

A Reconfigurable Load Balancing Architecture for Molecular Dynamics

Jonathan Phillips, Matthew Areno, Chris Rogers,
Aravind Dasu, and Brandon Eames

Utah State University

Dept. of Electrical and Computer Engineering
Logan, UT 84322-4120 USA

{jdphillips, matthewareno, crogers} @cc.usu.edu
{dasu, beames} @engineering.usu.edu

Abstract

This paper proposes a novel architecture supporting
dynamic load balancing on an FPGA for a Molecular
Dynamics algorithm. Load balancing is primarily
achieved through the use of specialized processing units,
referred to as FLEX units. FLEX units are able to
switch between tasks required by a molecular dynamics
algorithm as often as needed in order to cater to the
nature of the input parameters. This architecture is
capable of run-time performance analysis and dynamic
resource allocation in order to maximize throughput.
Results of a prototype of the architecture targeting an
FPGA are presented.

1 Introduction

Molecular Dynamics (MD) commonly refers to a set
of algorithms or packages designed to model or simulate
dynamic particle interaction on the molecular or atomic
level. Knowledge gained from studying such
interactions has led to a myriad of scientific advances
across several fields, from pharmaceuticals to material
sciences. While MD simulations can include a wide
range of chemical and physical property calculations, our
design concentrates on a simplified version, primarily
concerned with total energy calculation due to particle
interaction. This energy is calculated through the
Lennard-Jones potential. Because particle distances
beyond a certain threshold yield trivial Lennard-Jones
potentials, an imaginary spherical cutoff radius is applied
to any given particle. All particles outside of the
threshold radius are not included in Lennard-Jones
potential calculations. Thus, our MD simulation involves
two primary computations: a distance calculation (DC)
and a Lennard-Jones potential calculation (LJPC).

1-4244-0910-1/07/$20.00 ©2007 IEEE.

Due to the dynamics of particle interaction and
motion during simulation, the task of compile-
time load balancing between the two classes of
computations is a non-trivial task. Potential load
imbalances can significantly impact an accelerator-
architecture’s resource utilization efficiency, especially
when considering implementations based on custom
architectures.
As with other N-body problems, Molecular Dynamics
can suffer from an imbalance in load characteristics that
varies at run time. We propose to accelerate the process
of computation and increase resource utilization
efficiency through dynamic load balancing; processing
units designed to switch tasks facilitate computation and
prevent other processing units from waiting longer than
needed to receive data required to finish their
computations.

Our design introduces a FLEX unit that can
efficiently, but not simultaneously, support both classes
of computations employed in MD simulation. FLEX
units can change between computation modes on
demand, based on the algorithm needs at runtime. Our
design also includes a set of fixed, mode-specific
computational units, rate-balancing and load-sharing
data management facilities, as well as a system
controller which coordinates mode switching of the
FLEX units. The subsequent sections of the paper
describe the rationale behind and the design of our load
balancing architecture for MD simulation. Section 2
discusses related work, section 3 discusses all included
design concepts; DC, LJPC, the FLEX units, the feeder
FIFO, and the inverter section. Section 4 explains
preliminary results and the analysis of the design.
Section 5 concludes with a discussion of future work
envisioned and the direction of the project.

2 Related Work

Acceleration of MD simulations using FPGAs has been
addressed in several recent efforts. For example,

an FPGA has been used as a floating-point coprocessor
for acceleration of N-body problems (such as MD) [1].
Pipelined, complex arithmetic units using floating point
adders, multipliers, dividers, and square root units were
created from efficient low-level primitives. A mixture of
60 of these units was placed on a Xilinx Virtex2 FPGA.
Sustained throughput of up to 3.9 GFLOPS was attained
under ideal conditions. Another recent approach to
solving MD problems involves the use of Application
Specific Processors (ASPs) on FPGAs [2]. Unique
computational units are derived, such as pair generators,
Lennard-Jones potential calculators, and acceleration
update blocks. A mixture of these blocks is placed upon
the FPGA. Different data sets will yield different
performance levels with different architectures.
Difficulties arise in determining the ideal FPGA
configuration for a specific data set. In [3], the Lennard-
Jones and Coulombic force computations were mapped
to an FPGA. Rather than using supercomputers or
custom hardware, this research involves solely
commercial-off-the-shelf (COTS) components. An
investigation was performed on the tradeoff between
accuracy and speed, by adjusting the bit-precision of
floating-point numbers. Depending on the accuracy
required, this system achieves speedups between 31 and
88 times over a conventional PC approach. In [4], the
authors have proposed a highly optimized double
precision floating point based deeply pipelined
architecture that can offer 3.9 GFLOPs of performance.
Another effort [5] takes the approach of coarse grain
hardware software partitioning for non-bonded force
evaluations on a FPGA accelerated Genereal Purpose
Processor (GPP) system. They calculate the pair list (the
result of successful distance calculations) on the GPP
and then transfer the lists to the FPGA for evaluation of
the force calculations. The calculations of next step
velocities, positions and new pair list generation are
again done on the GPP.

3 Proposed Architecture

In this section, we present an overview of our
architecture developed for MD simulations. Figure 1
provides a block-level depiction of our design,
illustrating both subunits and information flow. We
discuss in detail each individual unit, and provide, where
appropriate, a data flow graph or block diagram
modeling subunit internals.

3.1 DC Unit

As mentioned above, distance calculation is one of
two primary computations applied in MD simulations.
The goal of the DC unit is to perform this distance
calculation between pairs of particles. Once the distance
is obtained, it is then squared in preparation for LJPC
(which dictates that potential is inversely affected by the
square of the distance). The integration of the distance-
squaring operation into the DC unit represents a choice
made in how to partition the computation load between
the DC unit and LJPC. Each DC unit receives a source
particle’s location, designated by the triple

sss ZYX ,, . On subsequent clock cycles, a
destination particle’s location, of the form

ddd ZYX ,, is loaded into the DC unit and a distance
calculation is initiated. Once the DC unit obtains the
square of the distance between the two particles, it
compares this value with the user-specified cutoff radius
(CR), which is actually square in order to make the
proper comparison. Particle pairs whose distance is
found to be within the radius are forwarded to the
inverter unit. Pairs which do not fall within the cutoff
are discarded. Distance calculation is performed far more
frequently than any other computation in MD
simulation; hence the hardware design of our DC unit is
optimized for high throughput. The DC unit is
implemented in hardware as a direct instantiation of the
computation data flow graph shown in Figure 2, known
as a 1-to-1 mapping. This allows new data to be loaded
into the DC unit at each clock cycle without incurring
errors in computation or delays in waiting for necessary
data to complete computation. This 1-to-1 mapping

Figure 1. Top level block diagram

speeds up total time necessary to compute distances,
which aids in sifting through which particle distances are
sent to LJPC units and which are discarded.

3.2 Feeder FIFO

The Feeder FIFO unit is responsible for distributing
particle location information to the units performing
distance calculation. The Feeder FIFO has been
designed to facilitate variable-rate consumption of
particles by the computation units, thereby facilitating
load balancing. The Feeder FIFO consists of six small
RAM modules that feed into a controller. The controller
then directs traffic to six units; two DC units and four
FLEX units. Because DC units will invariably empty
their RAM modules before the LJPC modules, the
controller needs to be able to send a free DC unit the
data from different RAM modules. This has a twofold
effect on load balancing: the DC unit doesn’t needlessly
wait for FLEX units to finish their computations, and
LJPC calculation is aided by extra FLEX units that can
stay in LJPC mode. The controller checks the levels of
each RAM module when a DC unit becomes free, and
selects the first RAM module that still has a generous
amount of data to be calculated and whose
corresponding FLEX unit is currently in LJPC mode. If
all FLEX units are in DC mode, the FLEX unit
corresponding to the fullest RAM module is switched to
LJPC mode and the DC unit takes over that RAM
module. This process is repeated until all RAM modules
are emptied.

3.3 LJPC Unit

This unit is responsible for performing a portion of
the Lennard-Jones potential calculation. This consists of
calculating the force in all three dimensions, as well as
the potential energy between the two particles. This is
shown in the formula below.

()5.011148 662 −∗∗∗=
rrr

Force

()1114 66 −∗∗=
rr

nergyPotentialE

The 1/R2 value in the root node of Figure 3 is
supplied to the LJPC unit from the inverter module, and
represents the inverse of the radius squared. The DX,
DY, and DZ values marked in Figure 3 represent the
difference between source and destination particle
positions in each dimension, as calculated during
distance calculation. These values are passed, together
with the inverse radius squared value, as inputs to the
LJPC, and are used by LJPC in the calculation and
accumulation of force per particle in each dimension,
represented as FX, FY, and FZ. Total potential energy is
also accumulated for the entire set of particles. Figure 3
shows the data flow graph for the LJPC. The
implementation approach for the LJPC module varies
from that used for the DC unit, in that

Figure 3. LJPC unit data flow graph.

Figure 2. DC unit data flow graph

we do not simply realize the flow graph in hardware with
a 1 to 1 mapping, as was done in the DC unit. Instead,
the LJPC data flow graph is broken into three parts. The
three portions are shown in figure 3; distinguished by the
three boxes. Each part of the data flow graph is
associated with specific hardware. Thus, once data has
moved from the first (top) area to the middle area, new
data can be introduced to the computational units
associated with the top area without any resource
conflicts. If the entire LJP computation were treated as a
single block, new data could only be input once old data
had trickled all the way to the accumulators.
In other words, the LJP computation has been
accelerated through use of a three-stage, high-level
pipeline. In addition to high-level pipelining, each
arithmetic unit is also pipelined. The unit with the
shortest latency, the multiplier, is a 6-stage pipeline.
Thus, 6 distinct sets of data can be processed at a time;
assuming new data is available on each of 6 clock
cycles.

3.4 FLEX Processor

The FLEX processor can be configured to perform
the functionality of either the DC or the LJPC module.
Because of this, the architecture must be general purpose
enough to efficiently handle both data flow graphs.
Using an iterative technique based upon force-directed
scheduling, an architecture was derived which balances
area consumption and throughput for both DC and LJPC
computations. The result of this investigation was a
FLEX unit that consists of 3 multipliers and 5
add/subtract units. The architecture is pure data flow,
with delay registers inserted only at needed locations.
This completely eliminates the need for register files and
register file addressing of any sort whatsoever. Handling
the DC operation is trivial, as there is a 1-to-1 mapping
between nodes in the data flow graph and computational
units in the processor. In LJPC mode, resources must be
reused as there are more nodes in the data flow graph
than computational units. Extensive multiplexing is used
to control data flow between the computational units.
The circuit is depicted in figure 4. Arithmetic units can
receive data from external buffers, stored constants, or
other arithmetic units. The circuit requires multiplexers
on each input port of each arithmetic unit to provide this
functionality. This architecture is based upon the LJPC
algorithm being unrolled 7 times. If it is unrolled more
than 7 times, the spatial and temporal mappings of
operations to resources are disrupted. Once the bulk of
the calculations are performed, four different adder trees
are employed to take care of the four accumulate
operations

After further analysis and debate, it was decided to
change the data size from 32-bit floating point (8-bit

exponent with 24-bit fraction) to 24-bit floating point (8-
bit exponent with 16-bit fraction). This was done
primarily to reduce the size of computational
components on the FPGA to allow for everything to fit
on a V4-FX60 device. We do recognize that this may
impact the numerical accuracy of the result, but have not
evaluated this aspect yet in detail.

Rather than performing list scheduling on the LJPC
algorithm, which results in a greedy schedule where
everything is scheduled as soon as possible, more loop
unrolls can be obtained if a “sub-optimal” scheduling
technique is used, in which usage of specific arithmetic

Figure 4. FLEX architecture showing input
multiplexers and computational units

units are spaced a uniform distance apart (equivalent to
the shortest latency among all arithmetic units) on the
first unroll. In the LJPC data flow graph, which consists
of adders and multipliers, the shortest latency is 6
(multiplier). Thus, all events in the first loop unroll that
are scheduled on the same resource must be scheduled a
minimum of 6 cycles apart.

The FLEX processor is designed to execute one of
two “programs”, computing either DC results or LJPC
results. An instruction consists of a set of input selects
for all multiplexers on a given clock cycle and for
specifying addition or subtraction for each of the
add/subtract units. A 16-bit instruction word will be

sufficient to handle these options. The processor must
be able to switch between programs rapidly and without
extensive code loading or storage. Because of this, the
FLEX program memory is constructed of individual
ROMs, where each ROM is built of BRAM blocks.
Each program is stored in a separate program memory.
A multiplexer is used to determine which program is
currently being executed. This system is shown in figure
5.

3.5 Inverter

The Inverter is designed to receive the squared
distance value resulting from distance calculation, invert
it, and then queue the result for LJPC. The Inverter
design has two parallel inverters, six input FIFOs for
receiving computed distances and six output FIFOs for
disseminating inverted distances for LJPC. Each DC unit
interfaced to the Inverter unit is assigned an Input FIFO,
to which it queues its computed distance values. The
Inverter unit’s controller has a polling routine that
checks to see if there are data in any of the Input FIFOs.
There are priorities affixed to each Input FIFO, with
those associated with DC units having priority over those
associated with FLEX units. When valid data are
retrieved from an Input FIFO, they are sent to the
inverter. Once the distance has been inverted, it is sent to
an Output FIFO. There, data is accumulated until the
FIFO fills to at least 128 units, out of the max capacity

of 1K units, where a unit consists of the inverted radius
squared and the three dimensional distances values.
Because the LJPC units cannot accept data on every
clock cycle, Output FIFOs whose level exceeds 128
units have their contents transferred to the neighboring
FLEX FIFO for processing. This provides further load-
balancing among LJPC units. The controller monitors
the levels of each FIFO and causes a switch from LJPC
mode to DC mode when the FLEX FIFO level drops
below 6 units, and from DC mode to LJPC mode when
the FLEX FIFO level is above 128 units.

4 Results and Analysis

After synthesizing the design in Xilinx ISE 8.1i
targeting a V4-FX 60 device, we simulated the behavior
of the processor on a meta-data driven simulator to
capture the behavior of all the modules in the system.
We constructed a text file representing particle locations,
and used that as input to the simulation. We then
measured the time it took for each module in the
program to complete and used this for our simulation
results shown below. The simulation was run for 30,000
particles and with various cut-off radii to reflect numbers
of particles within cut-off radii, starting from 10% of
total particles falling within radius up to 90%. We
noticed a plateau from 30% under radius to 70% where
the amount of clock cycles necessary to complete
processing remained very similar; around 14000. This is
a result of load balancing and the ability of the FLEX
unit to switch tasks. The results of this simulation can be
seen in a plot shown in Figure 6.

Figure 6. Clock Cycles per Percentage of Particles in

Radius

We also monitored the Output FIFO levels (figure
7) in an effort to determine how efficiently our load-

Figure 5. FLEX program memory

balancing techniques were performing. This test used a
30% radius tolerance with a total of 30,000 atoms. The
ability of this design to change dynamically based upon
run-time conditions is clearly shown as capacity levels
are indicative of the operational mode of the FLEX units.

Figure 7. Output FIFO module capacity levels

During times were the capacities increase, the FLEX

units are working in DC mode. Once the threshold is
violated on an Output FIFO, the corresponding FLEX
unit switches modes and you begin to see a decrease in
the capacity level. This shows positive results and helps
to indicate how important run-time load-balancing is in
such problems as MD.

5 Conclusions and Future Work

We have identified three major areas for future
research. Firstly we will focus on the design of the
algorithms for updating velocities and positions.
Secondly we will compare our method to the periodic
boundary minimum image convention based population
of initial data, as is adopted by GROMACS [6]. While
this approach is suitable for crystal like structures, it is
customized to enable parallelism on sequential machines
where inter-processor communication is expensive. But
at a preliminary glance it seems that our method is
perhaps more generic and powerful to permit simulations
of liquids, solutions etc, where introducing artificial
periodic boundaries can affect the correctness of the
simulation. Thirdly we will focus on streamlining the
proposed methodology of data processing through the
DC and LJPC units. If the FIFOs can pipe data in more
efficiently and reduce the delay it takes to get the data
processed, then overall efficiency will greatly increase,
as FLEX units spend the majority of their time in LJPC
operation mode. The logic of FIFO level monitoring can
be distributed to more efficient controllers such as
embedded Microblaze units. Through efficient use of

these embedded processors we can introduce new
functionality and likely increase performance of FLEX
units. This will aid in overall load balancing. The FLEX
unit’s design will be closely examined, to see if there are
any methods of optimizing the number of computational
units. The intention is to achieve 1-1 mapping in order
to increase effective use of the units that are there. This
will decrease overhead and increase overall
performance. We also plan to make use of our simulated
results on FIFO levels in order to more optimally control
FLEX modes and balance the load across all FIFOs more
efficiently.

References

[1] G. Lienhart, A. Kugel, and R. Manner, "Using

floating-point arithmetic on FPGAs to accelerate
scientific N-Body simulations," in Field-
Programmable Custom Computing Machines.
Proceedings. 10th Annual IEEE Symposium on,
2002, pp. 182-191.

[2] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P.
Chow, "Reconfigurable molecular dynamics
simulator," Proc. 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines.
2004, pp. 197-206.

[3] Y. Gu, T. VanCourt, and M. C. Herbordt,
"Accelerating molecular dynamics simulations with
configurable circuits," Computers and Digital
Techniques, IEE Proceedings-, vol. 153, pp. 189-
195, 2006.

[4] R. Scrofano and V. K. Prasanna, "Computing
Lennard-Jones Potentials and Forces with
Reconfigurable Hardware", Proc. International
Conference on Engineering of Reconfigurable
Systems and Algorithms 2004, pp.284-292.

[5] Scrofano, R.; Gokhale, M.; Trouw, F.; Prasanna,
V.K., "Hardware/Software Approach to Molecular
Dynamics on Reconfigurable Computers," Field-
Programmable Custom Computing Machines, 2006.
FCCM '06. 14th Annual IEEE Symposium on , vol.,
no.pp.23-34, April 2006

[6] http://www.gromacs.org

