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Abstract  

 
Stream processing exploits the properties of stream 
applications such as parallelism and throughput-oriented 
nature of the applications. One of the most recent 
approaches is community-supported Morphware Stable 
Interface (MSI) [11] used as a stable abstraction between 
High-Level Compilers (HLC) and Low-Level architecture-
specific Compilers (LLC). We focus on one part of the 
MSI, the Stream Virtual Machine (SVM) [4][7][11]. We 
implemented a High-Level Compiler that produces SVM 
output renderings and SVM implementation. The SVM  is 
implemented with the Raw Compiler as the LLC and an 
accompanying library. We also implemented stream 
applications such as matrix multiplication, FIR bank, and 
Ground Moving Target Indicator (GMTI) using the 
implemented compilers. These applications are optimized 
and the results are analyzed. The results show that the 
SVM framework is generally suitable for streaming 
applications on Raw processor. 
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1. Introduction 

In this paper, we describe the implementation of a 
streaming model of execution using a proposed standard 
streaming API, and evaluate the performance results for 
the implementation running on the Raw research 
microprocessor [8][16].  In our streaming execution model, 
finite-duration tasks running on programmable hardware 
computational cores read operands from local on-chip 
memories, and write results back to local memories.  

We expect the access patterns to local memory to be 
regular, e.g., sequential, which assists with getting 
performance from the hardware cores.  Data movement 
between the on-chip local memories and off-chip 
memories is via explicit initiation of transfers.  If there are 
multiple cores on the chip, it is also possible to set up 
direct links to transfer sequences of data directly from core 
to core.  

Based on the hypothesis that this execution model is 
general and reflects the means by which contemporary 
processors are programmed to achieve high performance 
when executing programs with substantial amounts of data 
parallelism1 as are found in signal processing, a standard 
way of describing computations in this model was 
developed. 

This is the Stream Virtual Machine (SVM) framework 
[7][11]. The SVM framework consists of two parts, a set 
of C-idiomatic API for expressing computations in this 
execution model, along with a standard way for writing 
machine models (in an XML syntax) that describe 
hardware targets. One use of the SVM framework  is as an 
intermediary between two compilers; a High Level 
Compiler (HLC) that is responsible for analyzing the input 
code and performing coarse grain transformations of the 

                                                        
1 The basis for this hypothesis is that all contemporary processors are 
implemented in CMOS and that they face the same physical factors in 
any organization (e.g., communication costs dominating computation 
costs) that tries to push performance. 



 

application, such as extracting parallelism and coarse grain 
load balancing, and a Low Level Compiler (LLC) that 
maps the tasks of the SVM to the hardware computational 
cores, performing standard compiler transformations such 
as instruction selection, register allocation, and instruction 
scheduling. 

The output of the High Level Compiler is the 
application code after it has been mapped into the 
streaming execution model as expressed in the SVM form. 
Like all compilers, HLC uses an abstract machine model 
as a basis for the feasibility constraints and cost functions 
that drive the transformations and optimization. A HLC 
has been developed for SVM called R-Stream, and 
machine models and LLCs have been developed for Raw 
[8] [16], MONARCH [15][17], TRIPS [1][14], and Smart 
memories [9][10].  These research projects are being 
conducted within the DARPA Polymorphous Computer 
Architecture (PCA) research program [4] and with the 
coordination of the Morphware Forum [11]. 

In this paper, we experimented with the R-Stream 2.1 
HLC and a low level compiler for Raw architecture (See 
Figure 1). We implemented the SVM LLC by using Raw’s 
C compiler and implementing the rest of the SVM API as 
library. We, then, implemented several stream applications 
such as matrix multiplication, FIR filter banks, and 
Ground Moving Target Indicator (GMTI) [2]. These 
applications are optimized and analyzed.  

The rest of the paper is as follows: Section 2 describes 
the SVM framework and the architecture of Raw processor. 
Section 3 describes the High Level Compiler and how we 
use the Raw C compiler and a library of calls to be an LLC 
for the SVM form. Section 4 describes the applications 
implemented. Section 5 shows the implemented results 
and analysis results are presented. Section 6 concludes the 
paper.  

 
 

 
Figure 1. HLC and LLC implementation for Raw 

2. Stream Virtual Machine and Raw 
Processor 

2.1. Stream Virtual Machine [7][11] 

The Stream Virtual Machine (SVM) framework [7][11] 
is a draft standard API within a set of standards intended to 
allow expressions of multiple levels of mapping of signal-
knowledge processing applications to a class of 
programmable processors called Polymorphous Computer 
Architectures (PCAs).  The API framework is designed to 
allow the integration of tools and design flows that  allow 
the development of such applications, mappings, and 
systems in a way that achieves performance (FLOPS/W) 
that is competitive with ASIC, but which is based on 
programmable hardware. 

The main idea of the SVM framework is developing a 
stream virtual machine that can be used universally for 
multiple languages and multiple architectures. The SVM 
framework exposes parallelisms and communications in 
applications using SVM APIs such that a tool chain can 
optimize application performance by utilizing the exposed 
information. 

The HLC generates SVM API based code. The 
mapping of the application to the architecture is also 
expressed in SVM API. There are several main concepts in 
the SVM. One of them is kernel. The SVM API provides 
the kernel abstraction as a unit of computation. Kernels 
consist of computation expressed with a restricted subset 
of C, operate on a set of input and output streams, may 
contain local state, and generally encapsulate clean, data-
parallel code. Kernels can be asynchronously monitored 
and controlled from a control thread running on a different 
processor [7]. 

Another concept in SVM is stream. A stream is a 
collection of sequential records of data. The streams can 
be in memory or communication channel (FIFO). The 
streams can be sent to a kernel that is a collection of 
computation. When a stream is input to a kernel, the 
records in the stream are consumed by the kernel 
sequentially and the kernel computes output that is sent to 
output stream sequentially. A block of data that can be 
accessed randomly (in contrast to sequentially) is called 
block. The data in the block can be accessed in any order. 
There are several APIs that control the kernels such as 
start, stop, and pause kernel operations. There are SVM 
APIs describing dependencies between kernels. 

HLC uses machine model to generate tailored code for 
target architecture. The machine model describes the target 
machine abstractly using universal descriptions. Currently 
the machine model contains one primary master that is 
used initially to execute a serial code and to start other 
components. When a parallelized code is executed, 
secondary masters2are called by the primary master.  

                                                        
2 The use of secondary masters is outside the SVM specification. At the 
August 2006 Morphware meeting, we agreed not to extend the SVM 
specification to allow secondary masters. 
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The secondary masters are responsible for preparation 
of input data and calls stream processors. The stream 
processors are responsible for execution of the 
computations. The machine model also describes other 
resources such as DMA, local memory, global memory, 
and networks. 

Finally, the SVM code is compiled using LLC to 
generate binary code for a target platform. LLC is 
responsible for software pipelining, detailed routing of 
data items, management of instruction memory, and 
interfacing between stream processors and control 
processors [11].  
With the SVM approach, when a new language or a new 
architecture is introduced, it can leverage the work done 
before. For example, if a new architecture is introduced, it 
can write an LLC for the architecture and use existing 
HLC with no or little modifications. 

2.2. Raw Processor [8] [16]  

Microprocessor manufacturing technologies have been 
advanced rapidly, and as a result, more and more 
transistors are populated in a processor. One of the 
resulting technical challenges from such advances is power 
dissipation problem.  One of the solutions for the power 
problem is using multi-cores (multi-tile) with a little lower 
clock speed in a processor. By using multi tiles in a 
processor, the overall power dissipation problem is eased. 

Another advantage of the multi-tiles in a processor is 
short signal travel distance. One of the main contributing 
factors for rapidly increasing performance of the 
processors was rapidly increasing clock speed and chip 
area. As the clock speed increases and chip area increases, 
it takes more and more cycles for a signal to travel from 
one side to the other side. Thus, by using multi-tiles, each 
tile occupies a fraction of the chip space. So, it is easier to 
make a faster processor since the signals need to travel 
only a short distance.  

One example is the Raw chip implemented at 
Massachusetts Institute of Technology (MIT) [8] [16]. The 
current Raw implementation contains 16 tiles on a chip 
connected by a low latency two-dimensional mesh 
network. The Raw prototype board has been tested up to 
300 MHz and is expected to operate at higher frequency as 
the processor itself was successfully tested at higher 
frequency.  Peak performance using the 300 MHz board is 
4.8 GOPS.  

Each tile has a MIPS-based RISC processor with 
floating-point units and a total of 128 KB of SRAM, which 
includes switch instruction memory, tile (processor) 
instruction memory, and data memory. Raw uses general 
parallelism, which includes streaming, ILP, and data 
parallelism. 

The Raw has four networks: two static networks and 
two dynamic networks. Communication on the static 
networks is performed by a switch processor in each tile 
 [13]. The switch processor is located between the 
computation processor and the network. It provides 

throughput to the tile processor of one word per cycle with 
a latency of three cycles between nearest neighbor tiles.  

One additional cycle of latency is added for each hop in 
the mesh through the static networks. When the dynamic 
network is used, data is sent to another tile in a packet. A 
packet contains header and data. If the data is smaller than 
a packet, dummy data is added to make a packet. If the 
data is larger than the packet, multiple packets are sent. 
The memory ports are located at the 16 peripheral ports of 
the chip. All tiles can access memory either through the 
dynamic network or through the static network. 

In Raw, network ports are mapped to registers so that 
accessing registers corresponds to communication. This 
feature is useful to reduce the number of instructions 
significantly when the code is optimized as it eliminates 
load/store operations. This is exploited in our 
implementation of matrix multiplication and FIR banks as 
shown in Section 5. 

3. High Level Compiler (HLC) and Low 
Level Compiler (LLC) 

3.1. HLC 

In our experiments, we used the R-Stream 2.1 high-
level compiler [12].  R-Stream 2.1 is an experimental 
research compiler written with the objective of performing 
high-level mapping transformations from a common 
expression of an application to multiple PCA architectures, 
using the SVM as the means for expressing the mapped 
application. 

R-Stream 2.1 accepts application written in a C dialect 
that simplifies the extraction of program semantics, 
particularly with respect to abstraction of arrays. This C 
dialect is nicknamed “Gumdrop.”  The distinctive feature 
of Gumdrop is the ability to indicate that references to 
arrays are abstract.  The separation of the extensional 
semantics of arrays from the intentional semantics of 
arrays provides the HLC greater flexibility in mapping, 
especially in the presence of distributed local memories in 
separate address spaces, which is a common feature of all 
of the PCA architectures (and in general seems to be a 
feature of other high performance embedded architectures, 
such as IBM’s Cell [5] or Clearspeed’s [3]).   

R-Stream 2.1 was designed to use the Gumdrop abstract 
array extensions after experience with the Brook language 
in our R-Stream 1.0 compiler. The R-Stream designers 
concluded that the principal benefit of the stream 
abstraction in Brook was the separation of the intentional 
and extensional semantics of storage elements, but that 
exposing the stream abstraction to the programmer caused 
the programmer to over-specify the mapping. This is 
because the stream abstraction is inherently one 
dimensional. The use of this abstraction in the SVM 
reflects the view that abstraction is a useful way to express 
an efficient physical execution model, where some inner or 
near inner loop is “streamed.” However, for the 



 

programmer, it is overly constraining: attempts to express 
multi-dimensional algorithms (such as operations over 
three dimensional radar cubes in GMTI) in Brook are 
baroque code expressions with early physical bindings that 
are far from efficient execution. To accept them, the HLC 
would be forced to “undo” much of what programmers 
were writing in order to get good mappings.  Writing loops 
over abstract arrays is much more natural for programmers. 

Abstract arrays represent both a limit to the R-Stream 
2.1 compiler and an inherent limitation of the C language.  
R-Stream 2.1 does not have passes to raise code that is 
written in terms of C references to abstract arrays.  Mainly, 
this is driven by the fact that this is a very hard problem to 
do in general and that it is easy to write code in C where it 
is impossible to raise arrays. Other limitations of the 2.1 
mapper surface in the Gumdrop dialect, such as the 
requirement that loops to be mapped have explicit 
indication of the iteration variable (as “do loops”), that 
loops have simple stride expressions and fixed extents, and 
that array sizes be static and known at compile time. 

R-Stream 2.1 performs the following mapping steps: 
loop unrolling, loop interchange, partial fusion, tiling, and 
high-level software pipelining. The loop interchange, 
fusion, and tiling are based on greedy algorithms that 
attempt to find fusions of stages in an algorithm like 
GMTI. Such fusion of stages allows producer-consumer 
locality to be exploited, saving chip IO bandwidth. This 
fusion transformation is interesting because the stages in 
an application like GMTI can be separated by various 
“corner turns” so the fusion cannot generally be along an 
inner dimension as is most common; the fusion has to 
comprise two dimensions. Furthermore, this fusion is 
constrained by the fixed local memory capacity of the 
distributed memory of the processors. 

R-Stream 2.1 also performs high-level software 
pipelining, performing a fixed static scheduling of the tiles 
(as “kernels in SVM terminology) across processors and in 
time.  This is performed with a high-level modulo 
scheduling. Thus, in the GMTI example, several “cubes” 
corresponding to different samples can be in flight 
simultaneously. R-Stream 2.1 arranges for double-
buffering of local memory and generates bulk memory 
read and write operations (stream copy in SVM 
terminology) which correspond to DMA operations. 

While R-Stream 2.1 can map across multiple PCA 
chips, this often is due to simplifications in the machine 
model for each of the chips. It is possible to model Raw as 
a single unified processor comprised of multiple Raw tiles 
acting synchronously, or as a chip multiprocessor with 
independent tiles. In our experiments, we model Raw as 
having independent tiles. 

While the transformations that R-Stream 2.1 can 
perform are relatively powerful and illustrative, the 
implementation of the transformations is somewhat rigid.  
The sequence of transformations to be performed is fixed, 
and structured closely to correspond to the needs of the 
GMTI implementation we have. Limitations in the R-
Stream 2.1 implementation prevent the compiler from 

performing certain simple “cleanup” optimizations before 
output is emitted. The reliance on fixed iteration extents, 
simple loops, and known array extents is deeply baked in 
to the mapper. The newer version of the compiler, R-
Stream 3.0, is being built to address these limitations [13]. 

3.2. LLC 

In our implementation of LLC, instead of building 
standalone compiler, we leveraged the available gcc 
compiler tailored for Raw by using library approach to 
SVM construction. In this approach, we build a library for 
SVM APIs that is used for an SVM code (See Figure 1). 
Although this approach does not provide full optimizations 
that may be provided by full SVM compiler, it enabled us 
to access the SVM framework in a short time period with 
minimal cost. In our current implementation, all SVM 
APIs in the specification are implemented. 

The library provides several functions to support the 
SVM APIs. One of them is maintaining kernel data 
structure. When a kernel is started, the kernel data 
structure is passed to the secondary master. However, 
since the kernel start API is non-blocking API, it may 
return even before the kernel started. If the caller returns 
from a function in which the API is called, the memory 
space for kernel data structure can be freed and when the 
secondary master is ready to execute the kernel, the kernel 
data structure is not available. To solve this problem, our 
library maintains a copy of the kernel data structure in 
library memory space.  

Another function that library provides is handling of 
data buffer for streams through dynamic networks. The 
dynamic network guarantees the order of data between two 
tiles. However, if two sender tiles send data to a 
destination tile, the order of the data in the receiver tile is 
not known at compile time. Thus, the library needs to 
identify the source of data whenever a packet of data 
arrives. Also, if a data being received belongs to a stream 
that is to be received later, then the data needs to be stored 
in a buffer. The library keeps buffers for storing such data 
for proper operation of the dynamic network. 

4. Signal Processing Applications 

In this paper, we implemented two kernels and one 
compact application: matrix multiplication, FIR bank, and 
GMTI that are described in this section. 

4.1. Matrix multiplication 

Matrix multiplication, C = AB, calculates an output 
matrix C from A and B, where A, B, and C are matrices. 
We implemented systolic matrix multiplication and 
mapped as shown in Fig. 2. A matrix data travels from left 
to right, and B matrix data travels from top to bottom. 
Each tile in the path of A and B computes matrix 
multiplication using incoming data from tiles on left and 
up sides. The result data travels to right side destination 



 

tiles. The matrix sizes for A and B are 3 by 128, 128 by 
256, respectively. 

4.2. FIR bank 

FIR bank is one of the kernel benchmark suite [2] 
specified by Massachusetts Institute of Technology 
Lincoln Laboratory. The FIR bank implements a set of M 
FIR filters and each FIR filter m, m ∈ {0, 1, …, M-1}, has 
a set of impulse response coefficients wm[k], k ∈ {0, … K-
1}. It is mathematically specified as: 
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The filters are distributed over tiles such that each tile 
has M/T filters, where T is the number of tiles. Each tile 
computes its own filters. Therefore, there is no 
communications among tiles. The FIR is implemented in 
frequency domain which is more efficient than time 
domain when data size is large. Therefore it requires FFT, 
complex product, and IFFT operations. In this 
implementation, a few optimizations in application level 
were performed:  i) the bit-reversal operations are 
eliminated by bit-reversing filter coefficients and ii) using 
radix-4 FFT and radix-4 IFFT.  

The parameters for the results reported in this paper are: 
K=12, N=32, and the length of the input data is 1024 
complex data. 
 

 

 

Figure 2. Matrix multiplication 

4.3. Ground Moving Target Indicator (GMTI) [2] 

GMTI is a compact application that represents airborne 
radar applications used to locate a target on the ground [2]. 
It consists of several stages: Time Delay and Equalization 
(TDE), adaptive beamform, pulse compression, Doppler 
filter, space-time adaptive processing, target detection, and 
target parameter estimation. TDE and pulse compression 
stages are mainly convolution in frequency domain. Thus, 
they consist of FFT, multiplication, and IFFT operations. 
Other stages mainly include matrix operations and FFT 
operations.  

5. Implementation Results 

To assess the SVM framework for Raw, we used matrix 
multiplication, FIR bank, and GMTI. The matrix 

multiplication and FIR bank were hand-coded using SVM 
APIs so that HLC is bypassed that allowed us to isolate the 
issues related to HLC. The code was then compiled using 
LLC that consists of SVM library and Raw C compiler. 
The code was executed on Raw hand-held board. GMTI is 
written in C-dialect code (“Gumdrop” code) that provides 
hints to HLC, and then compiled with HLC. The output 
code from HLC expressed in SVM APIs is compiled with 
LLC, and then executed on Raw processor. 

The performance results for matrix multiplication are 
shown in Figure 3. The figure shows the number of cycles 
used for computation of each multiplication-addition pair, 
i.e., the total number of execution cycles is divided by the 
number of multiplication-addition pair in the matrix 
multiplication. On Raw, multiplication and addition each 
needs one cycle to execute. Thus, the lower bound of the 
number of cycles for a multiplication-addition pair is two. 
Figure 3 shows the number of cycles for a multiplication-
addition pair as a function of the number of words per 
communication. The number of words per communication 
is the message size in words when a tile sends a message 
to a neighbor tile or a tile in the rightmost column for 
result data sending.  
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Figure 3. Matrix multiplication results 

The curve in Figure 3 named “SVM Library” shows the 
performance when a full implementation of SVM API is 
used. The curve shows that the initial cost of the 
communication using library approach can be amortized 
over a long sequence of data. This is a good property since 
stream processing tends to have a long sequence of data. 
Note that the performance of the library may be optimized 
depending on the situation.  

In matrix multiplication, we optimized it in several 
ways. One way is utilizing available multiple networks 
among tiles so that a network between two tiles handles 
only one stream. Then, the overhead for managing 
multiple streams in a network can be eliminated. Another 
optimization was using hand-assembly code for critical 
section of the code. This allows us to use minimal number 
of instructions and optimal instruction scheduling.  

The last optimization is using network ports as 
operands as described in Section 2. The curve named 
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“Hand-optimization” in Figure 3 shows the performance 
when these optimizations were applied.  The most 
optimized results show that it takes only about 10% more 
overhead than the theoretical lower bound, and the main 
reason for the overhead was due to the loop outside of the 
deepest loop and software pipeline overhead.  

FIR bank was specified for two data sets in 
Polymorphous Computing Architecture (PCA) kernel 
benchmark specification [2]. The first set is a large data 
set: number of filters = 64, number of input data = 4096, 
and the number of filter coefficients = 128. The second 
data set is a small size: number of filters = 32, number of 
input data = 1024, and the number of filter coefficients = 
12.  

It is implemented manually using SVM APIs. We 
performed several optimizations including all three 
optimizations applied for matrix multiplication. An 
additional optimization applied for FIR bank is using 
broadcast capability of switch processor that reduces the 
workload for tile processor. In the broadcasting scheme, 
when a switch processor receives data from a source, it 
duplicates the data and sends one to the computing 
processor and sends the other to another destination switch 
processor which performs the same operation. 

The FIR bank are optimized in several ways in 
algorithmic level: using radix-4 FFT, elimination of bit-
reversal, using overlap-save method, minimization of 
address calculations using offsets, and preventing register 
spilling by restricting the number of registers used. The 
implementation results are shown in Figure 4 and Figure 5. 
In Figure 4, UB denotes upper bound considering only 
floating point operations. Since there are 16 tiles each of 
which can compute one floating point operation, the UB is 
16 floating point operations per cycle.  

IUB denotes the upper bound when load/store 
operations are considered as well as the number of floating 
point operations. Since the load/store operations were 
inevitable in our FIR bank implementation that uses 
Radix-4 FFT, the IUB is a “practical” upper bound. The 
performance in Figure 4 is obtained when input and output 
data are in cache so that time to access the external 
memory is not considered. Our results show that the hand-
optimized results are very close to the “practical” upper 
bound with only about 10% overhead.  

The result denoted as “compiler optimization” is 
obtained using LLC with algorithmic optimizations only. 
It shows about three times of the difference between hand-

optimized performance which are mainly due to additional 
instructions and non-optimal instruction schedules.  

Figure 5 shows the effect of accessing data from 
memory. It takes about 16% additional cycles when data is 
accessed from memory. The additional cycles are not 
significant since in FFT computation, memory access is 
not frequently performed due to the fact that once data is 
loaded from memory to cache, then the data is used many 
times before final result is stored in memory. 

Figure 6 and Figure 7 show the results of GMTI 
implementation. Figure 6 shows the execution schedule of 
each processor including a primary master, secondary 
masters, and stream processors. Note that tile 0 is mapped 
to the primary master, one secondary master, and one 
stream processor in time-shared mode. Other tiles are 
mapped to one secondary master and one stream processor. 
The execution schedule shows parallelization of HLC.  
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Figure 5. Latency results for FIR bank 



 

 

Figure 6. GMTI execution schedule 

 
The application is parallelized up to 12 processors. 

Note that HLC actually can parallelize up to the maximum 
number of tiles on Raw processor, i.e., 16 parallelization. 
However, there was a problem in execution of four tiles 
that prevented execution of 16-tile version code and we are 
investigating the problem. Fig. 6 shows that some portions 
of the application are not parallelized due to serial nature 
of the portions of the application. However, the available 
slots may be used by using software task pipeline 
technique. The utilization (number of floating point 
operations/(number of floating point unit * number of 
execution cycles)) is about 0.5%. Some of the reasons for 
the low utilization are the empty schedules in Fig. 6, many 
load/store operations, and some redundant operations. 

Since GMTI is a large application, analyzing the 
performance using our rigorous steps including 
optimizations is not feasible. Therefore, we chose one 
stage, Time Delay and Equalization (TDE), in the GMTI 
and performed optimizations and compared the result that 
is shown in Figure 7. In Figure 7, x-axis shows several 
steps in TDE. In each step, the first bar marked as “R-
Stream” shows the performance of using HLC and LLC 
with only algorithmic optimizations used in FIR banks. 
The next bar marked as “direct copy” shows the 
performance when data is moved without using SVM calls. 
Then, hand-assembly performance shows when critical 
sections of the code are optimized using hand-assembly. 

 

 
Figure 7. Breakdown of the cycles for the first stage (TDE) of GMTI 
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The ILB denotes the “practical” lower bound that 
include load and store operations as well as floating point 
operations. Note that the hand-assembled code 
performance is close to the ILB. 

The bar marked as “FLB” shows the lower bound when 
only floating point operations are considered. The results 
show that the hand-optimized code obtains very close 
performance to the “practical” lower bound that is 
expected to be obtained if HLC and LLC incorporate the 
optimization techniques we applied. The performance of 
the R-Stream is also encouraging as the difference 
between the R-Stream and hand-optimization code is only 
about three times for major computation parts even when 
the R-Stream is in prototype stage. 

The results also reveal where the current tool chain 
needs improvement. One of the improvements needed is 
better capability of parallelization. Although current HLC 
parallelizes up to the maximum number of processors, in 
some stage in GMTI, it fails to parallelize the code due to 
memory constrains. We expect HLC can parallelize these 
sections with better code analysis capability. Another area 
of improvement is data movement as shown in Figure 7, 
and we are working to improve these. 

6. Conclusion 

The authors have presented implementations of SVM 
framework for Raw processor. We implemented R-Stream 
as an HLC. HLC performs parallelization of the code and 
was able to generate up to the maximum number of 
processors in several stages in GMTI. We build SVM 
library to be used for LLC in conjunction with the C 
compiler for Raw. Using the tool chain, we implemented 
several signal processing kernels and a compact 
application. The implemented tool chain enables full path 
from high level stream languages to the processor and 
quick assessment of the SVM approach.  

The implementation results show that the current tool 
chain in SVM framework provides a reasonably good 
performance in several key sections of the code. We 
applied several manual optimizations to understand the 
performance issues in SVM framework and were able to 
obtain the performance very close to the theoretical peak 
performance of the kernels. We expect similar 
performance improvement can be obtained using 
optimizations when the HLC and LLC are mature enough. 
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