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Abstract 
 

Code compression has been applied to embedded 
systems to minimize the silicon area utilized for program 
memories, and lower the power consumption. More 
recently, it has become a necessity for multiple-issue 
architectures, such as VLIW and TTA, to permit a viable 
realization of these designs. In this paper, a code 
compression and decompression scheme suitable for newly 
emerging reconfigurable technologies is presented, which 
pose further challenges by having an order of magnitude 
higher memory requirement due to much wider instruction 
words than typical VLIW/TTA architectures. Two 
dictionary-based lossless compression schemes are 
implemented and compared for an example reconfigurable 
system. This paper looks at several conflicting design 
parameters, such as the compression ratio, silicon area 
and speed. Test programs for a 2D DCT, minimum error, 
wimax and H.264 have been evaluated with compression 
ratios in the range of 41% to 62% recorded with the best 
scheme. 
 
 
1. Introduction 
 

The newly emerging technology of reconfigurable 
computing [1-6] aims to combine the flexibility of FPGAs 
with the programmability found in General Purpose 
Processors/Digital Signal Processing Processors in a 
unified and easy programming environment. 
Reconfigurable computing cores tend to be developed in 
terms of flexibility and performance, which correspond to a 
high amount of parallel processing units with its associated 
interconnect.  

Similarly, other multiple-issue architectures such as 
VLIW and TTA also exploit instruction level parallelism in 
order to provide higher throughput for computationally 
intensive algorithms. However controlling several parallel 
processing units demand excessively large instruction 
memories, and an associated very wide instruction fetch 

bandwidth. A wide bandwidth instruction fetch mechanism 
is required to supply multiple instructions per cycle to the 
several processing units of the architecture. This increases 
the silicon cost, making the higher throughput offered by 
these architectures less attractive. 

Code compression plays a crucial role in tackling these 
issues by reducing the amount of information needed to 
represent the code. A lot of research has gone into code 
compression for embedded systems, particularly for RISC-
based architectures [7-9], to reduce silicon area occupied 
by the memory and consequently reduce power 
consumption. The asymmetric nature of code compression 
allows the compressor to be made as complex and 
computationally intensive task as required as it is 
performed once at compile time. However, since the 
decompressor has a direct effect on the targeted processors 
performance, the decompression hardware should be kept 
as small and simple as possible to minimize area overhead 
and latency.  

Code compression in multiple-issue architectures faces 
extra challenges than single-issue due to the need of 
decompressing a very large instruction word quickly 
enough so not to compromise the speed of the processors. 
Yet a reduced instruction bandwidth is also desired to 
minimize wiring congestion and power consumption. By 
applying code compression, there is consequent inevitable 
delay between the main program memory and the 
processor, hence the aim is to minimize this enough so that 
it does not become the speed bottleneck for the actual core. 
Furthermore, it is desirable to minimize the overall area 
taken up by the decompressor logic so that the benefits 
achieved by performing program compression, and the 
sacrifice made in terms of extra latency, are not lost by 
having a large decompressor hardware. 

It is well recognized that higher compressions may be 
achieved if a compressor and decompressor are made 
application specific, however this is not feasible for our 
targeted reconfigurable architecture as well as conventional 
processors since they should be capable of running several 
different programs and those programs may change in 

_______________________ 
1-4244-0910-1/07/$20.00 ©2007 IEEE 



future via software downloadable upgrades. Thus a generic 
design is needed which would give a reasonable 
compression across most programs, and would be easily 
scalable as the number of functional units increase.  

This paper presents code compression and 
decompression schemes for an example coarse-grain 
reconfigurable architecture. The reconfigurable architecture 
introduced in [6] offers a very high number of parallel 
processing units and thus has a very wide instruction width. 
It is dynamically reconfigurable, thus it has to have the 
ability to store many configuration codes in memory which 
program the processing units for a particular moment in 
time.  

In this paper, we present a couple of dictionary-based 
code compression schemes for reconfigurable architectures 
which aim to satisfy the above requirements and a 
comprehensive comparison is performed for them. The first 
scheme is based on existing methods where one dictionary 
is assigned to a single functional unit. The second scheme 
is based on a novel ‘unit-grouping’ technique. It is 
noteworthy that many of the previously published work on 
code compression for multiple-issue processors fail to 
account for silicon area or decoding speed of algorithms, 
which gives an unrealistically optimistic view of some 
compression schemes.  

This paper is organized as follows. Section 2 reviews 
related work. Section 3 gives a brief overview of the 
targeted reconfigurable architecture and discusses the 
features of a typical program code which may be run on it. 
The first compression scheme implementation is presented 
in Section 4, followed by the second compression scheme 
implementation in Section 5. Section 6 gives the 
experimental results for both compression schemes and 
performs a comparison. Finally, Section 7 summaries the 
findings. 
 
2. Related Work on Code Compression 
 

Different lossless compression schemes can be found in 
abundance in literature. However it is important to note 
that code compression has different requirements to other 
forms of lossless data compression, thus the same 
compression schemes cannot be applied to both, though 
some ideas may be borrowed. Many well known data 
compression schemes provide very good compression 
ratios but they typically decompress files from beginning to 
end in a very sequential manner. This is not feasible for 
embedded systems which require either decompression to 
be performed on small blocks or on an instruction-by-
instruction basis due to the change of flow in the program. 

Code compression normally requires each compressed 
instruction to be encoded as such that its decompression 
and execution can be done immediately, without waiting 
for the subsequent instructions to be decoded, as otherwise 
an unacceptable time delay will be introduced. Also 

programs require the ability to make conditional jumps to 
new locations within the code. Whether or not a jump is 
taken directly depends upon how the condition is evaluated 
at execution, which in return mandates the previous 
requirement of decompressing and executing individual 
instructions immediately without waiting for subsequent 
instructions decode, as that effort may be wasted if a jump 
is required. 

The two common categories of lossless compression are 
statistical and dictionary-based. Statistical compression 
extracts statistical information from the data and uses that 
information to perform the compression. Many statistical 
methods result in codewords that are not fixed in length, 
thus it becomes necessary to first establish the range of bits 
for the next instruction, and only then the extraction and 
decompression can start for that particular instruction. 
Thus, this becomes a very serial operation and following 
instructions cannot be decoded until the prior ones have 
already been decoded, increasing the overall processing 
latency. However, for dense program codes of multiple-
issue architectures, statistical methods perform better than 
dictionary based [10]. It is noteworthy that the targeted 
reconfigurable architecture in this paper is more similar to 
the traditional VLIWs with rigid instruction formats rather 
than modern VLIWs with flexible instructions; i.e. the 
individual instruction positions within a wide instruction 
correspond to specific functional units, thus their code is 
less dense due to many inactive units, whereas in flexible 
instructions, the individual instructions within a wide 
instruction can be processed by any functional units.  

Statistical compressions for modern VLIWs include 
work done by Larin and Conte [11] who uses Huffman 
coding to compress instructions in 3 different ways 
allowing varying degrees of trade-off to be made between 
the compressed program size and the decompressor size. 
Further work is done by Xie et al [12] who have used 
arithmetic coding with a Markov model and report 
compressions of 67.3% to 69.7%. They also present a 
Tunstall based variable to fixed encoding scheme [13] and 
a fixed to variable encoding scheme [10] with 
compressions in the range of 65% and 70% to 82% 
respectively.  

Dictionary-based schemes compile dictionaries of 
frequent instructions found in a program and replace those 
instructions with the corresponding dictionary index. 
Dictionary-based algorithms normally result in poorer 
compression than statistical methods but tend to result in 
faster and simpler decompression logic. Nam et al [14] 
propose a dictionary based compression scheme for 
traditional VLIWs, and use isomorphism to create two 
dictionaries, one for storing operations, and the other for 
operands. Only frequent instruction words are compressed. 
The point to note is that this compression scheme becomes 
worse when the number of functional units increases from 



4 to 12. Compression ratios from 63% to 71% are reported 
although no discussion on silicon area or latency is found. 

Further dictionary based compression schemes are 
provided by Ros and Sutton [15] who investigates 
compression at 3 levels of instruction granularity. The most 
efficient compression scheme gave an average compression 
ratio of 68.3%; however it is a sequential design, thus quite 
slow. Other design parameters such as area or latency are 
not shown, and furthermore dictionary initialization bits are 
not added to the compression ratio calculation. Ishiura and 
Yamaguchi [16] also use dictionaries where they apply 
automatic field partitioning to partition instructions into 
smaller bit-sets to keep the corresponding dictionaries 
small. Compression ratios of between 46% and 60% are 
reported. 
 
3. Target Reconfigurable Multiple-Issue 
Architecture 
 

3.1 Instruction cell based architecture 
 

The recently developed industrial distributed 
reconfigurable instruction cell based architecture [6] was 
targeted for applying the proposed code compression 
techniques. The architecture is able to provide dynamic 
hardware reconfigurability and a high throughput. It uses a 
complex scheduler to effectively extract instruction level 
parallelism from general-purpose high level language 
codes [17].   

The architecture consists of an array of heterogeneous 
instruction cells, where the number and type of these 
function units are parameterizable upon application. For 
this paper, a 64 function units architecture was chosen, 
although the actual reconfigurable system is capable of 
having several fold more units if desired. This implies 
significantly more processing units than other existing 
multiple-issue architectures; e.g. VLIWs usually have up to 
12 processing units. Furthermore, for VLIW, each 
processing unit can perform different functions like an 
ALU, whereas the units of the target reconfigurable 
architecture are more specific purpose, such as multiplier, 
divider, shifter, adder, logic, registers, etc. Understanding 
the exact nature of each of the processing element is 
irrelevant for this paper, however it is suffice to say that 
each unit, depending upon its type, can have a varying 
number of configuration bits associated with it. The units 
of our target system contain cells with configuration bits 
varying from 3 up to 32 bits each. Each processing unit 
performs a specific subset of primitive operations, and the 
associated configuration bits are used to configure that 
unit’s operation appropriately at any moment in time. 
These configuration bits are accessed from the instruction 
memory, whereas the operands required by the functional 
units are obtained separately from the data memory.  

3.2 Program code 
 

Each wide instruction for the targeted 64 unit 
architecture is 474 bits; these wide instructions will now be 
referred to as steps. Examining a typical program code, 
poor code density is obvious. Most steps contain ‘No 
Operation’ (nop) instructions for inactive units, similar to 
traditional VLIW. Units are inactive if they are not utilized 
in a given step and occur frequently due to inter-instruction 
dependencies. They can be identified by their all zero 
configuration bits. This is labeled spatial redundancy. The 
second type of redundancy is the repetition of 
configuration settings for a given unit several times 
throughout the lifetime of a program code.  This is labeled 
temporal redundancy. And finally, performing some code 
profiling revealed a very frequent usage of units with large 
number of configuration bits, thus any compression 
achievable on these would be quite beneficial. 
 
4. Compression Scheme 1 (CS1) 
 

The first design was intentionally made simplistic in an 
attempt to minimize the latency associated with a single 
step decompression, while achieving a reasonable memory 
size reduction, and is based on similar compression 
techniques already applied for VLIW/TTA processors.  

Spatial redundancy removal eliminates all nop 
instructions for inactive units in a given step. This results in 
varying step sizes. Consequently, the decompressor would 
neither know when a complete single step has ended nor 
which functional units the configuration settings are 
intended for. Adding especially reserved end-of-step tags 
to the end of each step can signify a step completion. Some 
tags are also needed before each configuration bit-set 
within a step to provide information on which unit they are 
allocated. Given there are 64 units in the targeted 
reconfigurable architecture, 6bits can identify all the units 
uniquely, and would precede the corresponding 
configuration bit-sets. A reserved end-of-program tag is 
needed to indicate that the entire compressed program code 
has been decoded. For this, a codeword which can be 
guaranteed to never occur in any compressed program code 
can be used. 

For removal of temporal redundancy, the common 
technique of index dictionaries is applied. One dictionary is 
associated per unit, where each dictionary holds a single 
copy of all the unique configuration values for its 
associated unit. Thereafter the original program code is 
scanned and all the configuration values are replaced by 
their corresponding dictionary index. Compression can 
only be achieved with dictionaries if the number of bits 
being replaced is more than the dictionary index bits. This 
can only happen if we can guarantee that only a subset of 
all the possible unique configuration values can occur 
during the lifetime of any program code. This can easily be 



the case for a 32bit functional unit, where the 32 
configuration bits can have up to 232 unique values, yet in 
practical terms, only a small fraction of these are ever 
utilized. However, for some of the other units that have 
very few configuration bits, such as 3 or 4 bits each, using 
a dictionary is not feasible, since the chances of at least 
half of 23 or 24 unique combinations occurring in a given 
program are very high. Hence such unit configuration bits 
are best kept in their original form. After performing some 
code profiling, it was found that a dictionary with 210 
words would be more than sufficient for units with large 
configuration bits without the risk of overflowing, even for 
quite large programs like H.264. The large configuration 
bits will thus get replaced by 10bit indices. Note that even 
though the dictionary lengths are the same for large 
configuration units, the word widths will vary for each unit 
dictionary to match its corresponding unit’s number of 
configuration bits.  

The above mentioned redundancy removal techniques 
result in variable length compressed steps as well as 
variable sized payloads within each step. A payload 
represents one compressed instruction for an active unit 
inside a step and for CS1, it is made up of:               

            
            OR 

             
Thus, during decompression, the first 6bits for unit 

location tag have to be extracted and decoded to deduce the 
number of bits to read in for either the dictionary index or 
configuration bits. Once established, the next bits are read 
and decoded. Then, the following 6bits are read and 
decoded to know how many bits are now needed, and so 
on. A good compression ratio may be achieved using 
variable length payloads, however due to the sequential 
nature of the entire decoding process, the time required to 
decompress a complete step is unacceptable as the 
decompressor will become the speed bottleneck for the 
reconfigurable processor. 

Nonetheless, if all the payloads are made the same fixed 
length, then several payloads may be extracted and 
decompressed in parallel, speeding up the time it takes to 
decompress a complete step. A payload size of 16 bits is 
needed as a minimum to be able to correctly compress the 
larger unit instructions. Thus all the other payloads for the 
smaller units can also be fixed to this, which will result in 

an expansion of the code in some areas rather than 
compression, however this trade-off is necessary for 
speeding up the decompression process. The resulting 
decompressor design is shown in Fig. 1.  

This decompressor assumes that it is able to process up 
to 8 payloads in parallel from the compressed program 
memory; hence it expects 128bits bandwidth. This is 
clearly smaller than the initial 474bits bandwidth 
requirement, and the number of payloads fetched 
concurrently can easily be reduced or increased as desired. 
More payloads mean faster decode per step. The design has 
a one stage pipeline in order to increase its throughput. 
The compression is performed on a per basic block basis in 
order to ease how conditional jumps can be taken. When 
the reconfigurable core executes a step, and identifies a 
branch to a new location, it simply sets the target address 
on the ‘sram_start_address’ line and toggles the 
‘initialize_sram_address’ signal of the decompressor. This 
causes the decompressor to entirely flush the pipeline and 
start decompressing steps from the new specified address. 
The target addresses for each branch get updated during 
program compression according to their new locations.  

Performing code compression undoubtedly introduces 
some extra delay in the path of code fetch and execution. 
Given that the performance of the reconfigurable core is of 
utmost importance, then it is quite desirable to be able to 
run smaller program codes directly in an uncompressed 
form. This is possible by using the index dictionaries for 
each of the units as a cache to directly store all the steps of 
an uncompressed program if the program is no larger than 
1024 steps. A simple state-machine may be implemented to 
record all the steps into the dictionaries and steps may be 
extracted in an incremental manner.  

With this scheme the best compression achievable for a 
single step is 474bits reduced down to 16bits. This happens 
if only one unit is active. However, the worst case step 
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compression would actually increase the 474bits step to 
1024bits, and this can occur if all 64 units are active within 
a step. 
 
5. Compression Scheme 2 (CS2) 
 

CS2 is similar to CS1. It performs compression on per 
basic block basis and handles branches in the same manner. 
Spatial and temporal redundancies are removed as before 
and the decompressor has a one-stage pipeline 
implemented like in the previous scheme. However, the 
main difference lies in how the temporal redundancy is 
removed. Instead of assigning one 1K dictionary per 
functional unit, a group of functional units get assigned a 
1K dictionary. One group may contain from 1 up to 4 
different units. This idea came after encountering the 
undesirable expansion of code for smaller units in the 
previous scheme. Grouping some of the smaller units 
together as such that their accumulated number of bits is 
either at least equal to or more than 10bits, ensures that the 
compressed payload is not worse than what it would have 
been in its uncompressed form. It has to be ensured that the 
accumulated number of bits do not become too much 
greater than the 10bits, as the 1K dictionaries will become 
insufficient to hold all the possible unique combinations 
occurring in a given program code. For example, grouping 
the four 3bit adder units would result in a total of 12bits.  
Such a grouping means that up to a maximum of 212 unique 
values can occur in the program code if we assume that all 
of the four add units are active together in any given step 
and go through each of their possible values. However, this 
scenario actually occurring in any practical program code 
is highly unlikely. So, instead of having a 212 words 
dictionary, a 210 dictionary is quite sufficient as it allows 
for up to 25% of the total unique configurations to occur in 
any given single program code. 

25 groups were created after performing the unit 
groupings for the target 64 functional unit reconfigurable 
core. A 5bits group location tag is now sufficient to 
uniquely identify all the group dictionaries. However, each 
payload now requires the addition of unit activation bits 
that show which units within a given group are active in a 
given step. As a group was chosen to contain from 1 up to 
4 units, 4 bits are needed for units’ activation information. 
Thus, a single payload now becomes 19bits in length:  
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Another advantage of unit groupings is that fewer 

demultiplexers are now needed in the design, which can 
lower the logic area overhead. As before, the decompressor 
(see Fig. 2) assumes it is able to decode 8 payloads in 
parallel, therefore expects 152bits instruction fetch 
bandwidth. The dictionaries are still usable as an 
instruction cache to directly store short (<1025 steps) 
uncompressed programs and bypass the decompressor 
completely. With this scheme, the best compression 
achievable for a single step is 474bits reduced down to 
19bits. This happens if only one functional unit is active. If 
all the functional units within a step are active then 474bits 
expand to only 475bits and this represents the worst case 
compression for this scheme. 
 
6. Performance Comparison 
 

A set of DSP applications are used to evaluate the 
performances of each compression scheme; namely 2D 
DCT, minimum error, wimax and H.264 test programs. 
The decompressor designs are implemented using Verilog 
HDL and synthesized onto 0.13µm CMOS technology 
using Synplicity ASIC. The results are given in Table 1. 

The total decompressor area for CS2 is 31.6% lower 
than CS1. In both designs, the dictionaries make up 96% of 
the total area. These dictionaries are automatically 
generated using Virtual Silicon’s Memory Compiler. Note 
that even though the capacities of dictionaries for both 
designs are equivalent, their areas differ significantly. This 
is because more SRAM read and write circuitry is needed 
in CS1 as it has 64 1K dictionaries, whereas CS2 only has 
25 1K dictionaries with wider words. Furthermore, by 
reducing the number of demultiplexers in CS2 
decompressor, and the easing of the wiring congestion as a 
result, the decompressor logic area is also reduced.  

 

Figure 2. Decompressor design for CS2.
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 CS1 CS2 
Decompressor logic 0.16mm2 0.11mm2 

Dictionaries area 3.79mm2  
(485376bits) 

2.59mm2  
(485376bits) 

Total decompressor area 3.95mm2 2.7mm2 
Propagation delay 1.914ns 1.918ns 

Best case step decode 3.828ns 3.836ns 
Worst case step decode 19.14ns 9.59ns 

Power consumption 1253µW/MHz 764µW/MHz 
2D DCT 73.75% 62.1% 

Min error 40.2% 42% 
Wimax 41.51% 40.66% 

Compression 
ratio 

H.264 46.1% 41% 

 
 
The propagation delays for both designs are equivalent, 

allowing just over 500MHz clock frequency. Since both 
decompressors have a single stage pipeline, the shortest 
time to decode a complete step is 2xpropagation delay. 
However, in the worst case where all the units within a 
complete step are active, the CS1 takes almost twice as 
long as CS2 to decode a complete step. As the dictionaries 
contribute to the bulk of the area overhead, the power 
consumption for each design was estimated using 
datasheets of the individual SRAMs. CS2 is almost 40% 
less power hungry than CS1. The compressions are 
recorded in terms of compression ratio, which is defined as 
follows:  

 
Many other published works ignore the bits required for 

initializing the dictionaries and treat them as being pre-
initialized in ROM. For our examples, reductions in the 
range of 26.25% to 59.8% were achieved with CS1, 
whereas CS2 gave reductions in the range of 37.9% to 
59%. To better judge whether either of these program 
compressions is worthwhile, given that the decompressor 
introduces its own area overhead and delays, the results can 
be analyzed in terms of effective area savings achieved. To 
do this, the size of the original uncompressed program is 
found in terms of equivalent SRAM area. Then the size of 
the compressed program, including any dictionary 
initialization bits, is measured in terms of SRAM area too 
and the fixed size of the total decompressor area added to 
it. See Table 2. 

It is apparent from the results that short programs 
actually worsen the area overhead; however larger 
programs, like the H.264, provide significant savings. For 
the compressions to be worthwhile, a total program size 
reduction of approximately 122Kbytes is required for CS1 
and 49Kbytes for CS2.  

 

 CS1 CS2 
2D DCT 16590bits; 0.193 mm2 

Min error 11850bits; 0.178 mm2 
Wimax 204768bits; 0.814 mm2 

No. of bits 
for original 
program & 
equivalent 

SRAM area H.264 9442554bits; 36.9 mm2  

2D DCT 12235bits; 
0.178 mm2 

10295bits; 
0.175 mm2 

Min error 4758bits; 
0.098 mm2 

4967bits; 
0.101 mm2 

Wimax 84996bits; 
0.418 mm2 

83253bits; 
0.411 mm2 

No. of bits 
for 

compressed 
program & 
equivalent 

SRAM area 
H.264 4350841bits; 

17.4 mm2 
3836164bits; 

15.4 mm2 
Decompressor h/w area 3.95mm2 2.7mm2 

2D DCT 4.13 mm2 2.88 mm2 
Min error 4.05 mm2 2.8 mm2 

Wimax 4.37 mm2 3.11 mm2 

Total area 
required 

after 
performing 
compression H.264 21.4 mm2 18.1 mm2 

2D DCT -2040% -1392% 
Min error -2175% -1473% 

Wimax -437% -282 

Area savings 
(negative 
value if 

worse area) H.264 42% 51% 

 
 
7. Summary 
 

Two dictionary-based lossless code compression 
schemes are implemented for a multiple-issue 
reconfigurable architecture, with the aim to reduce the 
silicon area and bandwidth costs associated with the 
instruction memory. In a comprehensive comparison, our 
novel unit-grouping technique outperforms the standard 
technique used with dictionary-based compressions. 
Significant compression ratios in the range of 41% to 62% 
are achieved. The compression scheme is easily scalable to 
reconfigurable architectures with increased number of 
functional units.  
 

References 
 
[1] Mirsky, E.; DeHon, A.; “Matrix: A reconfigurable computing 

architecture with configurable instruction distribution and 
deployable resources,” IEEE symposium on FPGAs for 
custom computing machines, pp.157-166, Apr. 1996 

[2] Hauser, J.R.; “Augmenting a microprocessor with 
reconfigurable hardware,” Thesis, University of California, 
Berkeley, 2000 

[3] D-Fabrix processing array, Reconfigurable Signal Processor, 
www.elixent.com, 2004 

[4] XPP, PACT, “OFDM decoder for wireless LAN– 
whitepaper,” www.pactcorp.com, May 2002 

[5] Reconfigurable Computing, Philips, Avispa, 
www.siliconhive.com, 2004 

Table 2. Compression achieved in terms of 
effective area for individual applications 

Table 1. Performance results for CS1 and CS2

Compression 
ratio = 

Original program size 

Compressed 
program size 

Dictionary 
initialization 

bits 
+ 

× 100 



[6] Reconfigurable Instruction Cell Array, U.K. Patent 
Application Number 0508589.9. 

[7] Lefurgy, C.; Bird, P.; Chen, I.-C.; Mudge, T., “Improving 
code density using compression techniques,” Proc. of the 30th 
Intl. Symposium on Microarchitecture, pp:194 – 203, Dec. 
1997 

[8] Liao, S.; Devadas, S.; Keutzer, K., “Code density optimization 
for embedded DSP processors using data compression 
techniques,” Proc. of the 16th Conference of Advanced 
Research in VLSI, pp272, 1995 

[9] Wolfe, A.; Chanin, A., “Executing compressed programs on 
an embedded RISC architecture,” Proc. of the Intl. 
Symposium on Microarchitecture, p.81-91, Dec. 1992 

[10] Xie, Y.; Wolf, W.; Lekatsas, H.; “Code compression for 
embedded VLIW processors using variable-to-fixed 
coding,” IEEE Trans. On Very Large Scale Integration 
Systems, Vol. 14, No. 5, pp.525-536, May 2006   

[11] Larin, S.; Conte, T.; “Compiler-driven cached code 
compression schemes for embedded ILP processors,” Proc. of 
32nd Intl. Symposium on Microarchitectures, pp. 82–92, 1999 

[12] Xie, Y.; Wolf, W.; Lekatsas, H.; “Code compression for 
VLIW processors,” Proc. of Data Compression Conference, 
pp. 525, 2001 

[13] Xie, Y.; Wolf, W.; Lekatsas, H.; “A code decompression 
architecture for VLIW processors,” Proc. of the 34th Intl. 
Symposium on Microarchitectures, pp. 66–75, 2001 

[14] Nam, S.; Park, I.; Kyung, C.; “Improving dictionary-based 
code compression in VLIW architectures,” Trans. on 
Fundamentals of Electronics, Communications and Computer 
Sciences, Vol. E82-A, pp. 2318-24, Nov. 1999 

[15] Ros, M.; Sutton, P.; “A Hamming distance based 
VLIW/EPIC code compression technique,” Proc. of the Intl. 
Conf. on Compilers, Architectures and Synthesis for 
Embedded Systems, pp. 132–139, Sept. 2004 

[16] Ishiura, N.; Yamaguchi, M.; “Instruction code compression 
for application specific VLIW processors based on automatic 
field partitioning,” Proc. of the Workshop on Synthesis and 
System Integration of Mixed Technologies, pp. 105-109, 
1997 

[17] Yi, Y.; Nousias, I.; Milward, M.; Khawam, S.; Arslan, T.; 
Lindsay, I.; “System-level scheduling on instruction cell 
based reconfigurable systems,” Proc. of Design, Automation 
and Test in Europe, Mar. 2006 

 


