
A Minimal Access Cost-Based Multimedia Object Replacement Algorithm

Keqiu Li1,2, Takashi Nanya2, and Wenyu Qu3

1School of Electronic and Information Engineering

Dalian University of Technology

No 2, Linggong Road, Dalian, 116024, China

2 Research Center for Advanced Science and Technology

The University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan

3 College of Computer Science and Technology

Dalian Maritime University

No 1, Linghai Road, Dalian, 116026, China

Abstract

Multimedia object caching, by which the same multi-

media object can be adapted to diverse mobile appliances

through the technique of transcoding, is an important tech-

nology for improving the scalability of web services, espe-

cially in the environment of mobile networks. In this paper,

we address the cache replacement problem for multimedia

object caching by exploring the aggregate effect of caching

multiple versions of the same multimedia object. First, We

present an optimal solution for calculating the minimal ac-

cess cost of caching multiple versions of the same multime-

dia object. Second, based on this solution, we propose an

effective cache replacement algorithm for multimedia ob-

ject caching. Finally, we evaluate the performance of the

proposed solution with a set of simulation experiments for

various performance metrics over a wide range of system

parameters.

Key words: Web caching, multimedia, cache replace-

ment, transcoding, optimization, Internet.

1 Introduction

Web caching has been recognized as one of the effective

solutions to alleviate web service bottlenecks, reduce traffic

over the Internet and improve the scalability of the WWW

systems. A survey of web caching schemes for the Inter-

net can be found in [14]. There are a couple of elements

that affect the performance of web caching, such as caching

system architecture, proxy placement, cache routing, cache

replacement, dynamic data caching, etc. In this paper, we

study the cache replacement problem for multimedia objet

caching, which is to decide the replacement candidates for

accommodating a new object when the cache space is not

enough under the condition that both web objects and multi-

media objects are cached 1. A number of cache replacement

algorithms have been proposed in literature, which attempt

to minimize various metrics, such as hit ratio, byte hit ra-

tio, average latency, and total cost. An overview of web

caching algorithms can be found in [1, 11]. However, most

of these algorithms cannot be directly applied to solve the

cache replacement problem for multimedia object caching

since different versions of the same multimedia object can-

not be simply viewed as different web objects, which has

been shown in [6, 8].

In [6], the authors proposed an efficient cache replace-

ment algorithm for transcoding proxies (AE for short) 2,

which removes objects from the cache according to its gen-

eralized profit. When one object is removed from the cache,

the generalized profits for the relevant objects will be re-

vised. If the free space cannot accommodate the new object,

another object with the least generalized profit is removed

until enough room is made for the new object. From the fol-

lowing example, we can see that this method is not optimal.

Example Suppose there are two objects and each

object has three versions, i.e., the object set is

o1,1, o1,2, o1,3, o2,1, o2,2, o2,3, where oi,j denotes version j
of object i. We also assume that the size of each object

and the generalized profits of caching one or two versions

1In this paper, we consider a web object as a single-version multimedia

object, while a multimedia object has at least two different versions.
2A transcoding proxy is proxy with the functionality of transcoding.

1

1-4244-0910-1/07/$20.00 ©2007 IEEE

Table 1. Data Used in the Example
s(o1,1) s(o1,2) s(o1,3) s(o2,1) s(o2,2) s(o2,3)

3 2 1 3 2 1

p(o1,1) p(o1,2) p(o1,3) p(o2,1) p(o2,2) p(o2,3)
18 20 16 16 18 18

p(o1,1, o1,2) p(o1,1, o1,3) p(o1,2, o1,3) p(o2,1, o2,2) p(o2,1, o2,3) p(o2,2, o2,3)
29 25 28 26 30 28

of each object are shown in Table 1, where s(·) and p(·)
denote the size and the profit, respectively.

If an object with size 2 is to be inserted, it is obvious

that object o2,1 should be removed because it has the least

generalized profit, and its size is enough to accommodate

the new object. In this case, AE is efficient. If an object

with size 4 is to be inserted, AE will first remove object

o2,1 from the cache, and then remove o1,3 from the cache

because these two are the ones with the least profits, and the

total size of them is enough for the new object. The profit

we lose by removing these two objects is 32. We can see

AE is not efficient in this case because the profit we lose is

25 when o1,1 and o1,3 are removed. The main reason is that

the aggregate profit of caching multiple versions of the same

object is not the simple summation of that of each version.

Furthermore, considering all the objects cached makes this

problem more complex.

From the above example, we can see that studying the

cache replacement problem for multimedia object caching

has significance on both theory and practice.

The main contributions of this paper are summarized as

follows.

• We propose an optimal solution for calculating the

minimal access cost of caching multiple versions of

the same multimedia object.

• Based on this solution, we propose an effective cache

replacement algorithm for multimedia object caching.

• We evaluate the performance of the proposed solution

with a set of simulation experiments for various perfor-

mance metrics over a wide range of system parameters.

The rest of this paper is organized as follows. Section

2 introduces some preliminary concepts of transcoding. In

Sections 3, we present an optimal solution for the problem

of multimedia object replacement and its analysis. The sim-

ulation model and performance evaluation are described in

Sections 4 and 5, respectively. Section 6 summarizes our

work and concludes the paper.

2 Object Transcoding

Transcoding is a technology that is used to transform a

multimedia object from one version to another, frequently

through trading off object fidelity for size [5, 7, 12, 13].

The relationship among different versions of a multimedia

object can be expressed by a weighted transcoding graph

[6]. An example of such a graph is shown in Figure 1.

In Figure 1, we can see that the original version A1 can

Figure 1. A Weighted Transcoding Graph

be transcoded to each of the less detailed versions A2, A3,

A4, and A5. It should be noted that not every Ai can be

transcoded to Aj since it is possible that Ai does not con-

tain enough content information for the from Ai to Aj .

The transcoding cost from Ai to Aj of a multimedia ob-

ject is denoted by t(Ai, Aj), which is defined as the de-

lay for transcoding one version to another for the same

multimedia object. Obviously, t(Ai, Ai) = 0. If a ver-

sion cannot be transcoded from another version, we con-

sider the transcoding cost as infinity. If version Aj can

be transcoded from version Ai through version Ak with

i < k < j, then t(Ai, Aj) ≤ t(Ai, Ak) + t(Ak, Aj) (trian-

gularity property) because version Ak is always an option

if the transcoding cost t(Ai, Aj) is too large. In this paper,

the transcoding graph is a linear array and the transcoding

cost between any two adjacent versions is constant (T), i.e.,

t(Ai, Aj) =
j−1∑
k=i

t(Ak, Ak+1) = (j − i)+T , where x+ = x

2

if x ≥ 0 else x+ = ∞. Our analysis can be easily ex-

tended for the case in which the transcoding graph is a gen-

eral transcoding graph as defined in the beginning of this

section.

3 An Effective Cache Replacement Algo-
rithm for Multimedia Object Caching

For the cache replacement problem, only the node with

a cache and the server are considered 3. Assume that

a multimedia object O has m different versions, denoted

by A1, A2, · · · , Am, where A1 is the most detailed ver-

sion and Am is the least detailed version. For version Ai

(1 ≤ i ≤ m), we associate the link between the cache and

the server a nonnegative cost Li, which is defined as the

cost of sending a request for version Ai and the relevant re-

sponse over the link. So we have L1 ≥ L2 ≥ · · · ≥ Lm.

In this paper, we define this cost as the transmission cost.

Obviously, Let fi be access frequency of version Ai from

the cache.

Before presenting the cache replacement algorithm for

multimedia object caching, we calculate the access cost of

caching k versions of a multimedia object (AC-k problem

for short), where 1 ≤ k ≤ m. In [9], we studied this prob-

lem under the assumption that L1 = L2 = · · · = Lm = L.

First, we begin by computing the access cost of caching

only one version Ak at the cache with 1 ≤ k ≤ m.

Now we discuss how a request for a specific version is

served. Obviously, the requests for the versions that can-

not be transcoded from Ai shall be served by the server,

while some of the requests for Ai with i ≥ k, depending

on the transcoding cost and the transmission cost, will be

taken care of by transcoding from version Ak. Therefore,

the total access cost of caching only version Ak at the cache

is computed as follows:

C(Ak) =
k−1∑
i=1

fiLi +
m∑

i=k

fi min{(i − k)T, Li} (1)

Since only version Ak is cached, there must exist an integer

δ such that (δ − i)T < Li and (δ − i − 1)T ≥ Li−1.

Therefore, δ is such a parameter that the request for version

Ai will be served by the cache if 0 < i < δ, and the request

for version Ai will be served by the server if i ≥ δ.

Based on Equation (1), C(Ak) can be further defined as

3Here, the server can be a cache, which holds a version of a multimedia

object.

follows:

C(Ak) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k−1∑
i=1

fiLi +
k+δ−1∑

i=k

fi(i − k)T

+
m∑

i=k+δ

fiLi (k + δ ≤ m)

k−1∑
i=1

fiLi +
m∑

i=k

fi(i − k)T (k + δ > m)

(2)

It is easy to see that C(A1) can be calculated in O(m)
time. Thus, each C(A2), C(A3), · · · , C(Am) can be done

in constant time; Therefore, the AC-1 problem can be

solved in O(m) time. Therefore, based on the cost function

as given in Equation (1), the AC-1 problem of caching only

one version (i.e., n = 1) from the set {A1, A2, · · · , Am}
can be solved in O(m) time.

The second step is to extend the above solution to com-

pute the optimal solution for caching two versions, Ak1 and

Ak2 , at the same time at node v.

Suppose that Ak1 and Ak2 are the two optimal versions

to be cached. The key observation here is that Ak1 is also an

optimal solution for the problem with {A1, A2, · · · , Ak2−1}
if k1 < k2, because the requests for {Ak2 , Ak2+1, · · · , Am}
can only be served by Ak2 . Regarding to this observation,

we have the following lemma.

Lemma 1 Assume that Abp and Abq are the optimal so-

lutions for the problem of caching only one version from

the set of {A1, A2, · · · , Ap−1} and {A1, A2, · · · , Aq−1} re-

spectively, then we have bp ≤ bq if p < q.

Proof Without loss of generality, it is sufficient for us

to prove that bp ≤ bp+1 where 1 ≤ bp ≤ p − 1 and

1 ≤ bp+1 ≤ p. The proof is by contradiction. Assume

that we have bp > bp+1. As Abp is the optimal version

to be cached, we have C1,p(Abp) < C1,p(Abp+1), where

C1,p(Ai) denotes the access cost of caching Ai for the

MOP problem with {A1, A2, · · · , Ap−1}. From the defi-

nition of the access cost function C1,p as given in Equation

(1), adding Ap to the set {A1, A2, · · · , Ap−1} will increase

both C1,p(Abp) and C1,p(Abp+1) by fp min{(p−bp)T, Lp}
and fp min{(p − bp+1)T, Lp} respectively. The increase

to C1,p(Abp+1) is no less than that to C1,p(Abp) because

bp > bp+1. So we have C1,p+1(Abp
) < C1,p+1(Abp+1),

which contradicts the fact that C1,p+1(Abp+1) is the min-

imum access cost of caching Abp+1 for the problem with

{A1, A2, · · · , Ap−1, Ap}. Hence the lemma is proven.

Based on Lemma 3, we can see that the feasible range of

the optimal solution for the problem with {A1, A2, · · · , Aq}
can be reduced if the optimal version for the problem

with {A1, A2, · · · , Ap} has been obtained. So is the

3

other case when the optimal solution for the problem with

{A1, A2, · · · , Aq} is known, the feasible range of the opti-

mal solution for the problem with {A1, A2, · · · , Ap} is also

reduced. Therefore, we can find Abp
and compute C1,p(Ap)

by divide and conquer.

Let D
(k)
p,q denote the minimum access cost of caching k

versions for the AC-1 problem with q − p versions, i.e.,

Ap, Ap+1, · · · , Aq−1, where 1 ≤ p < q ≤ m. Thus,

D
(1)
1,p = C1,p(Abp) and D

(1)
1,m+1 = min

1≤k≤m
{C1,m+1(Ak)}.

Based on Lemma 3, we have the following theorem on the

time complexity of computing D
(1)
1,p for 1 < p ≤ m.

Theorem 1 All the m AC-1 problems for

{A1, A2, · · · , Ap} where 1 ≤ p ≤ m, i.e., D
(1)
1,p for

1 < p ≤ m, can be computed in O(m log m) time.

Proof Assume that there exists an integer θ such that m =
2θ, then we can compute D

(1)

1, 1
2 m

in O(m) time. Assume

that Ab m
2

is the optimal solution for the problem of caching

only one version with {A1, A2, · · · , Am
2 −1}, then we can

find the optimal solution for the problem of caching only

one version for {A1, A2, · · · , Am
4
} in O(m) time. Simi-

larly, D
(1)

1, 3m
4

can also be computed by solving the problem

of caching only one version with {A1, A2, · · · , A 3m
4 −1}.

As we have already computed C1, m
2
(Ay) where y =

min(bm
2
, m

2 − 1), we can base on this result to com-

pute C1, 3m
4

(Ay) for {A1, A2, · · · , A 3m
4 −1} (by adding

at most m
4 terms to C1, m

2
(Am

2 −1). We then compute

C1, 3m
4

(Ay), C1, 3m
4

(Ay+1), · · · , C1, 3m
4

(A 3m
4 −1) in at most

O(3m
4 − y) time. So it takes at most O(m) time to com-

pute D
(1)
1, m

4
and D

(1)

1, 3m
4

. According to the similar decompo-

sition, D
(1)
1, m

8
, D

(1)

1, 3m
8

, D
(1)

1, 5m
8

, and D
(1)

1, 7m
8

can all be solved

in O(m) time. After repeating this process log m times, we

can finish computing D
(1)
1,p for 1 < p ≤ m. Hence, the

theorem is proven.

Now we can accomplish the problem of caching two ver-

sions in the following three steps.

• Step 1: Evaluate D
(1)
1,p for 1 < p ≤ m, where

D
(1)
1,p denotes the minimum access cost of caching only

one version for the AC-1 problem with p − 1 ver-

sions, i.e., A1, A2, · · · , Ap−1. In particular, D
(1)
1,m+1 =

min
1≤k≤m

{C1,m+1(Ak)}.

• Step 2: Evaluate Dp for 2 ≤ p ≤ m, where Dp is

the access cost for versions Ap, Ap+1, · · · , Am if Ap

is cached at node v. Dp is defined as follows:

Dp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p+δ−1∑
i=p

fi(i − p)T +
m∑

i=p+δ

fiLi

if p + δ ≤ m
m∑

i=p

fi(i − p)T if p + δ > m

• Step 3: Compute D
(2)
1,m, where D

(2)
1,m is the minimum

access cost of caching two versions for the problem

with {A1, A2, · · · , Am}. D
(2)
1,m is calculated as fol-

lows:

D
(2)
1,m = min

2≤p≤m
{D(1)

1,p + Dp)}

It is easy to show that D
(2)
1,m is the minimum access cost

of caching two versions for the AC-2 problem and the time

complexity of computing D
(2)
1,m is O(m log m).

After we have calculated D
(1)
1,p for 1 ≤ p ≤ m in Step

1, we can obtain D
(2)
1,p for all 2 ≤ p ≤ m in another

O(m log m) time by divide and conquer, where D
(2)
1,p is

the minimum access cost of caching only two versions for

the problem with p − 1 versions, i.e., A1, A2, · · · , Ap−1.

The main idea is similar to Lemma 3 in the finding of

D
(1)
1,p. Assume that Abp1

and Abp2
with 1 ≤ bp1 <

bp2 < p are the two optimal versions cached in node v
for A1, A2, · · · , Ap−1 to achieve the optimal access cost

D
(2)
1,p. Similarly, Abq1

and Abq2
with 1 ≤ bq1 < bq2 <

q are the two optimal versions cached in node v for

A1, A2, · · · , Aq−1 to achieve the optimal access cost D
(2)
1,q .

We can show with a similar argument with Lemma 3 that

bp2 ≤ bq2 if p < q and this property limits the range of

searching for the optimal solutions. As in Theorem 3, the

two optimal solutions in D
(2)
1, m

2
can be found in O(m) time

after knowing the optimal versions of D
(1)
1,p for 1 < p ≤ m;

then D
(2)
1, m

4
and D

(2)

1, 3m
4

in another O(m) time; then D
(2)
2, m

8
,

D
(2)

1, 3m
8

,D
(2)

1, 5m
8

, and D
(2)

1, 7m
8

in another O(m) time until D
(2)
1,p

for 2 < p ≤ m are found after log m times. Therefore,

the minimum access cost of caching three versions, de-

noted by D
(3)
1,m, can be computed similarly, i.e., D

(3)
1,m =

min
3≤p≤m

{D(2)
1,p + Dp)}, with at most O(m log m) time. Us-

ing the same idea, we can solve the problem of caching K
versions in O(Km log m) time.

Let D
(K)
1,m denote the minimum access cost of caching K

versions from m versions, i.e., A1, A2, · · · , Am, then it is

easy to show that D
(K)
1,m can be computed in O(Km log m)

time.

4

Based on the above analysis, we can present a cache

replacement algorithm for multimedia object caching such

that the total size of the removed objects is greater than the

size of the new object and the generalized cost loss of the

removed objects is minimized. Here, the generalized cost

loss of the removed objects is defined as the total access

cost when they are not cached divided by their total size.

Suppose there are n different objects cached and the size

of a new object to be cached is sNew, then we should find

a subset of objects O∗ ⊆ O that satisfies the following

conditions:

1.
∑

oi,j∈O∗
si,j ≥ sNew

2. C(O∗)/S(O∗) ≤ C(O
′
)/S(O

′
), ∀ O

′ ⊆ O,

where O∗ = {o∗1,1, o
∗
1,2, · · · , o∗1,α1

, o∗2,1, o
∗
2,2, · · · ,

o∗2,α2
, · · · , o∗β,1, o

∗
β,2, · · · , o∗β,αβ

} is the set of ob-

jects to be removed, O = {o1,1, o1,2, · · · , o1,m1 ,
o2,1, o2,2, · · · , o2,m2 , · · · , on,1, on,2, · · · , on,mn

} is the set

of objects cached, C(O∗) =
β∑

i=1

C(o∗i,1, o
∗
i,2, · · · , o∗i,αi

),

and S(O∗) is the total size of all the objects in O∗. C(O
′
)

and S(O
′
) can be similarly defined. Obviously, (1) is to

make enough room for the new object, and (2) is to evict

those objects whose generalized aggregate cost saving is

minimized.

Before we present the algorithm, we give some nota-

tions used in the algorithm. Let R∗(i, k) denote the min-

imal generalized aggregate cost loss of removing k versions

of object i and R∗(k) denote the minimal generalized cost

loss of the k objects removed. We can see that the k ob-

jects removed can be k versions of a multimedia object or

different versions of different multimedia objects, i.e., k
can be decomposed as k = k1 + k2 + · · · + kn, where

0 ≤ ki < k is the number of versions of object i that are in

the set of the k objects removed. It can be easily proved that

there are k different such combinations in all. Therefore,

we have R∗(k) = min{R∗(1, k), R∗(2, k), · · · , R∗(n, k),
min

k=k1+k2+···+kn

{R∗(k1)+R∗(k2)+· · ·+R∗(kn)}}. We de-

note the set of all the objects that achieves R∗(k) by O∗(k)
and their total size is S∗(k). In the algorithm, C is used to

hold the cached objects, Sc is the cache capacity, Su is the

cache capacity used, oNew is the object to be cached, and

its size is sNew. The algorithm is shown in Table 2.

Regarding to the time complexity of this algorithm, we

have the following theorem.

Theorem 2 The time complexity of the proposed algorithm

is O(n2 log n), where n is the total number of different ob-

jects cached.

Proof The running time of the proposed algorithm mainly

depends on Steps 4, 6, and 8. Based on the previous

Table 2. The Cache replacement Algorithm
1 INSERT oNew INTO C
2 k = 0
3 S∗(k) = 0
4 WHILE Sc − Su − S∗(k) < sNew DO

5 k = k + 1
6 FOR i = 1 TO n DO

7 CALCULATE R∗(i, k)
8 CALCULATE R∗(k)

analysis, it is easy to see that the running time of Step 6

is O(
n∑

i=1

l · mi log mi) since there are n different objects

and the running time for object i for removing l versions

of object i is O(l · mi log mi), where mi is the number

of versions of object i. The running time for Step 8 is

O((n + l) log (n + l)) because we should order all n + l
items to find the minimal one among them. Thus, the

total running time for the proposed algorithm (Step 4)is

O(
k∑

l=1

[(l+n)log(l+n)+
n∑

i=1

l ·mi log mi]) = O(n2 log n)

since k ≤ n and mi � n. Hence, the theorem is proven.

From Theorem 3, we know that the time complexity of

the proposed algorithm depends on k, i.e., the number of

objects to be removed. In practical execution, we always

stop the execution of searching the objects to be removed to

make room for the new object when k arrives at a certain

number. This is based on the fact that it is not beneficial to

remove many objects to accommodate only one object. So

the practical time complexity of the proposed algorithm is

O(n log n), which is the same as that of the algorithm pro-

posed in [6]. However, from the algorithm we know that

we have to search the entire cache for the other versions

of the object and then recalculate the generalized aggregate

cost savings for them whenever we insert or evict an ob-

ject into or from the cache. Such operations are, in general,

very costly. Here, we can save calculated results for later

computation, which will save a lot of computations.

4 Simulation Model

To the best of our knowledge, it is difficult to find true

trace data in the open literature to execute such simulations.

Therefore, we generated the simulation model from the em-

pirical results presented in [2, 3, 4, 6].

The network topology was randomly generated by the

Tier program [4]. Experiments for many topologies with

various parameters were conducted and the performance

of our solution was found to be insensitive to topology

5

Table 3. Parameters Used in Simulation
Parameter Value

Delay of Fetching Objects Exponential Distribution (θ = 1.5Sec)
Web Object Size Distribution Pareto Distribution (µ = 6KB)

Web Object Access Frequency Zipf-Like Distribution (α = 0.7)
Average Request Rate U(1, 9) requests

Transcoding Cost 50KB/Sec

changes. Here, only the experimental results for one topol-

ogy are presented due to space limitations. The characteris-

tics of this topology and the workload model are shown in

Table 3, which were chosen from the open literature and are

considered to be reasonable.

We also assume that each multimedia object has five ver-

sions. The sizes of each version are assumed to be 100
percent, 80 percent, 60 percent, 40 percent, and 20 percent

of the original object size. The transcoding delay is deter-

mined as the quotient of the object size to the transcoding

rate.

We include the following algorithms for evaluating our

replacement solution proposed in Section 3.

• LRU : Least Recently Used (LRU) evicts the web ob-

ject which was requested the least recently.

• LNC − R [10]: Least Normalized Cost Replacement

(LNC − R) removes the least profitable documents.

• AE [6]: Aggregate Effect (AE) selects the object with

the least generalized profit for replacement.

5 Performance Evaluation

In this section, we compare the performance results of

our solution with those solutions introduced in Section 4,

in terms of several performance metrics. The performance

metrics we used in our simulation include delay-saving ra-

tio (DSR), defined as the fraction of communication and

server delays which is saved by satisfying the references

from the cache instead of the server; request response ratio

(RRR), defined as the ratio of the access latency of the tar-

get object to its size; and object hit ratio (OHR), defined as

the ratio of the number of requests satisfied by the caches

as a whole to the total number of requests. In the following

figures, LRU , LNC − R, and AE denote the results for

the solutions introduced in Section 4, OA denotes the opti-

mal solution proposed in Section 3. Due to space limitation,

we will not give the detailed description on the performance

improvement of our solution

0 5 10 15
35

40

45

50

55

60

65

Cache Capacity (%)

DS
R

(%
)

OA
AE
LNC−R
LRU

Figure 2. Experiments for DSR

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cache Capacity (%)

RR
R

(S
ec

/M
B)

OA
AE
LNC−R
LRU

Figure 3. Experiments for RRR

6 Conclusions

In this paper, we addressed the cache replacement prob-

lem for multimedia object caching and proposed an effec-

tive algorithm for soling this problem. A set of simulation

experiments were conducted to study the performance of

our solution. The simulation results show that our solution

improves network performance compared with existing so-

lutions.

References

[1] A. Balamash and M. Krunz. An Overview of Web

Caching Replacement Algorithms. IEEE Communi-

cations surveys, Vol. 6, No. 2, pp.44-56, 2004.

6

0 5 10 15
10

20

30

40

50

60

70

80

90

100

Cache Capacity (%)

O
HR

 (%
)

OA
AE
LNC−R
LRU

Figure 4. Experiments for OHR

[2] P. Barford and M. Crovella. Generating Representive

Web Workloads for Network and Server Performance

Evaluation. Proc. ACM SIGMETRICS’98, pp. 151-

160, 1998.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.

Web Caching and Zipf-like Distributions: Evidence

and Implications. Proc. IEEE INFOCOM’99, pp. 126-

134, 1999.

[4] K. L. Calvert, M. B. Doar, and E. W. Zegura. Mod-

elling Internet Topology. IEEE Communications Mag-

azine, Vol. 35, No. 6, pp. 160-163, 1997.

[5] S. Chandra, C. Ellis, and A. Vahdat. Application-Level

Differentiated Multimedia Web Services Using Quality

Aware Transcoding. IEEE Journal on Selected Areas

in Communications, Vol. 18, No. 12, pp. 2544-2565,

2000.

[6] C. Chang and M. Chen. On Exploring Aggregate

Effect for Efficient Cache Replacement in Transcod-

ing Proxies. IEEE Transactions on Parallel and Dis-

tributed Systems, Vol. 14, No. 6, pp. 611-624, June

2003.

[7] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Per-

ret, and J. Rubas. Dynamic Adaptation in An Image

Transcoding Proxy for Mobile Web Browsing. IEEE

Personal Communications, Vol. 5, No. 6, pp. 8-17,

1998.

[8] K. Li, H. Shen, and F. Chin. Placement Solutions

for Multiple Versions of a Multimedia Object. Proc.

of The 8th IEEE International Symposium on Object-

oriented Real-time distributed Computing, pp. 224-

231, May 2005.

[9] K. Li, H. Shen, K. Tajima, and L. Huang. An Effective

Cache Replacement Algorithm for Transcoding Proxy

Caching. Journal of Supercomputing, Vol. 35, No. 2,

pp. 165-184, 2006.

[10] P. Scheuermann, J. Shim, and R. Ving ralek. A

Case for Delay-Conscious Caching of Web Docu-

ments. Computer Networks and ISDN Systems, Vol.

29, No. 8-13, pp. 997-1005, 1997.

[11] S. Podlipnig and L. Boszormenyi. A Survey of Web

cache Replaceemnt Strategies. ACM Computing Syr-

veys, Vol. 35, No. 4, pp. 374-398, December 2003.

[12] B. Shen, S.-J. Lee, and S. Basu. Caching Strategies

in Transcoding-Enabled Proxy Systems for Streaming

Media Distribution Networks. IEEE Trans on Mul-

temidia, Vol. 6, No. 2, pp. 375-386, 2004.

[13] A. Vetro, C. Christopoulos, and H. Sun. Video

Transcoding Architectures and Techniques: An

Overview. IEEE Signal Processing Magazine, Vol. 20,

No. 2, pp. 18-29, 2003.

[14] J. Wang. A Survey of Web Caching Schemes for the In-

ternet. ACM Computer Communication Review, Vol.

29, No. 5, pp. 36-46, 1999.

7

