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Abstract

Real-time systems using Rate Monotonic fixed priority 

scheduling can be checked for schedulability either by 

pessimistic schedulability conditions or exact testing. 

Exact testing provides a more precise result but cannot 

always be performed in polynomial time. Audsley et al. 

proposed one of the earliest methods by iteratively 

deriving the job response times. Other researchers have 

improved the efficiency of their exact test method by using 

different initial values. All currently proposed initial 

values do not use the relationship between task periods. In 

this paper we define initial values using the largest and 

the second largest periods in a system. We show that the 

new initial values can significantly improve the exact test. 

1. Introduction 

The schedulability of real-time periodic tasks using the 

Rate Monotonic (RM) fixed priority scheduling algorithm 

can be checked using the total utilization factor of all tasks 

in a system [6, 8, 12]. For a periodic task set, each 

periodic task i is defined with two parameters (ci, pi),

where ci and pi are the worst case computation time and 

the period of task i respectively. The utilization factor of 

task i is defined by ui = ci/pi. If the total utilization of a 

system is less than or equal to a bound, the system is 

guaranteed to be schedulable. 

The utilization bound provides a pessimistic testing 

since tasks may be schedulable even if they do not meet 

the bound condition. Lehoczky et al. [7] is among the first 

to propose the exact-test concept for rate monotonic 

analysis (RMA). In the RMA process, one needs to check 

if the total computation time needed by a task set before a 

time instance (after all tasks are ready) can be completed 

before that time. When the time demand at any time t ( pi)

is equal to t, we call this type of time point as time

demand schedulable (TDS) point for task i in this paper.  

Audsley et al. [1] proposes another idea for RMA, in 

which the worst-case response time WRi of task i is 

derived by iteratively calculating the following formula: 

WR(l+1) = ci + ( )1
1 WR p cli

j jj

until WR(l+1) either converges to a constant number (i.e., 

WRi) or is beyond the deadline of task pi, where WR(0) = 

WRi-1+ci. In this paper, this RMA method is referred to as 

the response time analysis (RTA).

Although exact tests provide a better schedulability 

testing for RM tasks, they require the task response time 

to be calculated iteratively [1, 2, 3, 7, 11]. In recent years, 

researchers have proposed several methods to improve the 

run time of RMA tests [2, 3, 11]. Bini and Buttazzo [2] 

proposed a way to balance the required run time of the 

time demand analysis method and the false-identification 

rate of schedulable tasks. Bril et al. [3] proposed a new 

initial value WR(0) = max{WRi-1+ci, ci/(1-(u1+u2+ ... +ui-1))}

used by RTA. More recently, Lu et al. [11] proposed an 

RTA iterative formula to derive WR(l+1) for l 0.

This paper studies the initial values used in RTA and 

proposes new initial values with a much better 

performance. Previous works [1, 3] try to find the first 

TDS point in the critical interval of i (see Def. 4). 

However, using our proposed initial values, the TDS point 

identified is not necessarily the first TDS, but maybe the 

kth TDS point (k is greater than 1) in the interval. We 

show in this paper that the task set is schedulable as long 

as some TDS point exists in the critical interval of i. We 

propose the initial value as max{pi-pi-1, pi/2, ci/(1-

(u1+u2+ ... +ui-1))}.The performance of the proposed initial

value has been tested and compared to earlier works [1, 3]. 
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The result shows that our RTA method may achieve a 

saving of up to 78.2% in the number of iterations. When 

the number of tasks in a system is large, our method can 

significantly reduce the number of iterations.  

The remainder of this paper is organized as follows. In 

Section 2, we define the notions for real-time periodic 

tasks. Section 3 presents some new initial values for the 

RTA schedulability test, an extended testing algorithm 

and its correctness. Section 4 shows the simulation results 

for the proposed initial values used for RTA. The paper is 

concluded in Section 5 with a comparison of all initial 

values proposed so far. 

2. Definitions and Motivation 

Before we show our new result, we first present some 

formal definitions about RM scheduling. 

Definition 1. [8] Let T = { 1, 2, ... , i} be a set of i

periodic tasks. Each task j (j = 1, ... , i) is a tuple (cj, pj),

where cj and pj are the maximum computation time and 

the period of task j, respectively. The utilization of j,

denoted by uj, is equal to cj/pj. The total utilization of 1,

2, ... , i is denoted as Ui. Without loss of generality, we 

may assume that tasks in T are indexed in the order of 

increasing periods, and hence task i has the longest period 

of all tasks. 

Definition 2. [9] Feasible and Schedulable: Suppose a 

task set is scheduled by S scheduling algorithm, the 

schedule for the task set is feasible if all the jobs in each 

task can meet their corresponding deadlines under S

scheduling. A task set is schedulable if there exists a 

feasible schedule. 

Definition 3. [9] Rate Monotonic Scheduling: Rate 

monotonic (RM) algorithm is an optimal fixed-priority 

scheduling algorithm, which means RM algorithm can 

always generate a feasible schedule if a task set is 

schedulable. Under RM scheduling, the individual task 

priorities are assigned inversely proportional to their 

respective periods. In other words, a task with shorter 

period is assigned with a higher priority (and can be 

scheduled earlier). 

Definition 4. [8] The Critical Instant and Critical Interval:

The critical instant of a periodic task is the beginning of 

the period when its computation time is requested 

simultaneously with the computation times of all higher 

priority tasks. The critical interval of a periodic task is the 

time interval between a critical instant and the deadline of 

the task. 

Definition 5. Time Demand and Time Demand 

Schedulable (TDS) Point: For any time instant t (  pi),

the time demand at t, denoted by TD(t), is equal to 

ci + 1
1 p ci

j jj t .

If TD(t) is equal to t, i is RM schedulable and the time t is 

called the time demand schedulable (TDS) point.

Definition 6. [1] Response Time Analysis (RTA):

According to the exact test method proposed in [8], the 

worst-case response time WRi of each task i is derived by 

iteratively calculating the formula  

WR(l+1) = ci +
( )1

1 WR p cli
j jj

unitl WR(l+1) either converges to a real number (i.e., WRi)

or exceeds the deadline of task i. A task is schedulable if 

its worst-case response time, i.e. WRi, is no larger than its 

deadline; otherwise, the task is unschedulable. Please 

notice that (1) l 0 and (2) WR(0) is the initial value of the 

RTA iterative procedure and is equal to WRi-1+ci.

3. The Derivation of the Initial Value 

Bril et al. [3] proposed an initial value WR(0) = 

max{WRi-1+ci, ci/(1-Ui-1)} for RTA. However, All RTA’s 

with initial values proposed in [1, 3] are to find the first 

TDS point in the critical interval of i to decide the 

schedulability. When the value of ci is too small or Ui-1

(i.e., the total utilization of tasks 1, 2, ... , i-1) is not large 

enough, ci/(1-Ui-1) will be small and cannot produce a 

good initial value. For example, assume T = { 1, 2, ... , 5}

is a set of 5 periodic tasks as shown in Table 1. The subset 

of T = { 1, 2, 3, 4} is known to be RM schedulable. If 

the schedulability of 5 is tested by RTA, ci/(1-Ui-1) = 

0.5/(1-0.94) = 9.85 would not be chosen as the initial 

value because WRi-1 +ci = 18+0.5 = 18.5 > 9.85. 

Table 1. The periodic task set T 

i ci pi

1 1 2 

2 1 3 

3 1 11 

4 1 40 

5 0.5 60 

In this paper, new initial values are proposed by 

considering the largest and the second largest periods in a 

system. Our new initial values are motivated by the 

observation that many TDS points may exist in the critical 

interval of i if i is schedulable. Fig. 1(a) shows the time 

demand function for tasks of Table 1. When the time 

demand (solid line) intersects the time supply (45o dashed 

line), the intersected point is a TDS point. Therefore, there 

are 19 TDS points for the task set of Table 1. Earlier RTA 

methods [1, 3] try to find the first TDS point (i.e. 29.5) in 

the critical interval of i. However, if the initial value is 

large enough (that is, larger than the first TDS point), 

other TDS points may be found in a smaller number of 

RTA iterations. 
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(a) The time demand relationship for T under different time instants 
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(b) The time demand relationship for T1’ in (0,)23]          (c) The time demand relationship for T in (30,)53] 
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Fig. 1 The time demand relationship 
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(a) 11 idle times in the critical interval (0,)60] when c5 = 0.5 

(b) 19 TDS points in the critical interval (0,)60] when c5 = 0.5 

(c) No idle time and TDS point in the critical interval (0,)60] when c5 = 3 

Fig. 2. The initial value setting for RTA 

Fig. 2(a) shows the actual RM schedule for tasks listed 

in Table 1. There are 11 idle times in the critical interval 

of 5 (i.e.)(29.5,)30], (32,)32], (33,)33], (42,)42], (44,)44], 

(48,)48], (50,)50], (51,)51], (52,)52], (53,)54]  and 

(60,)60]). (Please notice that only the first and tenth idle 

times are with length larger than 0.) However, there are 19 

TDS points in the critical interval of 5, as shown in Fig. 

1(a) and Fig. 2(b). In other words, an idle time existed in 

the critical interval of i may generate at least one, but 

usually much more, TDS point. It may be faster to find a 

TDS point than to find an idle time interval. 

We first study the relationship between the first idle 

time (with length 0.5) and TDS points in (30,)53]. In the 

time interval (30,)53], only 1, 2, ... , 4 are scheduled. Fig. 

1(b) shows the time demand function for tasks 1, 2, ... , 4

( 5 is excluded) with the ready times of 1, 2, ... , 4 are 0, 0, 

3, 10 respectively (since after the first idle time, the first 

actual job release time of 1, 2, ... , 4 are 30, 30, 33, 40 

respectively). This task set is called T1’. In Fig. 1(b), 9 

TDS points (i.e. at time instants 2, 3, 12, 14, 18, 20, 21, 22, 

23) appear before or at t = 23. However, in the critical 

interval of 5, an idle time with length 0.5 before t = 30

exists. Therefore, by deducting 0.5 from the time demand 

of each time instant shown in Fig. 1(b), the time demand 

function for the time interval (30,)53] in the critical 

interval of 5 could be obtained. Fig. 1(c) shows the time 

demand relationship for the time interval (30,)53] in the 

critical interval of 5. From Fig. 1(c), we could see that, 

due to the first idle time, 13 TDS points are in (30,)53]. 

Next, we investigate the relationship between the tenth 

idle time (with length 1) and TDS points in (54,)60]. In the 

time interval (54,)60], only 1, 2, ... , 4 are scheduled. Fig. 

1(d) shows the time demand relationship for tasks 1, 2, ... ,

4 ( 5 is excluded) with the ready times of 1, 2, ... , 4 are 0, 

0, 1, 26 respectively (since after the second idle time, the 

first actual job release time of 1, 2, ... , 4 are 54, 54, 55, 

80 respectively). We call this task set T2’. In Fig. 1(d), 

only one TDS point appears at t = 6. However, in the 

critical interval of 5, 10 idle times with length 1.5 before t

= 54 exist. Therefore, by deducting 1.5 from the time 

demand of each time instant shown in Fig. 1(d), the time 

demand relationship for the time interval (54, 60] in the 

critical interval of 5 could be obtained. Fig. 1(e) shows 

the time demand function for the time interval (54, 60] in 

the critical interval of 5. From Fig. 1(e), we could see that 

5 TDS points are in (54, 60]. 

From the above observation, we can see that, assume 

the kth idle time interval = (Xk,)Yk] for k 1, a TDS point t

ranging between the kth and (k+1)th idle times can be 

generated if the following equation is met: 

t = TD’(t) + Yk - 1(Y X )k
m mm

where TD’(t) = 1
1( p Y p )ci

j j k j jt . When k is larger, 

so is 1(Y X )k
m mm , and more TDS points could be 

found.

In Fig. 2(b), the gray areas (respectively, white areas) 

are a set of time instants at which the time demands are 

larger than (respectively, less than) the corresponding time 

instants, and the margin of the end of the kth gray area and 

the beginning of the kth white area (for k 1) are TDS 

points. Hence, if the initial value belongs to the kth 

(1 k 19) gray area, the kth TDS point could be found by 

more than one RTA iterations; if the initial value belongs 

to the kth (1 k 19) white area or the margin of the kth 

gray and white areas (i.e. TDS point), the kth TDS point 

could be found in 1 RTA iteration. Therefore, when the 

value of WR(0) = max{WR4+c5, c5/(1-U4)} = 18.5, the first 

600

WR(0)
WR’(0)

600

600
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WR’(0)



TDS point, i.e. 29.5, would be found in 9 RTA iterations. 

If WR(0) is set to a larger value such as WR’(0), the fifth 

TDS point (i.e. 37.5) could be found only in 2 RTA 

iterations. Besides, if the computation time of 5 changes 

from 0.5 to 3, as shown in Fig. 2(c), 5 is not schedulable. 

Under this condition, the number of RTA iterations 

needed to check the schedulability of 5 must be less if 

WR’(0) is applied (rather than WR(0)).

Therefore, we propose a new initial value to reduce the 

number of RTA iterations and prove that if the task set is 

schedulable, at least one TDS point can be found between 

this initial value and pi. The proofs are shown in the 

following lemmas and theorems. 

(a) T is not schedulable 

(b) T is schedulable and the first idle time appearing 

after WR(0)

(c) T is schedulable and the first idle time appearing 

before or at WR(0)

Fig. 3. RTA when WR
(0)

 = max{pi-pi-1, pi/2}

Lemma 1. In the critical interval of i if there is an idle 

time in the time interval (0,)pi-pi-1], there must exist 

another idle time in the time interval (pi-pi-1,)pi]. 

Proof. If the first job of i is scheduled before or at the 

time instant pi-pi-1 by ci units of time, only jobs of 1, 2, ... ,

i-1 would be scheduled after pi-pi-1. Because 1, 2, ... , i-1

are RM schedulable, at least one idle time must appear in 

the critical interval of i-1 (with length pi-1 and starting 

from the even phase, that is, the worse condition). At time 

instant pi-pi-1, jobs of 1, 2, ... , i-1 may be released either 

in the even phase or in the odd phase, and therefore, there 

must also exist an idle time in the time interval (pi-pi-1,)pi]. 

Lemma 2. In the critical interval of i if there is an idle 

time in the time interval (0, pi/2], there must exist another 

idle time in the time interval (pi/2, pi]. 

Proof. If there is an idle time in the first half of the critical 

interval of i, there must also exist an idle time in the 

second half of the critical interval of i. This is because at 

the critical instant of i, jobs of 1, 2, ... , i are released at 

the same time (in the even phase, or the worse condition), 

but jobs of 1, 2, ... , i are released either in the even phase 

or in the odd phase at time instant pi/2. Hence if there is an 

idle time in (0, pi/2], another idle time must appear in (pi/2, 

pi]. 

Theorem 1. In the critical interval of i if there is an idle 

time in the time interval (0, max{pi-pi-1, pi/2}], there must 

exist another idle time in the time interval (max{pi-pi-1,

pi/2}, pi]. 

Proof. If max{pi-pi-1, pi/2} = pi-pi-1, according to Lemma 1, 

we know that if there is an idle time in the time interval (0,

pi-pi-1], there is another idle time in (pi-pi-1, pi], that is, in 

(max{pi-pi-1, pi/2}, pi]. Otherwise, if max{pi-pi-1, pi/2} = 

pi/2, according to Lemma 2, we can know that if there is 

an idle time in the time interval (0, pi/2], there must be 

another idle time in (pi/2,pi], that is, in (max{pi-pi-1,pi/2},

pi]. The theorem is therefore proved. 

Theorem 2. The RTA schedulability test result for a 

periodic tasks set T is correct if WR(0) = max{pi-pi-1, pi/2}. 

Proof. This theorem is proved by considering the 

following three cases: 

Case 1: If i is not schedulable, no idle times and TDS 

points could be found in the critical interval of i, so the 

RTA iterative procedure would be done until WR(l+1) > pi

(for some l 0), as shown in Fig. 3(a). 

Case 2. If i is schedulable and the first idle time 

appears after WR(0) in the critical interval of i, the RTA 

iterative procedure would be done until WR(l+1) = WR(l)

pi (for some l 1), as shown in Fig. 3(b). 

Case 3. If i is schedulable and the first idle time 

appears before or at WR(0) in the critical interval of i,

according to Theorem 1, there would be another idle time 

in (WR(0),)pi]. That is, at least one TDS point is in 

(WR(0),)pi]. Besides, if WR(1) is less than WR(0), one TDS 

point appears exactly at WR(1). Hence the RTA iterative 

procedure would be done until WR(l+1) = WR(l) pi (for

some l 0) or WR(1) < WR(0), as shown in Fig. 3(c).

We now extend the result in Theorem 2 by considering 

the initial values proposed in [1, 3], as shown in Corollary 

1. Note that WRi-1 is the first idle time (i.e. the first TDS 

point) defined in [1, 3] and must be known from the 

schedulability test of i-1. However, the TDS point found 

by our initial value may not be is the first one, and 

therefore, WRi-1+ci cannot be considered to be our initial 

value. 

0

WR(0)

pi

0

WR(0)

pi

0

WR(0)

pi

WR(l+1)

WR(l+1)=WR(l)

WR(l+1)=WR(l)



Corollary 1. The RTA schedulability test result for a 

periodic tasks set T is correct if WR(0) = max{pi-pi-1, pi/2, 

ci/(1-Ui-1)}.

Under this initial value max{pi-pi-1, pi/2, ci/(1-Ui-1)}, a 

TDS point may exist exactly at time instant WR(1) which 

is less than WR(0). So the termination condition for the 

RTA iterative procedure has an extra condition: WR(0)

>WR(1). That is, if WR(0) >WR(1), the task set must be 

schedulable. The modified RTA exact test algorithm is 

shown in Algorithm 1. 

Algorithm 1: Exact Schedulability Test 

Input: A periodic task set T = { 1, 2, ... , i} on condition 

that the subset of T = { 1, 2, ... , i-1} is schedulable; 

Output: The schedulability result of T;

1   WR(0) = max{pi-pi-1, pi/2, ci/(1-Ui-1)};

2 l = -1; 

3   do

4 l = l+1;

5 WR(l+1) = ci+
( )1

1 WR p cli
k kk ;

6 while WR(l+1) > WR(l) and WR(l+1) pi

7   if WR(l+1) WR(l)
then

8          return “schedulable”; 

9  else

10        return “unschedulable”; 

11 end if

The following two examples show the operations of 

Algorithm 1. 

Example 1. Let T = { 1 = (1, 2), 2 = (1, 3), 3 = (1, 11), 4

= (1, 40), 5 = (0.5, 60)} be a set of periodic tasks as 

shown in Table 1. According to Algorithm 1, the 

schedulability of 5 could be tested as follows: Initially, 

WR(0) = max{60-40, 60/2, 0.5/(1-0.94)} = max {20, 30, 

9.85} = 30. Then, WR(1) = 29.5 < WR(0). Therefore, the 

termination condition is satisfied in 1 RTA iteration and 

the task set T is reported as “schedulable”. From the 

pervious example, we could know that if the value of 

WR(0) is set based on the method in [3], that is, WR(0) = 

max{WR4+c5, c5/(1-U4)} = 18.5, the RTA iterative 

procedures would be done in 9 iterations (WR(1) = 20.5, 

WR(2) = 21.5, WR(3) = 22.5, WR(4) = 24.5, WR(5) = 26.5, 

WR(6) = 27.5, WR(7) = 28.5, WR(8) = WR(9) = 29.5). 

Example 2. Let T = { 1 = (1, 2), 2 = (1, 3), 3 = (1, 20), 4

= (1.1, 33)} be a set of periodic tasks. The schedulability 

of 4 is tested as follows: Initially, WR(0) = max{33-20,

33/2, 1.1/(1-0.88)} = 16.5. Then, WR(1) =WR(2)= 17.1 p4

(i.e. 33). Therefore, the termination condition is met in 2 

RTA iterations and T is “schedulable”. If the value of 

WR(0) is set as max{WR3+c4, c4/(1-U3)} = max{6+1.1,

1.1/(1-0.88)} = 9.42, the RTA iterative procedure will be 

done in 7 iterations (WR(1) = 11.1, WR(2) = 12.1, WR(3) =

14.1, WR(4) = 15.1, WR(5) = 16.1, WR(6) = WR(7) = 17.1). 

Note that if the period of 4 is changed from 33 to 40, 

Algorithm 1 will find the second TDS point (i.e. 19.1) in 1 

RTA iteration and report “schedulable”. 

For tasks whose deadlines are no at the end of their 

periods, RTA can be performed similarly. Suppose a 

periodic task i = (ci, pi, di) where di is the relative 

deadline of i and di pi. The schedulability test for i

could be done by modifying the following steps of 

Algorithm 1: (1) Step 1 of Algorithm 1 is changed to 

WR(0) = max{di-di-1, di/2, ci/(1-Ui-1)}; (2) Step 6 is changed 

to WR(l+1) > WR(l) and WR(l+1) di. With these changes, 

the TDS point is checked against the deadline. 

4. Performance Evaluation 

4.1. Data Set and Measurement 

The primary performance metric reported is the 

Iteration Ratio. Let x and y be the numbers of iterations 

executed in RTA with initial value = max{WRi-1+ci} and 

one of the initial values (1) max{WRi-1+ci, ci/(1-Ui-1)} or 

(2) max{pi-pi-1, pi/2} and (3) max{pi-pi-1, pi/2, ci/(1-Ui-1)}

respectively. The Iteration Ratio of RTA with a new 

initial value is defined as y/x.

The task sets for performance study are generated 

based on the benchmark systems used in [4, 5, 10, 13]. A 

random number generator is used to generate task sets: the 

number of tasks per task set, denoted by n, was randomly 

selected in (3, 5), (5, 10), (10, 15), and (15, 20)

respectively. The number of fundamental period 

frequencies is a real number within the range [1/4, 1] 

multiplied by the number of tasks in the task set. The data 

sets are generated with a total utilization factor between 

0.75 and 1. The experiments were started with a task set 

with a total utilization of 0.75, and repeated for sets with a 

total utilization factor increased by the increment of 0.05 

until it reaches 1. The utilization factor of every task is no 

more than 0.4 of the total utilization factor of its task set. 

Every task is assigned a fundamental frequency randomly, 

with the possibility of assigning k fundamental 

frequencies equaling to (1/2)k-1. The period of each task is 

the product of all its assigned fundamental frequencies. A 

total of 10,000 task sets were tested for each utilization 

factor.



4.2. Experimental Results for the Periodic Task 

Model

Fig. 4 shows the iteration ratios of the RTA’s using 

initial values of (1) max{WRi-1+ci, ci/(1-Ui-1)}, (2) 

max{pi-pi-1, pi/2}, and (3) max{pi-pi-1, pi/2, ci/(1-Ui-1)}

respectively. The number of tasks in a task set ranges 

between 3 and 5. As shown in Fig. 4, the iteration ratios of 

(2) and (3) are lower than that of (1) in most cases. (1) 

outperforms (2) only when the CPU utilization is equal to 

1. This is because when the value of ci is large or the total 

utilization of tasks 1, 2, ... , i-1 is large enough, ci/(1-Ui-1)

(i.e. (1)) can derive a large initial value to reduce the 

number of RTA iterations. Therefore, (3) could improve 

(2) further, especially when the CPU utilization is high. 

However, when the CPU utilization is low, (2) and (3) are 

much better than (1). This is because when the utilization 

is low, task sets are more likely schedulable and more than 

one TDS points may exist in the critical interval of i. If 

max{pi-pi-1, pi/2} is large enough, a TDS point could be 

found in a small number of RTA iterations. 

Figures 5, 6 and 7 show the iteration ratios when n is in 

(5, 10), (10, 15), and (15, 20) respectively. It is obvious 

that when n is large, the performance of (1) is not good,

but both (2) and (3) have better performances. This is 

because with the same CPU utilization, ci is more likely to 

be smaller when n becomes larger. Therefore, a smaller 

initial value would be derived in (1) and a larger number 

of RTA iterations is needed. From Fig. 4-7, we could see 

that (3) saves more then 78.2% (when n = (15, 20) and the 

CPU utilization = 0.95) on the number of RTA iterations. 

5. Conclusions 

In this paper, we have presented two new initial values 

for exact schedulability tests on rate monotonic scheduling 

of periodic tasks. Our initial values are based on the 

largest and the second largest periods in a system. By 

considering these two periods, periodic tasks can be 

checked efficiently when performing the RM 

schedulability tests. A comparison of different initial 

values for RTA is shown in Table 2. For systems with a 

larger number of tasks, our new initial values may reduce 

the test iterations by as much as 78%. We will continue to 

use this idea to look for other engineering approaches to 

improve the schedulability of real-time systems. 
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Fig. 4 Iteration ratio comparison when n (3,5)
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Fig. 5 Iteration ratio comparison when n (5,10)
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Fig. 6 Iteration ratio comparison when n (10,15)
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Fig. 7 Iteration ratio comparison when n (15,20)
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Table 2. The comparison of different initial values for RTA

WR
(0)

 Strength Weakness 

WRi-1+ci

1. This is an intuitive initial value 1. Incremental computation is needed to 

derive WRi-1

2. If the task is schedulable, the first TDS 

point is found in the critical interval 

3. The performance is poor compared to

RTA using other initial values 

ci/(1-Ui-1)

1. No incremental computation is needed 

to derive the initial value 

2. The performance is good when the 

number of tasks is small ( 5), see [3]. 

1. If the task is schedulable, the first TDS 

point is found in the critical interval 

2. The performance is poor when the 

number of tasks is large (>5) 

pi-pi-1

1. No incremental computation is needed 

to derive the initial value 

2. If the task is schedulable, a TDS point 

which is not limited to the first one will

be found in the critical interval 

1. When the difference between pi-1 and pi

is small, the initial value may be too 

small 

pi/2 

1. No incremental computation is needed 

to derive the initial value 

2. If the task is schedulable, a TDS point 

which is not limited to the first one will

be found in the critical interval 

1. When the task is not schedulable, the 

initial value may be too small 


