Reifying Control of Multi-Owned Network Resources

Nadeem Jamali' and Chen Liu?

'University of Saskatchewan
Dept. of Computer Science

University of Alberta
Dept. of Computing Science

176 Thorv. Bldg., Saskatoon, SK, Canada 2-21 Athab. Hall, Edmonton, AB, Canada

n.jamali @agents.usask.ca

Abstract

Communication delay is a key source of uncertainty in
distributed systems. Existing approaches to reduce this
uncertainty focus on maintaining sufficient surplus band-
width; applications, on their part, are designed in ways to
tolerate certain degree of uncertainty in communication de-
lays. This leads to contention between the goals of optimal
utilization and acceptable delays.

We argue that the multi-owned nature of today’s net-
works offers opportunities to reason about and scalably
control networks at a fine grain. An explicit treatment of
network resource ownership and trade allows reasoning
about acceptable delays. This can lead to scalable mech-
anisms for fine-grained accounting and reification of con-
trol, which make it possible to quantify and control network
utilization.

We bring together ownership, fine-grained accounting,
and reification of control in a model for resource acquisi-
tion and control called CyberOrgs. Cyberorgs encapsulate
distributed computations with resources required for their
execution. A cyberorg acquires resources required by its
computations by buying them from other cyberorgs using
eCash.

We present a novel approach for implementing fine-
grained network resource control based on the CyberOrgs
model. A prototype implementation is described with exper-
imental results illustrating the effectiveness of control.

1 Introduction

Computations sharing an execution space inevitably
compete for the resources in that space. Even sub-

This research was supported by NSERC and CFI

1-4244-0910-1/07/$20.00 (©2007 IEEE.

cliu@cs.ualberta.ca

computations working on parts of the same problem can
compete for resources, hampering progress toward the
shared goal. When a computation’s choice of the next ac-
tion depends on actions taken by other computations, coor-
dination is required to achieve optimal results [5]. Not only
is coordination recognized as a key concern in distributed
computing [2], it has also been argued that computation and
coordination are separate and orthogonal dimensions of all
useful computing [6], necessitating coordination to be ad-
dressed explicitly.

Communication delay is a key source of uncertainty in
distributed systems. Existing approaches to reduce this un-
certainty focus on maintaining sufficient surplus bandwidth;
applications, on their part, are designed in ways to toler-
ate certain degree of uncertainty in communication delays,
and distributed implementations of applications which do
not tolerate uncertainty well are limited. Because there
are few ways of fine-grained measurement and control of
network usage, this approach leads to contention between
the goals of optimal utilization and acceptable delays. Be-
cause there is no way of addressing communication load
in a targeted manner, it is not possible to resolve a local-
ized bottleneck locally; attempts are made to limit commu-
nication over a wider network than necessary. This leads to
over-reservation and under-utilization of large parts of the
network, resulting in waste, and adverse consequences for
other applications.

We argue that uncertainty in networks results in part
from not considering a key notion: ownership. In the ab-
sence of explicit consideration of ownership, it is difficult
to quantify acceptable delay. Similarly, in the absence of
fine-grained accounting, it is not possible to quantify op-
timality of utilization. Quantifying network utilization at a
finer grain can lead to measurement of surplus resource, and
an overall better snapshot of remaining opportunities.

Our approach is to bring together ownership and fine-
grained accounting in a model for resource acquisition and
control. Cyberorgs are resource encapsulations which host

distributed computations and trade with each other in re-
sources. A cyberorg acquires resources required by its com-
putations by negotiating contracts with owners of needed
resources. Ownership is defined in time and space; so, for
the span of a contract, the buyer would be the owner of the
resource. Cyberorgs trade in resources using eCash.

We present a prototype implementation of this model for
network resource control, with results illustrating the effec-
tiveness of control.

2 Related Work

There is a significant body of work in network resource
management. Related approaches fall into two categories
[13]: congestion control and QoS. Congestion control ad-
justs the behavior of senders according to the current state
of congestion, which attempts to maximize overall network
utilization rather than address Individual flow requests. Net-
work QoS is closer to our approach in that it provides ser-
vice assurances to satisfy requirements of applications. Re-
search in this area can be placed in three classes: Integrated
Service, Differentiated Service and Overlay QoS. Integrated
Service architecture is intended for supporting real-time ap-
plications, which require a bound (either statistical or abso-
lute) on the delivery delay of each packet in an Integrated
Services Packet Network (ISPN) [3]. Differentiated Ser-
vice aims to guarantee QoS requirements for applications.
However, rather than treating individual flows differently, it
guarantees quality of service to a traffic aggregate, which is
a bundle of flows. OverQoS [14], is an example of Overlay-
based QoS, which uses an abstraction CLVL (controlled
loss virtual link) to put a bound on the loss rate of a traffic
aggregate and provide services of smoothing packet losses,
prioritizing packets within an aggregate and statistical loss
and bandwidth guarantees. Q-RAM-based QoS model [7]
supports network resource allocation. The network resource
allocation approach in Q-RAM-based QoS model is close to
our approach in that it treats bandwidth separately from de-
lay and packet loss and is implemented by optimized route
discovery and bandwidth reservation. In active networks,
network switches perform customized computations on the
messages flowing through them [15]. This allows users to
specify their application-oriented control requirements and
build up user-aware networks.

Generalized Processor Sharing (GPS) [12] allows flows
to have different service shares in accordance with their de-
sired quality of service, and the service one flow is not in-
fluenced by other flows. Weighted Fair Queueing (WFQ),
an approximation of GPS, aims to allow different flows to
share the same link and have different guaranteed band-
width allocated to them. This mechanism ensures that the
bandwidth guarantee for each flow is independent and is
not influenced by other flows. Besides, this scheme also

allows configurable number of flows and guarantees delay
and throughput as well.

3 CyberOrgs

CyberOrgs [8] is a model for resource sharing in a net-
work of self-interested peers, where application agents may
migrate in order to avail themselves of remotely located
peer-owned resources. CyberOrgs organize computational
and communication resources as a market, and their con-
trol as a hierarchy. Specifically, each cyberorg encapsulates
one or more distributed computations (to be referred to as
computations contained in the cyberorg), and an amount of
eCash in a shared currency. Cyberorgs act as principals in a
market of distributed resources, where they may use eCash
to buy or sell resources among themselves. A cyberorg may
use the resources so acquired for carrying out its computa-
tions, or it may sell them to other cyberorgs.

CyberOrgs treat computational and communication re-
sources as being defined in time and space. In other words, a
resource is not available for use before or after the instant of
time at which it exists. Sale of a resource is represented by a
contract stipulating availability of resources to the buyer for
a cost. Delivery of resources to cyberorgs is determined by
a hierarchy of control decisions. In other words, cyberorg a
makes control decisions required for delivery of resources
purchased from it by cyberorg b. Cyberorgs may pre-pay
to buy resources which will exist in the future. In other
words, after signing a contract, a cyberorg must migrate to
the prospective host cyberorg in order to avail itself of newly
acquired resources.

The CyberOrgs model separates concerns of computa-
tions from those of the resources required to complete them.
We assume that computations are carried out by actors [1],
and we represent the resource requirements of each compu-
tation by the sequence of resources required to complete it.
Ticks serve as the unit of a consumable resource such as pro-
cessor time. Every computation requires a certain number
of ticks to complete.

Progress is represented by transitions occurring with in-
troduction of ticks into the system. When a tick is inserted
into a cyberorg, it may pass the tick on to a client cyberorg,
use it for progressing on its system tasks or on its actors.
Whether a tick is passed on to a client or used locally de-
pends on the contracts that the cyberorg has with its clients.

As illustrated in Figure 1, a new cyberorg is created by
using the i solate primitive, which collects a set of actors,
messages, and electronic cash, and creates a new cyberorg
hosted locally. A cyberorg disappears by assimilating into
its host cyberorg using the asmlt primitive, relinquishing
control of its contents to its host.

A cyberorg may realize that its resource requirements
have exceeded what is available by its contract with the host

NN
$ 5 = X 5
== g
~ i,
N
s
s L '\&@
S =
& eCash =
& Actor
B Actor Message
a) CyberOrg Isolation

= X
= XK

b) CyberOrg Assimilation

Figure 1. Creation and Absorption

cyberorg, triggering an attempt to migrate. The tasks re-
quired for migration are: search (for potential hosts), nego-
tiate (potential contracts), and migrate (to a selected host).

A more formal treatment of the operational semantics
may be found in [10].

4 Design and Implementation

An execution environment of our system on a computer
node is called a CyberOrg platform. A CyberOrg platform
is composed of three layers: CyberOrgs interface layer, Cy-
berOrgs management layer, and Resource scheduling layer.

4.1 CyberOrgs Interface Layer

CyberOrgs interface layer is composed of two parts:
a class library and an application programming interface
(API) for CyberOrgs. Using these facilities, programmers
are able to specify high-level resource requests for their ap-
plications, and define their resource control policies to man-
age resources.

4.1.1 CyberOrgs Class Library

The CyberOrgs library contains a set of classes correspond-
ing to major components in CyberOrgs. There are six main
classes: CyberOrg, SysComCyberOrg, Actor, Facilitator,
vLink and Contract.

The CyberOrg class defines a cyberorg, which is the ba-
sic unit of resource control in the CyberOrgs model. Each
cyberorg contains a facilitator actor which helps it control
its resource requirements.

The Actor class defines an actor, which carries out com-
putations or communicates with other actors while con-
sumes resources. The Actor class contains a thread and a
message queue which buffers received messages.

A facilitator is a special actor, which facilitates the re-
source control function of a cyberorg. Every request for
resource or primitive operations is eventually arrived at a
corresponding facilitator of a cyberorg as a message.

The vLlink class defines abstract network resources
called virtual links.

The Contract class defines contracts, in which the sup-
plier and consumer fields match the cyberorgs who grant
and receive resources respectively. The quantity of pur-
chased resources and corresponding price are also specified.

4.1.2 CyberOrgs APIs

We implement CyberOrgs by extending Actor Architecture
[11], a Java library for implementing Actor systems.

Actor APIs Most of the Actor API in our CyberOrgs im-
plementation is borrowed from Actor Architecture, except
for the interface for actor creation. Specifically, two new
methods are added.

Actor Creation

e ActorName createActor (ActorName p_anCreator,
String p_strActorClass, Object[] p_objaArgs)

Creates an application actor. Parameters are: p_anCreator,
the creating the actor; p_strActorClass, class of new actor;
p-objaArgs, creation arguments.

e ActorName createActor (CyberOrg p_coMyCyberOrg,
String p_strFacilitatorClass, Object[] p_objaArgs)

Creates a facilitator actor. Parameters are: actor creation
parameters, plus p_coCyberOrg, the cyberorg represented
by the facilitator.

CyberOrg APIs APIs for Cyberorg provide interfaces for
creation, absorption, and migration of cyberorgs, plus nego-
tiation of contracts between cyberorgs.

Cyberorg Creation

e Cyberorg createCyberOrg (String
p-strCyberOrgClass, long p_lECash, Contract
p-cContract, String p_strFacilitatorClass, Object[]

p_objaArgs)

Creates a cyberorg, which can be the system cyberorg
or a newly isolated cyberorg. In the latter case, the
method is called by the Isolate() method described be-
low. Parameters are: p_strCyberOrgClass, the new cy-
berorg’s class; p_lECash, eCash provided to the new cy-
berorg; p_strFacilitatorClass, facilitator class; p_cContract,
the contract imposed on the new cyberorg,! which specifies
the network resource available to the new cyberorg, and its
cost; p-objaArguments, facilitator creation arguments.

e CyberOrg isolateSysComCyberOrg (long
p-IECash, String p_strFacilitatorClass, Contract
p-cSysComContract, String p_strFacilitatorClass,
Object[] p_objaArgs)

Creates system communication cyberorg. Parameters are:
createCyberOrg parameters plus p_cSysComContract, con-
tract between the system cyberorg and the system commu-
nication cyberorg, which specifies the network resource re-
served for system communications, and its cost.

e Cyberorg Isolate (long p-lECash,
p-anaActors, Contract p_cNewContract)

ActorName[]

Creates new child cyberorg. Parameters are: p_lECash,
eCash given to new cyberorg; p_anaActors, an array
of existing actors to be isolated into new cyberorg;
p-cNewContract, contract between new cyberorg and creat-
ing cyberorg, specifying the resources available to the new
cyberorg, and their cost.

Cyberorg Absorption
e void Assimilate()

Assimilates cyberorg into its host cyberorg. After the in-
vocation of this method, all resources, actors and eCash
held by the assimilating cyberorg are released to the host
cyberorg.

Cyberorg Negotiation and Migration
e Contract Negotiate

p-anSupplierFacActor,
p-cProposedContract)

(ActorName
Contract

Initiates negotiation with another cyberorg to purchase
required resources. Parameters are: p_anSupplierFacActor,
name of facilitator of potential host cyberorg;
p-cProposedContract, proposed contract which speci-
fies resource request and the proposed price. If proposal
is acceptable to the potential host, a the proposed contract
becomes effective.

e void Migrate(ActorName p_anDestinationActor, Con-
tract p_cNewContract)

UIf the cyberorg being created is a system cyberorg, the contract is be-
tween this cyberorg and the system. Otherwise, the contract is between
this cyberorg and its creating cyberorg.

Service Bandwidth| Transfer
Request Limit
ChatActor 0.1MBps 50MB
ConferenceMemberActor | 1MBps 100MB
FileShareActor 0.05MBps | 10MB
VideoShareActor 10MBps 500MB

Figure 2. Sample Resource Specification File

Migrates cyberorg to destination cyberorg. Parameters are:
p-anfacActorOfdesCyberorg, name of facilitator of destina-
tion cyberorg; p_cNewContract, pre-negotiated contract be-
tween the migrating cyberorg and the destination cyberorg.

4.1.3 Example: Chat Room Service

Consider a chat room service, in which the service provider
offers multiple types of services, such as live video con-
ference, text chatting, file transferring, audio and video ex-
change, and so on. Here, we illustrate how such a system
may be constructed using CyberOrgs. We specifically look
at: (1) how to set up an application in the system; (2) how
to develop a resource allocation policy and (3) how to de-
velop application-specific resource control policies. In this
example, it is assumed that a chat application and relevant
utilities already exist in the system.

In order to isolate a new cyberorg for chat room service,
the name of the master facilitator of the system cyberorg
has to be known in advance. This is done by retrieving the
actor name of the master facilitator of the system cyberorg
from the local CyberOrg Manager. The CyberOrg Manager,
which manages local cyberorg hierarchy, has a public name
(uan://host_address:2). Then, the resource allocation spec-
ification file (described in the next section) is loaded to set
default allocation policy held by the new cyberorg. After a
contract is generated for this isolation, a synchronous mes-
sage is sent to the master facilitator of the system cyberorg
to isolate a cyberorg for this chat room service.

Resource Allocation Specification

In order to offer different qualities of service to users, the
service provider has to specify an allocation policy. There
are different possible ways to achieve this purpose (e.g. us-
ing a resource specification language such as RSL provided
by Globus [4])). Here a simple example is given of a speci-
fication file.

It is assumed that the service provider allocates vLinks
with different bandwidth and data transfer limit to differ-
ent services. Therefore users of the same service are allo-
cated with equalized vLinks. Figure 2 shows an allocation
specification file in which resource allocation policy is in

terms of the service type, such as chat service (represented
by the corresponding actor class), the amount of bandwidth
required, and the data transfer limit. Alternatively, band-
width requirement can be specified qualitatively.

Each cyberorg has such a specification file, and allocates
resources to actors according to the specified policy.

Resource Control Policy

Although a resource allocation specification file allows
service providers to set default allocation policy for their re-
sources, this is only one side of the story. Service providers
may also want to change the default allocation policy to
meet some special requests. For example, users may wants
to have better bandwidth for file transfer service. With these
concerns, application programmers should define policies
about how to control resource allocation.

4.2 CyberOrgs Management Layer

CyberOrgs management layer enforces resource man-
agement mechanisms in CyberOrgs. This layer consists of
three components: CyberOrgs Manager, Task Distributor
and Contract Manager. CyberOrg Manager manages the hi-
erarchy of CyberOrgs and cooperates with the Task Distrib-
utor to carry out resource allocation. The Contract Manager
is in charge of guaranteeing the execution of contracts made
between cyberorgs.

Resource allocation is the core mechanism in the Cy-
berOrgs system. Resource allocation has different mean-
ings at CyberOrgs and lower levels. At the CyberOrgs level,
resource allocation create vLinks upon requests and assigns
these vLinks to the requester, either a cyberorg or a commu-
nication. In contrast, at the lower level, resource allocation
searches a path to meet the source, destination and band-
width requirements specified in a resource request, estab-
lishes a connection along the path for communication, and
disestablishes this connection at the end of the correspond-
ing communication. The resource allocation enforcement
is achieved by resource scheduling layer (see next section).
We refer to the procedure of vLink creation and path search-
ing as resource discovery, and vLink assignment and con-
nection establishment as resource allocation task distribu-
tion. The procedure of vLink consumption and connection
disestablishment is called post-allocation maintenance.

The procedure of resource discovery plays two important
roles. First of all, this procedure controls the admission of
resource requests. If a resource request cannot be satisfied,
it is refused. Further, this procedure maps an application-
level vLink to a low-level network connection.

Upon receiving a vLink request, a concrete physical path
which meets the source, destination and bandwidth require-
ments specified in the request has to be found before the
vLink creation. This is in fact a routing problem. Different

from routing on the Internet, which aims to find the short-
est path between a source and destination, this routing also
concerns bandwidth requirement. It is necessary to ensure
that the searched path has bandwidth greater than or at least
equal to the requested value. We customize Dijkstra’s algo-
rithm to solve this problem.

Once a path has been found, a corresponding vLink is
created to represent the resource at the CyberOrg level. At
the lower level, a connection has to be established. Each
node along the path has to be informed about their schedul-
ing tasks corresponding to the resource request. The Task
Distributor is responsible for distributing a resource alloca-
tion task to related nodes.

The CyberOrg Manager passes a resource allocation task
to the Task Distributor. A resource allocation task stipulates
which flow a vLink is created for, the underlying path map-
ping to this vLink as well as the bandwidth of the vLink.
Each node along the path has to schedule packets belong-
ing to the flow according to the allocated bandwidth. There
are two ways for a Task Distributor to inform related nodes
about the task. First, the Task Distributor generates a sin-
gle control message which contains the resource allocation
task, and relays this message along the assigned path. Each
node along the path receives the message and sets a state
in itself. It is the last node to receive the control message
that sends back a response message to the Task Distributor.
Then, the Task Distributor informs the Message Manager to
start the corresponding communication which requires this
resource allocation.

4.3 Resource Scheduling Layer

Resource scheduling layer is implemented by modifying
an existing Actor system, Actor Architecture [11] (AA). AA
has a well-designed layer architecture, which is easy to ex-
tend. We keep most original components in AA, and cus-
tomize some of them to support our scheduling schemes.

In resource scheduling layer, we schedule messages,
packets and threads. Message scheduling supports link
sharing between different flows. Packet scheduling real-
izes rate-based flow control, and thread scheduling ensures
any thread at a node has a chance to progress. Aided by
these three scheduling schemes, bandwidth allocation can
be achieved. For efficiency, we employ the approach of flat-
tening a hierarchical schedule developed in [9].

Message Scheduling We decompose an actor message
into a number of fixed length packets, and control the send-
ing rate and order of these packets to enforce bandwidth
allocation. Although packets are scheduled at a rate corre-
sponding to allocated bandwidth, we still need to schedule
messages for the purpose of multiplexing the link utiliza-
tion.

For each communication, there is a corresponding mes-
sage queue to buffer messages for this communication, and
a packet queue which buffers decomposed packets accord-
ingly. Message decomposing and dequeuing happen in a
round robin fashion. For example, at each message schedul-
ing cycle, the first message in each message queue is al-
lowed to decompose 20 packets and these packets are de-
queued from the message queue and then put into the corre-
sponding packet queue.

Algorithm 1 Packet Scheduling
1: while true do

2: start timing /*start time is Tstart*/
3: calculate the end time /* Tend = Tstart +
Tgranularity*/
4: for each packet queue i do
5: if packet queue i is not empty then
6: retrieve allocated bandwidth B;
7: dequeue N; packets /* N; = B; %
Tgranularity*/
8: send these packets to the next hop
9: end if
10: end for
11: message scheduling
12: if currenttime < endtime then
13: wait until the end time
14: end if

15: end while

Packet Scheduling Packet level scheduling is based on
the weighted round robin algorithm, and supports adjustable
time granularity. By granularity we mean the length of each
time cycle in which each flow has received its due share.
The weight of each flow is determined by its bandwidth re-
quest. When the granularity of a time cycle is set, the num-
ber of packets to be scheduled for a flow is the product of its
weight and time granularity. Algorithm 1 shows our packet
scheduling scheme.

Thread Scheduling Threads are explicitly scheduled by
the system to manage CPU sharing between the network
control system and other activities of a node.

4.4 Overhead

CyberOrgs primitives incur both computational and
communication overheads. Because cyberorgs in the pro-
totype system are internally distributed — i.e., one cyberorg
may have actors located on different nodes — primitive op-
erations are implemented in a distributed manner as well.
Correspondingly, the invocation of a primitive operation

causes system message communication and may also re-
sult in resource allocation computation. Table 1 summarizes
communication and computation overhead for each primi-
tive operation.

Table 1. System Overhead (n is the number of
nodes covered by a cyberorg; r is the number
of vLink requests)

Operation | Comm Comm Comput
Overhead | Overhead | Overhead
Loc Msgs | Rmt Msgs

Isolate O(n) O(n) O(rn?)

Assimilate | O(n) O(n)

Migrate O(n) O(n) O(rn?)

Allocate 0 O(r) O(n?)

For communication overhead, the number of triggered
messages is counted to demonstrate the amount of sys-
tem communication caused by a primitive operation. The
amount of system communication for a primitive operation
is linear with the number of nodes covered by a cyberorg.
In addition to the amount of system data transferring, sys-
tem resource consumed in transferring data is also consid-
ered. Here, local messages are differentiated from remote
messages, because local messages may sometimes be opti-
mized as function calls. Since remote messages may have
different source and destination requests, vLinks consumed
by transferring these messages are different. However, as
system resources are reserved in the system communication
cyberorg in advance, these messages do not compete with
application messages for resources.

Primitive operations require recalculation of resource al-
location. Both the isolate and migrate operations have to
calculate the resource allocation in order to create the new
cyberorg. Suppose there are r resource requests, then the
overhead for calculating resource allocation for these re-
quests is O(rn?).

5 Experimental Results

We have carried out a preliminary evaluation of our
packet scheduling scheme for fine-grained network control
by conducting experiments on a prototype implementation.
Specifically, we tested for effectiveness of control for a flow
given different numbers of flows in the system.

Three sets of two-node results were obtained. Figure 3
shows the bandwidth maintained for requests of different
bandwidths during 2 minutes with granularity of 200 mil-
liseconds in the presence of 9 additional flows existing in
the system (which are not shown). Inaccuracies observed

0.5 . . : ‘ ‘
bandwidth request = 0.05MBps

0.45 bandwidth request = 0.1MBps -~ A
4 bandwidth request = 0.2MBps -~

04]

0.35 | | 1

Bandwidth - MBps

0 20 40 60 80 100 120 140
Observation Time - second

Figure 3. Performance of Bandwidth Alloca-
tion (bandwidth request: 0.05MBps-0.2MBps;
time granularity: 200 ms; observ time: 2 min;
env: 2-node; flows: 10)

Table 2. Inaccuracy Comparison of Schedul-
ing With Different Number of Flows

| Request/Flows | 1flow [5flows [10 flows |

0.05MBps 5.894% | 5.08% | 6.695 %
0.1MBps 6.187 % | 4.236 % | 2.314 %
0.2MBps 4.869 % | 4.512 % | 4312 %

are summarized in Table 2. Although some of this fluctua-
tion is because of measurement errors (which is confirmed
by down-spikes followed by up-spikes), others are caused
by packets dropped because of packet buffer overflows, be-
cause we did not employ flow control.”

Figure 4 shows the bandwidth maintained when there is
an intermediary node between the source and the destina-
tion nodes. Figure 4 shows flow maintained for a single
flow in the presence of 9 other flows (which are not shown).

Finally, experiments were carried out on multi-node
paths with the packets being rescheduled at each intermedi-
ary node. Three physical machines were used to create the
path of length 8, with packets traveling between source and
intermediary node for a number of times before arriving at
the destination. Figure 5 shows the bandwidth maintained
for one flow in the presence of 9 additional flows (which are
not shown). Figure 6 shows the difference in performance

2Because of possibility of buffer overflows in the absence of flow con-
trol, percentage of dropped packets increased dramatically when band-
widths larger than 2MBps were requested. For this reason, our experiments
avoided cumulative bandwidth requests of above 2MBps.

0.4

bandwidth reqhest =01 MBps ‘

035 | bandwidth request = O.ZMBps’?

@ |

& 03[|
s i i :

o |
h]

= i
©

=

©

m

0 L L L L L L
0 20 40 60 80 100 120 140

Observation Time - second

Figure 4. Performance of Bandwidth Alloca-
tion (bandwidth request: 0.05MBps-0.2MBps;
time granularity: 200 ms; observ time: 2 min;
env: 3-node; flows: 10)

Table 3. Inaccuracy Comparison of Schedul-
ing with Different Number of Flows in Three-
Node Environment

‘ Request/Flows ‘ 1 flow ‘ 5 flows ‘ 10 flows ‘

0.1MBps 3739 % | 4011 % | 5.364 %
0.2MBps 351% | 4231 % | 3.294 %

between the two cases, representing a greater need for flow
control in multi-hop paths.

6 Conclusion

We have introduced an approach to fine-grained network
control based on the CyberOrgs model. Design and imple-
mentation of a prototype system have been presented with
experimental results.

We are encouraged by the preliminary results which
show effectiveness of our approach in maintaining desired
bandwidth for communication flow. Additional experi-
mental work is ongoing on a more efficient implementa-
tion of the packet scheduler with flow control as part of a
CyberOrgs-based prototype for controlling different types
of computational and communication resources. We are
particularly interested in studying network and processor
overheads involved in using CyberOrgs for supporting re-
source requirements of actual applications, especially as the
number of nodes and communication flows scale up.

Bandwidth - MBps

0.4 ; . . ‘ ‘
bandwidth request = 0.05MBps -
035 L bandwidth request = 0.1MBps]
’ bandwidth request = 0.2MBps ------
03 | ! i
N |
025 | i P]
§
;

0.2

0.15 |

0.1

i

0.05 Lil-tlihs

40 60 80 100
Observation Time - second

120 140

Figure 5. Performance of Bandwidth Alloca-
tion (bandwidth request: 0.05MBps-0.2MBps;
time granularity: 200 ms; observ time: 2 min;
env: n-node; flows: 10)

References

(11

(2]

(31

(41

(51

(6]

(71

(8]

G. Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. MIT Press, Cambridge, Mass.,
1986.

A. Bond and L. Gasser, editors. Readings in Dis-
tributed Artificial Intelligence. Morgan Kaufman Pub-
lishers, San Mateo, California, 1988.

R. Braden, D. Clark, and S. Shenker. Integrated Ser-
vices in the Internet Architecture: an Overview. RFC
1633, June 1994.

I. Foster and C. Kesselman. The Globus project: a
status report. Future Generation Computer Systems,
15(6):607-621, 1999.

L. Gasser. DAI approaches to coordination. In N. M.
Avouris and L. Gasser, editors, Distributed Artificial
Intelligence: Theory and Praxis, pages 31-51. Kluwer
Academic Publishers, 1992.

D. Gelernter and N. Carriero. Coordination languages
and their significance. Communications of the ACM,
35(2):97-107, February 1992.

S. Ghosh. Scalable QoS-based Resource Allocation.
PhD thesis, Carnegie Mellon University, 2004.

N. Jamali. CyberOrgs: A Model for Resource
Bounded Complex Agents. PhD thesis, University of
Mlinois at Urbana-Champaign, 2004.

Bandwidth - MBps

0.2 T T T
bandwidth request = 0.2
0.18 1

0.16 | 1
0.14 ¢ 1
0.12 1
0.1 ¢ 1
0.08 | 1
0.06 | 1
0.04 |
0.02 |

e

120

100
Observation Time - second

40 60 80 140

Figure 6. Degradation in Accuracy of Band-
width Allocation from 1 to 10 Flows in Sys-
tem (bandwidth request: 0.05MBps-0.2MBps;
time granularity: 200 ms; observ time: 2 min;
env: n-node)

(91

(10]

(11]

(12]

[13]

[14]

[15]

N. Jamali and X. Zhao. A scalable approach to multi-
agent resource acquisition and control. In Proceed-
ings of the 2005 international joint conference on Au-
tonomous agents and multiagent systems, pages 868—
875, July 2005.

N. Jamali and X. Zhao. Hierarchical resource usage
coordination for large-scale multi-agent systems. In
T. Ishida, L. Gasser, and H. Nakashima, editors, LNAI:
Massively Multi-agent Systems I, volume 3446, pages
40-54. Springer Verlag, 2005.

Open System Laboratory. The Actor Architecture.
Technical report, University of Illinos at Urbana-
Champaign, 2004.

A. K. Parekh. A generalized processor sharing ap-
proach to flow control in integrated services networks.
PhD thesis, Massachusetts Institute of Technology,
February 1992.

L. L. Peterson and B. S. Davie. Computer Networks:
A Systems Approach. Morgan-Kaufmann, 2000.

L. Subramanian, I. Stoica, H. Balakrishnan, and
R. Katz. OverQoS: An Overlay based Architecture
for Enhancing Internet QoS, March 2004.

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D.J.
Wetherall, and G. J. Minden. A Survey of Active
Network Research. IEEE Communications Magazine,
35(1):80-86, 1997.

