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Abstract 
 

This paper proposes a novel architecture supporting 
dynamic load balancing on an FPGA for a Molecular 
Dynamics algorithm. Load balancing is primarily 
achieved through the use of specialized processing units, 
referred to as FLEX units.  FLEX units are able to 
switch between tasks required by a molecular dynamics 
algorithm as often as needed in order to cater to the 
nature of the input parameters. This architecture is 
capable of run-time performance analysis and dynamic 
resource allocation in order to maximize throughput. 
Results of a prototype of the architecture targeting an 
FPGA are presented. 
 
 
1 Introduction 
 

Molecular Dynamics (MD) commonly refers to a set 
of algorithms or packages designed to model or simulate 
dynamic particle interaction on the molecular or atomic 
level.  Knowledge gained from studying such 
interactions has led to a myriad of scientific advances 
across several fields, from pharmaceuticals to material 
sciences. While MD simulations can include a wide 
range of chemical and physical property calculations, our 
design concentrates on a simplified version, primarily 
concerned with total energy calculation due to particle 
interaction. This energy is calculated through the 
Lennard-Jones potential. Because particle distances 
beyond a certain threshold yield trivial Lennard-Jones 
potentials, an imaginary spherical cutoff radius is applied 
to any given particle. All particles outside of the 
threshold radius are not included in Lennard-Jones 
potential calculations. Thus, our MD simulation involves 
two primary computations: a distance calculation (DC) 
and a Lennard-Jones potential calculation (LJPC).  
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Due to the dynamics of particle interaction and 
motion during              simulation, the task of compile-
time load balancing between the two classes of 
computations is a non-trivial task. Potential load 
imbalances can significantly impact an accelerator-
architecture’s resource utilization efficiency, especially 
when considering implementations based on custom 
architectures.   
As with other N-body problems, Molecular Dynamics 
can suffer from an imbalance in load characteristics that 
varies at run time. We propose to accelerate the process 
of computation and increase resource utilization 
efficiency through dynamic load balancing; processing 
units designed to switch tasks facilitate computation and 
prevent other processing units from waiting longer than 
needed to receive data required to finish their 
computations. 

Our design introduces a FLEX unit that can 
efficiently, but not simultaneously, support both classes 
of computations employed in MD simulation.  FLEX 
units can change between computation modes on 
demand, based on the algorithm needs at runtime.  Our 
design also includes a set of fixed, mode-specific 
computational units, rate-balancing and load-sharing 
data management facilities, as well as a system 
controller which coordinates mode switching of the 
FLEX units.  The subsequent sections of the paper 
describe the rationale behind and the design of our load 
balancing architecture for MD simulation.  Section 2 
discusses related work, section 3 discusses all included 
design concepts; DC, LJPC, the FLEX units, the feeder 
FIFO, and the inverter section.  Section 4 explains 
preliminary results and the analysis of the design.  
Section 5 concludes with a discussion of future work 
envisioned and the direction of the project.   

   
2 Related Work 
 
Acceleration of MD simulations using FPGAs has been 
addressed in several recent efforts.  For example,   



 

an FPGA has been used as a floating-point coprocessor 
for  acceleration of N-body problems (such as MD) [1].  
Pipelined, complex arithmetic units using floating point 
adders, multipliers, dividers, and square root units were 
created from efficient low-level primitives.  A mixture of 
60 of these units was placed on a Xilinx Virtex2 FPGA.  
Sustained throughput of up to 3.9 GFLOPS was attained 
under ideal conditions. Another recent approach to 
solving MD problems involves the use of Application 
Specific Processors (ASPs) on FPGAs [2].  Unique 
computational units are derived, such as pair generators, 
Lennard-Jones potential calculators, and acceleration 
update blocks.  A mixture of these blocks is placed upon 
the FPGA.  Different data sets will yield different 
performance levels with different architectures.  
Difficulties arise in determining the ideal FPGA 
configuration for a specific data set. In [3], the Lennard-
Jones and Coulombic force computations were mapped 
to an FPGA.  Rather than using supercomputers or 
custom hardware, this research involves solely 
commercial-off-the-shelf (COTS) components.  An 
investigation was performed on the tradeoff between 
accuracy and speed, by adjusting the bit-precision of 
floating-point numbers.  Depending on the accuracy 
required, this system achieves speedups between 31 and 
88 times over a conventional PC approach. In [4], the 
authors have proposed a highly optimized double 
precision floating point based deeply pipelined 
architecture that can offer 3.9 GFLOPs of performance. 
Another effort [5] takes the approach of coarse grain 
hardware software partitioning for non-bonded force 
evaluations on a FPGA accelerated Genereal Purpose 
Processor (GPP) system. They calculate the pair list (the 
result of successful distance calculations) on the GPP 
and then transfer the lists to the FPGA for evaluation of 
the force calculations. The calculations of next step 
velocities, positions and new pair list generation are 
again done on the GPP.  

  
3 Proposed Architecture 
 

In this section, we present an overview of our 
architecture developed for MD simulations.  Figure 1 
provides a block-level depiction of our design, 
illustrating both subunits and information flow.  We 
discuss in detail each individual unit, and provide, where 
appropriate, a data flow graph or block diagram 
modeling subunit internals.   

 

 
3.1 DC Unit 
 

As mentioned above, distance calculation is one of 
two primary computations applied in MD simulations.  
The goal of the DC unit is to perform this distance 
calculation between pairs of particles.  Once the distance 
is obtained, it is then squared in preparation for LJPC 
(which dictates that potential is inversely affected by the 
square of the distance).  The integration of the distance-
squaring operation into the DC unit represents a choice 
made in how to partition the computation load between 
the DC unit and LJPC. Each DC unit receives a source 
particle’s location, designated by the triple 

sss ZYX ,, .  On subsequent clock cycles, a 
destination particle’s location, of the form 

ddd ZYX ,,  is loaded into the DC unit and a distance 
calculation is initiated.  Once the DC unit obtains the 
square of the distance between the two particles, it 
compares this value with the user-specified cutoff radius 
(CR), which is actually square in order to make the 
proper comparison.  Particle pairs whose distance is 
found to be within the radius are forwarded to the 
inverter unit.  Pairs which do not fall within the cutoff 
are discarded. Distance calculation is performed far more 
frequently than any other computation in MD 
simulation; hence the hardware design of our DC unit is 
optimized for high throughput.  The DC unit is 
implemented in hardware as a direct instantiation of the 
computation data flow graph shown in Figure 2, known 
as a 1-to-1 mapping.  This allows new data to be loaded 
into the DC unit at each clock cycle without incurring 
errors in computation or delays in waiting for necessary 
data to complete computation.  This 1-to-1 mapping 

Figure 1. Top level block diagram



 

speeds up total time necessary to compute distances, 
which aids in sifting through which particle distances are 
sent to LJPC units and which are discarded. 

 
3.2    Feeder FIFO 
 

The Feeder FIFO unit is responsible for distributing 
particle location information to the units performing 
distance calculation.  The Feeder FIFO has been 
designed to facilitate variable-rate consumption of 
particles by the computation units, thereby facilitating 
load balancing. The Feeder FIFO consists of six small 
RAM modules that feed into a controller.  The controller 
then directs traffic to six units; two DC units and four 
FLEX units.  Because DC units will invariably empty 
their RAM modules before the LJPC modules, the 
controller needs to be able to send a free DC unit the 
data from different RAM modules.  This has a twofold 
effect on load balancing: the DC unit doesn’t needlessly 
wait for FLEX units to finish their computations, and 
LJPC calculation is aided by extra FLEX units that can 
stay in LJPC mode.  The controller checks the levels of 
each RAM module when a DC unit becomes free, and 
selects the first RAM module that still has a generous 
amount of data to be calculated and whose 
corresponding FLEX unit is currently in LJPC mode.  If 
all FLEX units are in DC mode, the FLEX unit 
corresponding to the fullest RAM module is switched to 
LJPC mode and the DC unit takes over that RAM 
module.  This process is repeated until all RAM modules 
are emptied. 
 
 
 

3.3    LJPC Unit 
 

This unit is responsible for performing a portion of 
the Lennard-Jones potential calculation.  This consists of 
calculating the force in all three dimensions, as well as 
the potential energy between the two particles.  This is 
shown in the formula below. 

( )5.011148 662 −∗∗∗=
rrr

Force  

( )1114 66 −∗∗=
rr

nergyPotentialE  

The 1/R2 value in the root node of Figure 3 is 
supplied to the LJPC unit from the inverter module, and 
represents the inverse of the radius squared.  The DX, 
DY, and DZ values marked in Figure 3 represent the 
difference between source and destination particle 
positions in each dimension, as calculated during 
distance calculation.  These values are passed, together 
with the inverse radius squared value, as inputs to the 
LJPC, and are used by LJPC in the calculation and 
accumulation of force per particle in each dimension, 
represented as FX, FY, and FZ.   Total potential energy is 
also accumulated for the entire set of particles. Figure 3 
shows the data flow graph for the LJPC.  The 
implementation approach for the LJPC module varies 
from that used for the DC unit, in that 

 
 

Figure 3. LJPC unit data flow graph. 
 

Figure 2. DC unit data flow graph 



 

we do not simply realize the flow graph in hardware with 
a 1 to 1 mapping, as was done in the DC unit.  Instead, 
the LJPC data flow graph is broken into three parts. The 
three portions are shown in figure 3; distinguished by the 
three boxes.  Each part of the data flow graph is 
associated with specific hardware.  Thus, once data has 
moved from the first (top) area to the middle area, new 
data can be introduced to the computational units 
associated with the top area without any resource 
conflicts.  If the entire LJP computation were treated as a 
single block, new data could only be input once old data 
had trickled all the way to the accumulators.   
In other words, the LJP computation has been 
accelerated through use of a three-stage, high-level 
pipeline. In addition to high-level pipelining, each 
arithmetic unit is also pipelined.  The unit with the 
shortest latency, the multiplier, is a 6-stage pipeline.  
Thus, 6 distinct sets of data can be processed at a time; 
assuming new data is available on each of 6 clock 
cycles. 
 
3.4    FLEX Processor 
 

The FLEX processor can be configured to perform 
the functionality of either the DC or the LJPC module.  
Because of this, the architecture must be general purpose 
enough to efficiently handle both data flow graphs.  
Using an iterative technique based upon force-directed 
scheduling, an architecture was derived which balances 
area consumption and throughput for both DC and LJPC 
computations.  The result of this investigation was a 
FLEX unit that consists of 3 multipliers and 5 
add/subtract units.  The architecture is pure data flow, 
with delay registers inserted only at needed locations.  
This completely eliminates the need for register files and 
register file addressing of any sort whatsoever.  Handling 
the DC operation is trivial, as there is a 1-to-1 mapping 
between nodes in the data flow graph and computational 
units in the processor.  In LJPC mode, resources must be 
reused as there are more nodes in the data flow graph 
than computational units.  Extensive multiplexing is used 
to control data flow between the computational units.  
The circuit is depicted in figure 4.   Arithmetic units can 
receive data from external buffers, stored constants, or 
other arithmetic units.  The circuit requires multiplexers 
on each input port of each arithmetic unit to provide this 
functionality.  This architecture is based upon the LJPC 
algorithm being unrolled 7 times.  If it is unrolled more 
than 7 times, the spatial and temporal mappings of 
operations to resources are disrupted.  Once the bulk of 
the calculations are performed, four different adder trees 
are employed to take care of the four accumulate 
operations 

After further analysis and debate, it was decided to 
change the data size from 32-bit floating point (8-bit 

exponent with 24-bit fraction) to 24-bit floating point (8-
bit exponent with 16-bit fraction).  This was done 
primarily to reduce the size of computational 
components on the FPGA to allow for everything to fit 
on a V4-FX60 device. We do recognize that this may 
impact the numerical accuracy of the result, but have not 
evaluated this aspect yet in detail. 

Rather than performing list scheduling on the LJPC 
algorithm, which results in a greedy schedule where 
everything is scheduled as soon as possible, more loop 
unrolls can be obtained if a “sub-optimal” scheduling 
technique is used, in which usage of specific arithmetic 

Figure 4. FLEX architecture showing input 
multiplexers and computational units 



 

units are spaced a uniform distance apart (equivalent to 
the shortest latency among all arithmetic units) on the 
first unroll.  In the LJPC data flow graph, which consists 
of adders and multipliers, the shortest latency is 6 
(multiplier).  Thus, all events in the first loop unroll that 
are scheduled on the same resource must be scheduled a 
minimum of 6 cycles apart. 

The FLEX processor is designed to execute one of 
two “programs”, computing either DC results or LJPC 
results.  An instruction consists of a set of input selects 
for all multiplexers on a given clock cycle and for 
specifying addition or subtraction for each of the 
add/subtract units.  A 16-bit instruction word will be  
 
sufficient to handle these options.  The processor must 
be able to switch between programs rapidly and without 
extensive code loading or storage.  Because of this, the 
FLEX program memory is constructed of individual 
ROMs, where each ROM is built of BRAM blocks.  
Each program is stored in a separate program memory.  
A multiplexer is used to determine which program is 
currently being executed.  This system is shown in figure 
5. 

 

 
3.5    Inverter 
 

The Inverter is designed to receive the squared 
distance value resulting from distance calculation, invert 
it, and then queue the result for LJPC.  The Inverter 
design has two parallel inverters, six input FIFOs for 
receiving computed distances and six output FIFOs for 
disseminating inverted distances for LJPC. Each DC unit 
interfaced to the Inverter unit is assigned an Input FIFO, 
to which it queues its computed distance values.  The 
Inverter unit’s controller has a polling routine that 
checks to see if there are data in any of the Input FIFOs.  
There are priorities affixed to each Input FIFO, with 
those associated with DC units having priority over those 
associated with FLEX units.  When valid data are 
retrieved from an Input FIFO, they are sent to the 
inverter. Once the distance has been inverted, it is sent to 
an Output FIFO.  There, data is accumulated until the 
FIFO fills to at least 128 units, out of the max capacity 

of 1K units, where a unit consists of the inverted radius 
squared and the three dimensional distances values.  
Because the LJPC units cannot accept data on every 
clock cycle, Output FIFOs whose level exceeds 128 
units have their contents transferred to the neighboring 
FLEX FIFO for processing.  This provides further load-
balancing among LJPC units.  The controller monitors 
the levels of each FIFO and causes a switch from LJPC 
mode to DC mode when the FLEX FIFO level drops 
below 6 units, and from DC mode to LJPC mode when 
the FLEX FIFO level is above 128 units.   
 
4    Results and Analysis 
 

After synthesizing the design in Xilinx ISE 8.1i 
targeting a V4-FX 60 device, we simulated the behavior 
of the processor on a meta-data driven simulator to 
capture the behavior of all the modules in the system.  
We constructed a text file representing particle locations, 
and used that as input to the simulation.  We then 
measured the time it took for each module in the 
program to complete and used this for our simulation 
results shown below. The simulation was run for 30,000 
particles and with various cut-off radii to reflect numbers 
of particles within cut-off radii, starting from 10% of 
total particles falling within radius up to 90%.  We 
noticed a plateau from 30% under radius to 70% where 
the amount of clock cycles necessary to complete 
processing remained very similar; around 14000.  This is 
a result of load balancing and the ability of the FLEX 
unit to switch tasks.  The results of this simulation can be 
seen in a plot shown in Figure 6. 

 
 

 
Figure 6. Clock Cycles per Percentage of Particles in 

Radius 
 

We also monitored the Output FIFO levels (figure 
7) in an effort to determine how efficiently our load-

Figure 5. FLEX program memory 



 

balancing techniques were performing.  This test used a 
30% radius tolerance with a total of 30,000 atoms.  The 
ability of this design to change dynamically based upon 
run-time conditions is clearly shown as capacity levels 
are indicative of the operational mode of the FLEX units. 

 
Figure 7. Output FIFO module capacity levels 

 
During times were the capacities increase, the FLEX 

units are working in DC mode.  Once the threshold is 
violated on an Output FIFO, the corresponding FLEX 
unit switches modes and you begin to see a decrease in 
the capacity level.  This shows positive results and helps 
to indicate how important run-time load-balancing is in 
such problems as MD. 

 
5    Conclusions and Future Work 
 

We have identified three major areas for future 
research. Firstly we will focus on the design of the 
algorithms for updating velocities and positions. 
Secondly we will compare our method to the periodic 
boundary minimum image convention based population 
of initial data, as is adopted by GROMACS [6]. While 
this approach is suitable for crystal like structures, it is 
customized to enable parallelism on sequential machines 
where inter-processor communication is expensive. But 
at a preliminary glance it seems that our method is 
perhaps more generic and powerful to permit simulations 
of liquids, solutions etc, where introducing artificial 
periodic boundaries can affect the correctness of the 
simulation. Thirdly we will focus on streamlining the 
proposed methodology of data processing through the 
DC and LJPC units.  If the FIFOs can pipe data in more 
efficiently and reduce the delay it takes to get the data 
processed, then overall efficiency will greatly increase, 
as FLEX units spend the majority of their time in LJPC 
operation mode. The logic of FIFO level monitoring can 
be distributed to more efficient controllers such as 
embedded Microblaze units. Through efficient use of 

these embedded processors we can introduce new 
functionality and likely increase performance of FLEX 
units. This will aid in overall load balancing. The FLEX 
unit’s design will be closely examined, to see if there are 
any methods of optimizing the number of computational 
units.  The intention is to achieve 1-1 mapping in order 
to increase effective use of the units that are there.  This 
will decrease overhead and increase overall 
performance.  We also plan to make use of our simulated 
results on FIFO levels in order to more optimally control 
FLEX modes and balance the load across all FIFOs more 
efficiently. 
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