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Abstract

This paper presents a novel High-Level Synthesis (HLS)
and optimization approach targeting FPGA architectures
that are reconfigurable at run-time. To model a reconfig-
urable system on a high level of abstraction, we use a
hierarchical operation (control and data) flow graph. In
order to reduce the overhead for reconfiguring the system,
we apply resource sharing to our model to deduce reusable
design parts for the implementation. A case study
compares our HLS approach with a reference design which
was manually coded on Register-Transfer-Level (RTL).

1. Introduction and motivation

Innovative applications in ubiquitous computing (such
as mobile embedded and multimedia systems) require a
high performance at a reasonable power consumption.
State-of-the-art programmable devices are capable to meet
this requirements using Run-Time Reconfiguration (RTR)
[17]. RTR enables to exchange the functionality of HW
partitions while the remaining HW partitions continue
processing without interruption.

Several approaches deal with the FPGA-based imple-
mentation of RTR systems and the use of high-level design
entries [3][15]. Using FPGA architectures, the overhead to
reconfigure at run-time affects the system performance
significantly. To overcome this limitation, a number of
coarse-grained computing architectures implementing RTR
has been proposed [8]. According to the higher level of
abstraction compared to FPGAs, HLS is a suitable
approach for target-mapping and optimization [9][10].

But adaptive computing requires intelligent run-time
systems depending on the granularity of the processed
application data [1]. Although HLS is sufficient for FPGAs
[16], cross-level hierarchical HLS [7] has not been
considered for complex RTR systems.

Our HLS approach for a system with reconfigurable
HW tasks combines both a higher level of abstraction (used
by coarse-grained architectures) and a cross-level hierar-
chical optimization (as proposed in [6]). To model an RTR
system target-precisely, we developed a hierarchical
operation (control and data) flow graph [4]. In this paper,
we introduce an optimization technique based on this
model. In order to reduce the RTR overhead we deduce
reusable design parts using resource sharing.

This paper is structured as follows: Section 2 introduces
design patterns for HLS and an RTR design framework.
Special optimization issues targeting FPGAs are covered in
Section 3. In Section 4 we evaluate our HLS approach
using an manually coded RTL reference design. Finally,
Section 5 summarizes the paper and draws out some
conclusions.

2. Designing reconfigurable HW tasks

High-Level Synthesis is the mapping of an High-Level
Language (HLL) description onto a netlist of design ele-
ments and includes optimizations [13]. An HLL notation
represents an operation sequence. The design elements are
provided by a library and represent RTL counterpart of the
HLL operations. HLS comprises three main steps:

 • Allocation assigns each operation and suitable design
elements provided by the RTL library.

 • Binding maps each design element on a suitable
instance onto the target architecture.

 • Scheduling determines the execution order of an opera-
tion sequence according to the operation binding.

This section introduces design patterns and a high-level
target-precise model, which we apply for allocating and
scheduling the operation sequence. The model represents a
hierarchical graph comprising both the description of each
HW task and the task schedule of the entire system. For an
adequate HLL notation, we developed the Macro Sequence
Language (MSL, see Section 4.2 for an example). Binding
of operations is discussed in Section 3.
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2.1. Design patterns for high-level synthesis

We use control flow templates and operation templates
as design elements. Each template represents the RTL
counterpart of a HLL construct or operation and provides
target specific information (such as required chip area,
maximum clock frequency) stored in a library [4].

Control flow templates implement basic constructs of an
HLL, such as loops or conditional branches. Thus, a set of
these templates can represent the HLL notation of a HW
task. We call the control flow templates design patterns.
Figure 1 shows the design patterns provided by our design
library. We distinguish between the system library (HLL)
and the target library (RTL).

Operation templates are commonly known as design
macros. Each macro implements an operation (such as
addition or multiplication) respectively a target-specific
optimized version (e.g. using HW multipliers).

2.2. High-level target-precise HW task model

We model the operation sequence using a binary tree
that represents a hierarchical control and data flow graph,
called Binary Macro Tree (BMT). Design patterns are
assigned to BMT branches and determine the control flow.
Leaves in the BMT represent design macros acording to
operations and form the data flow. Thus, executing the
operation sequence can be understood as ’walking’ through
the tree (starting from and ending at the root node).

The r-pattern represents the root node of a BMT sub
tree which describes the operation sequence of a HW task.
Thus, it indicates crossing the level of hierarchy. The BMT
root tree marked out by the r-nodes comprises the task
schedule and global operations (highest level of hierarchy).
These operations are excluded from RTR optimization
discussed in Section 3.

Figure 2 depicts the mapping of an HLL notation of a
HW task onto a sub tree of the BMT of an RTR system.

For characterizing the RTL implementation of an RTR
system we use two techniques of traversing the tree:

 • By traversing all nodes (branches and leaves) in order,
we can determine the number of instances (patterns and
macros), the corresponding chip area, and the critical
path which determines the maximum clock frequency.

 • By executing the model, we can calculate the task’s
performance per clock cycle, such as the maximum
throughput of computations or the latency of a task in
real-time applications.

2.3. Reconfigurable HW task design framework

A reconfigurable system comprises a set of different
HW tasks including a task schedule. Its implementation is
limited by the available chip area and target-specific
resources, such as I/O ports or memories.

The system behavior is characterized by the task, its
computation function, and the task schedule. According to
Section 2.2, a BMT describes the behavior of a HW task.
To define the task schedule, we use a hierarchical BMT.
Each sub-tree indicated by the special r-pattern represents
a HW task. The remaining tree on the top corresponds with
the task schedule (see Figure 5).

For mapping the tasks onto the target-architecture, we
use a system model consisting of tasks and resources.
Tasks perform computations. System resources store data.
Tasks and resources can be interlinked via ports to
exchange data. A task can operate as a data producer, as a
data consumer, or both. In any case, a resource is needed to
interlink a producer and a consumer. System resources are
also used to interlink tasks with peripherals or I/Os.

Furthermore, a task provides a control port of two
signals. The run-signal starts processing. The rdy-signal

Figure 1. Mapping patterns onto templates
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indicates its completion. Thus, the scheduler has to send a
token to a task to start it. The other way round, the
scheduler will receive a token, if the task has finished.

Figure 3 illustrates a simple system consisting of two
tasks. The data-producing task tp sends data via resource
rpc to the data-consuming task tc. Task tc consumes data
from an input ri and stores the computation results in the
output resource ro. The tasks scheduler ts and all system
resources r* are part of the RTR system framework.

In our example, Configurable Interconnect Memories
(CIMs) implement system resources using multi-port
memories. CIMs provide Generic Address Generators
(GAGs) for data sequencing [9]. The current realization
supports different address patterns and a FIFO mode.

3. RTR optimization targeting FPGAs

RTR causes additional costs (such as configuration
memory cm(ti) for an RTR chip area ca(ti) of a task ti or the
reconfiguration time ct(ti,tk) for switching from task ti to
task tk). These costs reduce the overall system performance
compared to an implementation without using RTR.

Due to the low level of abstraction for describing an
implementation, FPGAs provide a very high flexibility for
custom realizations of RTR designs. Thus, application-
specific operation macros or data path structures could be
used to implement HW tasks efficiently. But caused by the
fine-grained FPGAs built of Configurable Logic Blocks
(CLBs), the RTR costs are to high.

In order to reduce RTR costs, our HLS approach
extracts reusable modules. A reusable module combines
similar operations used by different tasks. In contrast to
processing elements of computing architectures, these
modules are application-specific. Thus, an optimized RTR
design adapts to the application design and not vice versa.
Using a hierarchical BMT enables to apply resource
sharing in order to find similar operations.

3.1. Resource sharing in hierarchical BMTs

Resource sharing enables the mapping of two similar
operations onto the same computing resource. It reduces
the number of required resources by using multiplexers to
select the correct operands for computation. Thus, resource
sharing reduces the required chip area (Figure 4, top).

In an RTR system, resource sharing is the mapping of
similar computing resources onto the same part of the
reconfigurable chip area. It enables to exclude this part
from the reconfiguration at run-time. Thus, RTR resource
sharing reduces configuration overhead (Figure 4, bottom).

To identify any possible resource sharing by two similar
operations, the operation schedule as well as the RTR
schedule have to be considered. Thus, a hierarchical BMT
(comprising both schedules) enables to identify any kind of
resource sharing including its potential for RTR.

Due to the binary graph representation, resource sharing
can be easily determined if the root of the smallest sub tree
(containing both operations) represents an s-pattern. If the
path between the root and both operations contain an r-
pattern, RTR resource sharing is applicable (see Figure 5).

Figure 3. RTR system design example
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Figure 5. Hierarchical BMT of RTR system example
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3.2. Cross-level hierarchical HLS of RTR modules

As depicted in Section 3.1, the implementation of an
RTR system depends on the resource layout onto the target
architecture. A reusable RTR module has to be laid out on
a location which is suitable for all configurations using the
embedded resources. In contrast to a shared resource, a
reusable RTR module represents a complex component
comprising parts of the control and of the data flow.

Extracting a reusable RTR module requires to consider
the Control and Data Flow Graph (CDFG) of the operation
sequence as well as its mapping onto the synthesized
netlist including the operation schedule. This is similar to
resource sharing of complex components in hierarchical
synthesis as proposed in [6].

For approach we combine a high-level target-precise
model (the BMT) [4] with a netlist of generic design
elements (the Pattern Macro Netlist, PMN). In contrast to a
netlist of logic gates, the PMN distinguishes between
control path elements (design patterns) and data path
elements (design macros). Thus, a BMT can be mapped
onto a PMN and vice versa, which enables the deduction of
similar operation sequences for a given RTR module.

Figure 6 shows a system example containing two tasks
t1 and t2. Each task implements a loop (counting down a
pre-initialized index i) which calls a function (t1:FU1
respectively t2:FU2) that depends on i.

Obviously, the l-pattern (implementing the control path
for a loop) and the down-counter (implemented by using
the macros: SEL, DEC, REG, GT) could be shared by both
tasks. Two additional multiplexers switch the data path
according to the active task t1 or t2 (see Figure 7, left).

Using RTR, additional multiplexers are not necessary
because the environing parts of the design depend on the
loaded configuration. Thus, at different points in time also
different sources (i.e. t1 or t2) can be mapped onto the ports
of the RTR module (see Figure 7, right).

Moreover, using RTR enables to place both functions
(t1:FU1 respectively t2:FU2) on the same location of the
RTR architecture. In consequence, the chip area of the
reusable module is similar to the original PMN parts of
task t1 and task t2.

3.3. Design space using RTR resource sharing

An RTR implementation is characterized by the area
costs ca (such as the number of required CLBs) and the
RTR costs cr (such as number and size of bitstreams).

The initial design is created by mapping of the model
neither applying an optimization nor using RTR. Resource
sharing reduces the area costs ca(sharing) < ca(initial)
without raising RTR costs cr(sharing) = cr(initial) = 0.
The area costs ca can be minimized using RTR, but this
causes additional costs cr(rtr) which affect implementation
and performance as well (see Figure 8 and Section 3.1).

In practise, reducing area costs to a given limited num-
ber of CLBs is sufficient. We realize RTR resource sharing
as a combination of both approaches. Thus, RTR is not
used if resource sharing already complies the requirements.

Figure 6. BMT and PMNs of sharing example
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4. High-level synthesis vs. RTL design

To evaluate our HLS approach, we implemented a Reed
Solomon (RS) codec algorithm as case study. As reference,
we used the manually coded and optimized RTR design at
RTL of a preceding research project [5]. As target platform
for implementation, we choose a Xilinx Virtex FPGA.

4.1. Reed Solomon codec basics and reference

RS codes are block-based channel codes. Typical fields
of appliance are data storage (e.g. CD/DVD) and data
transmission (e.g. communication networks). Using RS
codes allows detecting and correcting of errors within a
data stream without retransmissions (called Forward Error
Correction, FEC). For this reason redundant information is
needed. The approach is to add a checksum of k symbols to
n symbols of data. A symbol represents a sequence of m
bits. An RS code RS(l, n) comprise l = n + k symbols for
transmission over the communication channel. An RS code
provides an error coverage of t = k/2 symbols. Due to the
principles of Galois Fields GF(2m) [11] the maximum code
word size is limited to l < 2m. Thus, commonly used RS
codes based on a GF(28) can comprise up to 255 bytes
including the checksum.

We selected the RS(124, 128) used for applications in
context with the high speed communication technology
Asynchronous Transfer Mode (ATM) [11]. It transmits 124
data bytes and provides an error coverage of 2 bytes.

The reference design [5] contains six function blocks
according to the main tasks of the RS algorithm:

 • Task t1: Encoding including checksum calculation

 • Task t2: Syndrome calculation

 • Task t3: Locator polynomial calculation
(Berlekamp-Massey algorithm)

 • Task t4: Error position calculation
(Chien search)

 • Task t5: Error value calculation
(Fourney algorithm)

 • Task t6: Decoding including error correction

Encoding and Decoding are implemented as a pipelined
architecture using building blocks [14].

The design can operate as transmitter (encoder) or
receiver (decoder). Concurretly to decoding the received
data, syndrome calculation (t2) is done. If no error was
detected, the decoder (t6) passes the stored data directly to
the application. If an error was detected, it is recovered by
Berlekamp-Massey algorithm (t3), Chien search (t4), and

Fourney algorithm (t5). In this case, t6 uses the calculated
values to correct the error before passing the data to the
application.

Figure 9 depicts the function blocks of the reference
design including a disturbed communication channel [5].
For simplification, interleaving and deinterleaving are not
considered in our case study.

4.2. High-level model and reconfiguration schedule

In order to achieve comparable results, we derived a
suitable high-level model from the RTL reference design.
Figure 10 depicts the block diagram of tasks (t1-6) and
resources (r1-6). Similar to the reference design, we used
the task schedule mentioned in the last section. It
determines the exclusive operation as transmitter (encoder)
or receiver (decoder including error correction).

The HW tasks (t1-t6) were modelled using MSL (see
Section 2). Figure 11 depicts the BMT and the PMN of the
encoding task. The corresponding MSL source is given in
Figure 12. For visualizing the graphs we use VCG[12].

Figure 9. Function blocks of RS reference design

Figure 10. RS tasks, data resources, and schedule
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Figure 11. RS encode task: high-level model (BMT) and synthesized netlist (PMN)
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4.3. Implementation and test bench

Regarding the RTR technology we used a Xilinx Virtex
FPGA as target-platform. Due to the fact that currently the
HLS tool suite we developed works with ISE 6.3 only, we
choose a XCV1000 device. For logic synthesis we applied
Leonardo Spectrum of FPGA Advantage 7.1. The design
flow was automated using GNU Make, Tcl/Tk scripts, and
Perl scripts to control the synthesis tools.

Figure 13 depicts the test bench and implementation of
our case study. Three CIMs (see Section 2.3) are used to
enable concurrent register file access by all tasks. This is
required by the RS value calculation task t5.

4.4. Implementation costs and performance results

Our evaluation considers the implementation costs as
well as the performance results.

Regarding different levels of abstraction, we measured
the design effort in Lines of Code (LOC):

 • manually coded VHDL source lines at RTL,

 • MSL source lines using our HLS approach.

Thus, we are able to compare the synthesis results in
relation to the necessary design effort. Table 1 summarizes
the ascertained implementation costs of our RS codec.

Using ModelSim 5.7f for simulation, we measured the
performance in clock cycles per task execution. As stimuli
we generated pseudo random test patterns providing an
uniform error distribution.

r // Program body (main)
{
}{
SET( n, rs_nk );
$CFG( p0, rf_fi, 1, rs_l, 3 );
$CFG( p1, rf_fo, 1, rs_n, 3 );
l( b0 ) // Main loop (code word)
{

GT( b0, n, 0 );
DEC( n, n );

}{
GE( b1, n, rs_l );
c( b1 ) // Consume or produce
{

$IN( in, p0 );
}{

SET( in, 0 );
}
GE( b2, n, rs_n );
c( b2 ) // Feedback to LFSR stages
{

GFM( fb, c0, a4 );
}{

SET( fb, 0 );
}
c( b1 ) // Data or checksum
{

$OUT( p1, in );
}{

c( b2 )
{
}{

$OUT( p1, a4 );
}

}
// Linear Feedback Shift Register
GFM( m4, c4, fb );
GFA( a4, m4, a3 );
GFM( m3, c3, fb );
GFA( a3, m3, a2 );
GFM( m2, c2, fb );
GFA( a2, m2, a1 );
GFM( m1, c1, fb );
GFA( a1, m1, in );

}
}

Figure 12. MSL source of RS encode task

Figure 13. Test bench and implementation
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Table 2 summarizes the performance results. The
typical value represents the average, if a task’s run-time
depends on the contents of the code word. This applies to
task t3 (Berlekamp-Massey algorithm) and task t6 (Fourney
algorithm). Otherwise we printed the ’typical’ value for an
RS(124,128).

5. Summary and conclusions

Our HLS approach targeting partially reconfigurable
FPGAs determines reusable design parts of a RTR system
using resource sharing. For this purpose, we introduce a
hierarchical operation (control and data) flow graph. This
high-level model considers the relevant implementation
costs using a target-specific RT level design library.

In a case study we applied our approach to an RS codec
application. In comparison to the conventional RT level
implementation, we ascertained no general increase of the
required area and approximately fifty percent reduction of
computing performance. The performance drops down
because the current l-pattern implementation needs two
clock cycles per loop. We will fix this in future.

In contrast to the conventional realization our BMT
model enables RTR design optimizations on a high level of
abstraction. Thus, next we will add the resource sharing
feature to our synthesis framework to explore achievable
reductions in the reconfiguration costs.

In future work, we will investigate different methods for
resource sharing and design partitioning. Furthermore, we
will evaluate other applications of embedded devices, such
as multimedia processing or encryption.
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Table 2. RS codec: performance results

Manual RTL design High-level synthesis

typ
[clks]

min
[clks]

max
[clks]

typ
[clks]

min
[clks]

max
[clks]

rs_enc 262 - - 521 - -

rs_syn 261 - - 517 - -

rs_loc 39 36 40 58 53 61

rs_pos 272 - - 523 519 525

rs_val 19 - - 5 - -

rs_dec 263 - - 517 - -


