaneously with the computation times of all higher

priority tasks. The critical interval of a periodic task is the

time interval between a critical instant and the deadline of

the task.

Definition 5. Time Demand and Time Demand

Schedulable (TDS) Point: For any time instant t (pi),

the time demand at t, denoted by TD(t), is equal to

ci + 1
1 p ci

j jj t .

If TD(t) is equal to t, i is RM schedulable and the time t is

called the time demand schedulable (TDS) point.

Definition 6. [1] Response Time Analysis (RTA):

According to the exact test method proposed in [8], the

worst-case response time WRi of each task i is derived by

iteratively calculating the formula

WR(l+1) = ci +
()1

1 WR p cli
j jj

unitl WR(l+1) either converges to a real number (i.e., WRi)

or exceeds the deadline of task i. A task is schedulable if

its worst-case response time, i.e. WRi, is no larger than its

deadline; otherwise, the task is unschedulable. Please

notice that (1) l 0 and (2) WR(0) is the initial value of the

RTA iterative procedure and is equal to WRi-1+ci.

3. The Derivation of the Initial Value

Bril et al. [3] proposed an initial value WR(0) =

max{WRi-1+ci, ci/(1-Ui-1)} for RTA. However, All RTA’s

with initial values proposed in [1, 3] are to find the first

TDS point in the critical interval of i to decide the

schedulability. When the value of ci is too small or Ui-1

(i.e., the total utilization of tasks 1, 2, ... , i-1) is not large

enough, ci/(1-Ui-1) will be small and cannot produce a

good initial value. For example, assume T = { 1, 2, ... , 5}

is a set of 5 periodic tasks as shown in Table 1. The subset

of T = { 1, 2, 3, 4} is known to be RM schedulable. If

the schedulability of 5 is tested by RTA, ci/(1-Ui-1) =

0.5/(1-0.94) = 9.85 would not be chosen as the initial

value because WRi-1 +ci = 18+0.5 = 18.5 > 9.85.

Table 1. The periodic task set T

i ci pi

1 1 2

2 1 3

3 1 11

4 1 40

5 0.5 60

In this paper, new initial values are proposed by

considering the largest and the second largest periods in a

system. Our new initial values are motivated by the

observation that many TDS points may exist in the critical

interval of i if i is schedulable. Fig. 1(a) shows the time

demand function for tasks of Table 1. When the time

demand (solid line) intersects the time supply (45o dashed

line), the intersected point is a TDS point. Therefore, there

are 19 TDS points for the task set of Table 1. Earlier RTA

methods [1, 3] try to find the first TDS point (i.e. 29.5) in

the critical interval of i. However, if the initial value is

large enough (that is, larger than the first TDS point),

other TDS points may be found in a smaller number of

RTA iterations.

0

5

10

15

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35 40 45 50 55 60

Time

T
im

e
 D

e
m

a
n

d

(a) The time demand relationship for T under different time instants

0

2

4

6

8

10

12

14

16

18

20

22

0 2 4 6 8 10 12 14 16 18 20 22

Time

T
im

e
 D

e
m

a
n

d

30

32

34

36

38

40

42

44

46

48

50

52

30 32 34 36 38 40 42 44 46 48 50 52

Time

T
im

e
 D

em
a
n

d

(b) The time demand relationship for T1’ in (0,)23] (c) The time demand relationship for T in (30,)53]

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Time

T
im

e
 D

e
m

a
n

d

54

55

56

57

58

59

60

54 55 56 57 58 59 60

Time

T
im

e
D

e
m

a
n

d

(d) The time demand relationship for T2’ in (0,)6] (e) The time demand relationship for T in (54,)60]

Fig. 1 The time demand relationship

29.5 53

37.529.5

(a) 11 idle times in the critical interval (0,)60] when c5 = 0.5

(b) 19 TDS points in the critical interval (0,)60] when c5 = 0.5

(c) No idle time and TDS point in the critical interval (0,)60] when c5 = 3

Fig. 2. The initial value setting for RTA

Fig. 2(a) shows the actual RM schedule for tasks listed

in Table 1. There are 11 idle times in the critical interval

of 5 (i.e.)(29.5,)30], (32,)32], (33,)33], (42,)42], (44,)44],

(48,)48], (50,)50], (51,)51], (52,)52], (53,)54] and

(60,)60]). (Please notice that only the first and tenth idle

times are with length larger than 0.) However, there are 19

TDS points in the critical interval of 5, as shown in Fig.

1(a) and Fig. 2(b). In other words, an idle time existed in

the critical interval of i may generate at least one, but

usually much more, TDS point. It may be faster to find a

TDS point than to find an idle time interval.

We first study the relationship between the first idle

time (with length 0.5) and TDS points in (30,)53]. In the

time interval (30,)53], only 1, 2, ... , 4 are scheduled. Fig.

1(b) shows the time demand function for tasks 1, 2, ... , 4

(5 is excluded) with the ready times of 1, 2, ... , 4 are 0, 0,

3, 10 respectively (since after the first idle time, the first

actual job release time of 1, 2, ... , 4 are 30, 30, 33, 40

respectively). This task set is called T1’. In Fig. 1(b), 9

TDS points (i.e. at time instants 2, 3, 12, 14, 18, 20, 21, 22,

23) appear before or at t = 23. However, in the critical

interval of 5, an idle time with length 0.5 before t = 30

exists. Therefore, by deducting 0.5 from the time demand

of each time instant shown in Fig. 1(b), the time demand

function for the time interval (30,)53] in the critical

interval of 5 could be obtained. Fig. 1(c) shows the time

demand relationship for the time interval (30,)53] in the

critical interval of 5. From Fig. 1(c), we could see that,

due to the first idle time, 13 TDS points are in (30,)53].

Next, we investigate the relationship between the tenth

idle time (with length 1) and TDS points in (54,)60]. In the

time interval (54,)60], only 1, 2, ... , 4 are scheduled. Fig.

1(d) shows the time demand relationship for tasks 1, 2, ... ,

4 (5 is excluded) with the ready times of 1, 2, ... , 4 are 0,

0, 1, 26 respectively (since after the second idle time, the

first actual job release time of 1, 2, ... , 4 are 54, 54, 55,

80 respectively). We call this task set T2’. In Fig. 1(d),

only one TDS point appears at t = 6. However, in the

critical interval of 5, 10 idle times with length 1.5 before t

= 54 exist. Therefore, by deducting 1.5 from the time

demand of each time instant shown in Fig. 1(d), the time

demand relationship for the time interval (54, 60] in the

critical interval of 5 could be obtained. Fig. 1(e) shows

the time demand function for the time interval (54, 60] in

the critical interval of 5. From Fig. 1(e), we could see that

5 TDS points are in (54, 60].

From the above observation, we can see that, assume

the kth idle time interval = (Xk,)Yk] for k 1, a TDS point t

ranging between the kth and (k+1)th idle times can be

generated if the following equation is met:

t = TD’(t) + Yk - 1(Y X)k
m mm

where TD’(t) = 1
1(p Y p)ci

j j k j jt . When k is larger,

so is 1(Y X)k
m mm , and more TDS points could be

found.

In Fig. 2(b), the gray areas (respectively, white areas)

are a set of time instants at which the time demands are

larger than (respectively, less than) the corresponding time

instants, and the margin of the end of the kth gray area and

the beginning of the kth white area (for k 1) are TDS

points. Hence, if the initial value belongs to the kth

(1 k 19) gray area, the kth TDS point could be found by

more than one RTA iterations; if the initial value belongs

to the kth (1 k 19) white area or the margin of the kth

gray and white areas (i.e. TDS point), the kth TDS point

could be found in 1 RTA iteration. Therefore, when the

value of WR(0) = max{WR4+c5, c5/(1-U4)} = 18.5, the first

600

WR(0)
WR’(0)

600

600

WR(0)
WR’(0)

TDS point, i.e. 29.5, would be found in 9 RTA iterations.

If WR(0) is set to a larger value such as WR’(0), the fifth

TDS point (i.e. 37.5) could be found only in 2 RTA

iterations. Besides, if the computation time of 5 changes

from 0.5 to 3, as shown in Fig. 2(c), 5 is not schedulable.

Under this condition, the number of RTA iterations

needed to check the schedulability of 5 must be less if

WR’(0) is applied (rather than WR(0)).

Therefore, we propose a new initial value to reduce the

number of RTA iterations and prove that if the task set is

schedulable, at least one TDS point can be found between

this initial value and pi. The proofs are shown in the

following lemmas and theorems.

(a) T is not schedulable

(b) T is schedulable and the first idle time appearing

after WR(0)

(c) T is schedulable and the first idle time appearing

before or at WR(0)

Fig. 3. RTA when WR
(0)

 = max{pi-pi-1, pi/2}

Lemma 1. In the critical interval of i if there is an idle

time in the time interval (0,)pi-pi-1], there must exist

another idle time in the time interval (pi-pi-1,)pi].

Proof. If the first job of i is scheduled before or at the

time instant pi-pi-1 by ci units of time, only jobs of 1, 2, ... ,

i-1 would be scheduled after pi-pi-1. Because 1, 2, ... , i-1

are RM schedulable, at least one idle time must appear in

the critical interval of i-1 (with length pi-1 and starting

from the even phase, that is, the worse condition). At time

instant pi-pi-1, jobs of 1, 2, ... , i-1 may be released either

in the even phase or in the odd phase, and therefore, there

must also exist an idle time in the time interval (pi-pi-1,)pi].

Lemma 2. In the critical interval of i if there is an idle

time in the time interval (0, pi/2], there must exist another

idle time in the time interval (pi/2, pi].

Proof. If there is an idle time in the first half of the critical

interval of i, there must also exist an idle time in the

second half of the critical interval of i. This is because at

the critical instant of i, jobs of 1, 2, ... , i are released at

the same time (in the even phase, or the worse condition),

but jobs of 1, 2, ... , i are released either in the even phase

or in the odd phase at time instant pi/2. Hence if there is an

idle time in (0, pi/2], another idle time must appear in (pi/2,

pi].

Theorem 1. In the critical interval of i if there is an idle

time in the time interval (0, max{pi-pi-1, pi/2}], there must

exist another idle time in the time interval (max{pi-pi-1,

pi/2}, pi].

Proof. If max{pi-pi-1, pi/2} = pi-pi-1, according to Lemma 1,

we know that if there is an idle time in the time interval (0,

pi-pi-1], there is another idle time in (pi-pi-1, pi], that is, in

(max{pi-pi-1, pi/2}, pi]. Otherwise, if max{pi-pi-1, pi/2} =

pi/2, according to Lemma 2, we can know that if there is

an idle time in the time interval (0, pi/2], there must be

another idle time in (pi/2,pi], that is, in (max{pi-pi-1,pi/2},

pi]. The theorem is therefore proved.

Theorem 2. The RTA schedulability test result for a

periodic tasks set T is correct if WR(0) = max{pi-pi-1, pi/2}.

Proof. This theorem is proved by considering the

following three cases:

Case 1: If i is not schedulable, no idle times and TDS

points could be found in the critical interval of i, so the

RTA iterative procedure would be done until WR(l+1) > pi

(for some l 0), as shown in Fig. 3(a).

Case 2. If i is schedulable and the first idle time

appears after WR(0) in the critical interval of i, the RTA

iterative procedure would be done until WR(l+1) = WR(l)

pi (for some l 1), as shown in Fig. 3(b).

Case 3. If i is schedulable and the first idle time

appears before or at WR(0) in the critical interval of i,

according to Theorem 1, there would be another idle time

in (WR(0),)pi]. That is, at least one TDS point is in

(WR(0),)pi]. Besides, if WR(1) is less than WR(0), one TDS

point appears exactly at WR(1). Hence the RTA iterative

procedure would be done until WR(l+1) = WR(l) pi (for

some l 0) or WR(1) < WR(0), as shown in Fig. 3(c).

We now extend the result in Theorem 2 by considering

the initial values proposed in [1, 3], as shown in Corollary

1. Note that WRi-1 is the first idle time (i.e. the first TDS

point) defined in [1, 3] and must be known from the

schedulability test of i-1. However, the TDS point found

by our initial value may not be is the first one, and

therefore, WRi-1+ci cannot be considered to be our initial

value.

0

WR(0)

pi

0

WR(0)

pi

0

WR(0)

pi

WR(l+1)

WR(l+1)=WR(l)

WR(l+1)=WR(l)

Corollary 1. The RTA schedulability test result for a

periodic tasks set T is correct if WR(0) = max{pi-pi-1, pi/2,

ci/(1-Ui-1)}.

Under this initial value max{pi-pi-1, pi/2, ci/(1-Ui-1)}, a

TDS point may exist exactly at time instant WR(1) which

is less than WR(0). So the termination condition for the

RTA iterative procedure has an extra condition: WR(0)

>WR(1). That is, if WR(0) >WR(1), the task set must be

schedulable. The modified RTA exact test algorithm is

shown in Algorithm 1.

Algorithm 1: Exact Schedulability Test

Input: A periodic task set T = { 1, 2, ... , i} on condition

that the subset of T = { 1, 2, ... , i-1} is schedulable;

Output: The schedulability result of T;

1 WR(0) = max{pi-pi-1, pi/2, ci/(1-Ui-1)};

2 l = -1;

3 do

4 l = l+1;

5 WR(l+1) = ci+
()1

1 WR p cli
k kk ;

6 while WR(l+1) > WR(l) and WR(l+1) pi

7 if WR(l+1) WR(l)
then

8 return “schedulable”;

9 else

10 return “unschedulable”;

11 end if

The following two examples show the operations of

Algorithm 1.

Example 1. Let T = { 1 = (1, 2), 2 = (1, 3), 3 = (1, 11), 4

= (1, 40), 5 = (0.5, 60)} be a set of periodic tasks as

shown in Table 1. According to Algorithm 1, the

schedulability of 5 could be tested as follows: Initially,

WR(0) = max{60-40, 60/2, 0.5/(1-0.94)} = max {20, 30,

9.85} = 30. Then, WR(1) = 29.5 < WR(0). Therefore, the

termination condition is satisfied in 1 RTA iteration and

the task set T is reported as “schedulable”. From the

pervious example, we could know that if the value of

WR(0) is set based on the method in [3], that is, WR(0) =

max{WR4+c5, c5/(1-U4)} = 18.5, the RTA iterative

procedures would be done in 9 iterations (WR(1) = 20.5,

WR(2) = 21.5, WR(3) = 22.5, WR(4) = 24.5, WR(5) = 26.5,

WR(6) = 27.5, WR(7) = 28.5, WR(8) = WR(9) = 29.5).

Example 2. Let T = { 1 = (1, 2), 2 = (1, 3), 3 = (1, 20), 4

= (1.1, 33)} be a set of periodic tasks. The schedulability

of 4 is tested as follows: Initially, WR(0) = max{33-20,

33/2, 1.1/(1-0.88)} = 16.5. Then, WR(1) =WR(2)= 17.1 p4

(i.e. 33). Therefore, the termination condition is met in 2

RTA iterations and T is “schedulable”. If the value of

WR(0) is set as max{WR3+c4, c4/(1-U3)} = max{6+1.1,

1.1/(1-0.88)} = 9.42, the RTA iterative procedure will be

done in 7 iterations (WR(1) = 11.1, WR(2) = 12.1, WR(3) =

14.1, WR(4) = 15.1, WR(5) = 16.1, WR(6) = WR(7) = 17.1).

Note that if the period of 4 is changed from 33 to 40,

Algorithm 1 will find the second TDS point (i.e. 19.1) in 1

RTA iteration and report “schedulable”.

For tasks whose deadlines are no at the end of their

periods, RTA can be performed similarly. Suppose a

periodic task i = (ci, pi, di) where di is the relative

deadline of i and di pi. The schedulability test for i

could be done by modifying the following steps of

Algorithm 1: (1) Step 1 of Algorithm 1 is changed to

WR(0) = max{di-di-1, di/2, ci/(1-Ui-1)}; (2) Step 6 is changed

to WR(l+1) > WR(l) and WR(l+1) di. With these changes,

the TDS point is checked against the deadline.

4. Performance Evaluation

4.1. Data Set and Measurement

The primary performance metric reported is the

Iteration Ratio. Let x and y be the numbers of iterations

executed in RTA with initial value = max{WRi-1+ci} and

one of the initial values (1) max{WRi-1+ci, ci/(1-Ui-1)} or

(2) max{pi-pi-1, pi/2} and (3) max{pi-pi-1, pi/2, ci/(1-Ui-1)}

respectively. The Iteration Ratio of RTA with a new

initial value is defined as y/x.

The task sets for performance study are generated

based on the benchmark systems used in [4, 5, 10, 13]. A

random number generator is used to generate task sets: the

number of tasks per task set, denoted by n, was randomly

selected in (3, 5), (5, 10), (10, 15), and (15, 20)

respectively. The number of fundamental period

frequencies is a real number within the range [1/4, 1]

multiplied by the number of tasks in the task set. The data

sets are generated with a total utilization factor between

0.75 and 1. The experiments were started with a task set

with a total utilization of 0.75, and repeated for sets with a

total utilization factor increased by the increment of 0.05

until it reaches 1. The utilization factor of every task is no

more than 0.4 of the total utilization factor of its task set.

Every task is assigned a fundamental frequency randomly,

with the possibility of assigning k fundamental

frequencies equaling to (1/2)k-1. The period of each task is

the product of all its assigned fundamental frequencies. A

total of 10,000 task sets were tested for each utilization

factor.

4.2. Experimental Results for the Periodic Task

Model

Fig. 4 shows the iteration ratios of the RTA’s using

initial values of (1) max{WRi-1+ci, ci/(1-Ui-1)}, (2)

max{pi-pi-1, pi/2}, and (3) max{pi-pi-1, pi/2, ci/(1-Ui-1)}

respectively. The number of tasks in a task set ranges

between 3 and 5. As shown in Fig. 4, the iteration ratios of

(2) and (3) are lower than that of (1) in most cases. (1)

outperforms (2) only when the CPU utilization is equal to

1. This is because when the value of ci is large or the total

utilization of tasks 1, 2, ... , i-1 is large enough, ci/(1-Ui-1)

(i.e. (1)) can derive a large initial value to reduce the

number of RTA iterations. Therefore, (3) could improve

(2) further, especially when the CPU utilization is high.

However, when the CPU utilization is low, (2) and (3) are

much better than (1). This is because when the utilization

is low, task sets are more likely schedulable and more than

one TDS points may exist in the critical interval of i. If

max{pi-pi-1, pi/2} is large enough, a TDS point could be

found in a small number of RTA iterations.

Figures 5, 6 and 7 show the iteration ratios when n is in

(5, 10), (10, 15), and (15, 20) respectively. It is obvious

that when n is large, the performance of (1) is not good,

but both (2) and (3) have better performances. This is

because with the same CPU utilization, ci is more likely to

be smaller when n becomes larger. Therefore, a smaller

initial value would be derived in (1) and a larger number

of RTA iterations is needed. From Fig. 4-7, we could see

that (3) saves more then 78.2% (when n = (15, 20) and the

CPU utilization = 0.95) on the number of RTA iterations.

5. Conclusions

In this paper, we have presented two new initial values

for exact schedulability tests on rate monotonic scheduling

of periodic tasks. Our initial values are based on the

largest and the second largest periods in a system. By

considering these two periods, periodic tasks can be

checked efficiently when performing the RM

schedulability tests. A comparison of different initial

values for RTA is shown in Table 2. For systems with a

larger number of tasks, our new initial values may reduce

the test iterations by as much as 78%. We will continue to

use this idea to look for other engineering approaches to

improve the schedulability of real-time systems.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

75 80 85 90 95 100

CPU Utilization (%)

It
e
ra

ti
o

n
 R

a
ti

o
 (

%
)

(1) (2) (3)

Fig. 4 Iteration ratio comparison when n (3,5)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

75 80 85 90 95 100

CPU Utilization (%)

It
e
ra

ti
o

n
 R

a
ti

o
 (

%
)

(1) (2) (3)

Fig. 5 Iteration ratio comparison when n (5,10)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

75 80 85 90 95 100

CPU Utilization (%)

It
e
ra

ti
o

n
 R

a
ti

o
 (

%
)

(1) (2) (3)

Fig. 6 Iteration ratio comparison when n (10,15)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

75 80 85 90 95 100

CPU Utilization (%)

It
e
ra

ti
o

n
 R

a
ti

o
 (

%
)

(1) (2) (3)

Fig. 7 Iteration ratio comparison when n (15,20)

References

[1] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A.

Wellings, “Applying new scheduling theory to static priority

pre-emptive scheduling,” Software Engineering Journal,

8(5), pp. 284-292, 1993.

[2] E. Bini and G.C. Buttazzo, “The Space of Rate Monotonic

Schedulability,” Proceedings of the 23rd IEEE Symposium on

Real-Time Systems, pp. 169-178, December 2002.

[3] R.J. Bril, W.F.J. Verhaegh, E.J.D. Pol, “Initial Values for

On-line Response Time Calculations” Proceedings of the

15th IEEE Euromicro Conference on Real-Time Systems, pp.

13-22, July 2003.

[4] N.I. Kamenoff and N.H. Weiderman, “Hartstone Distributed

Benchmark: Requirements and Definitions,” Proc. of the

12th IEEE Real-Time Systems Symposium, 1991.

[5] N. Kim, M. Ryu, S. Hong, M. Saksena, C.H. Choi, and H.

Shin, “Visual Assessment of a Real-Time System Design: A

Case Study on a CNC Controller,” Proc. of the 17th IEEE

Real-Time Systems Symposium, 1996.

[6] S. Lauzac, R. Melhem, D. Mossè, “An Improved Rate-

Monotonic Admission Control And Its Applications,” IEEE

Transactions on Computer, 52(3), pp. 337-350, 2003.

[7] J.P. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic

Scheduling Algorithms: Exact Characterization and Average

Case Behavior,” Proceedings of the 10th IEEE Symposium

on Real-Time Systems, pp. 166-171, December 1989.

[8] C.L. Liu and J.W. Layland, “Scheduling algorithms for

multiprogramming in a hard real-time environment,”

Journal of the ACM, 20(1), pp. 40-61, 1973.

[9] Jane W.S. Liu, Real-Time Systems, Prentice Hall, 2000.

[10] C.D. Locke, D.R. Vogel, and T.J. Mesler, “Building a

Predictable Avionics Platform in Ada: A Case Study,” Proc.

of 12th IEEE Real-Time Systems Symposium, 1991.

[11] W.C. Lu, J.W. Hsieh, W.K. Shih and T.W. Kuo, “A Faster

Exact Schedulability Analysis for Fixed-priority

Scheduling”, Journal of Systems and Software, 79(12), pp.

1744-1753, 2006.

[12] W.C. Lu, H.W. Wei, K.J. Lin, “Rate Monotonic

Schedulability Conditions Using Relative Period Ratios,”

12th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA),

pp. 3-9, 2006.

[13] J.J. Molini, S.K. Maimon, and P.H. Watson, “Real-Time

System Scenarios,” Proc. of the 12th IEEE Real-Time

Systems Symposium, 1991.

Table 2. The comparison of different initial values for RTA

WR
(0)

 Strength Weakness

WRi-1+ci

1. This is an intuitive initial value 1. Incremental computation is needed to

derive WRi-1

2. If the task is schedulable, the first TDS

point is found in the critical interval

3. The performance is poor compared to

RTA using other initial values

ci/(1-Ui-1)

1. No incremental computation is needed

to derive the initial value

2. The performance is good when the

number of tasks is small (5), see [3].

1. If the task is schedulable, the first TDS

point is found in the critical interval

2. The performance is poor when the

number of tasks is large (>5)

pi-pi-1

1. No incremental computation is needed

to derive the initial value

2. If the task is schedulable, a TDS point

which is not limited to the first one will

be found in the critical interval

1. When the difference between pi-1 and pi

is small, the initial value may be too

small

pi/2

1. No incremental computation is needed

to derive the initial value

2. If the task is schedulable, a TDS point

which is not limited to the first one will

be found in the critical interval

1. When the task is not schedulable, the

initial value may be too small

