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Abstract

Current interconnect standards providing hardware sup-
port for quality of service (QoS) consider up to 16 virtual
channels (VCs) for this purpose. However, most implemen-
tations do not offer so many VCs because they increase the
complexity of the switch and the scheduling delays. We have
shown that this number of VCs can be significantly reduced,
because it is enough to use two VCs for QoS purposes at
each switch port. In this paper, we cover the weaknesses
of that proposal and, not only we reduce VCs, but we also
improve performance due to the flexibility assigning buffer
memory.

1 Introduction

The last decade has witnessed a vast increase in the
amount of information and services available through the
Internet. These services rely on applications executed in
many servers all around the world. Clusters of PCs have
emerged as a cost-effective platform to implement these
services and run the required Internet applications. These
clusters provide service to thousands or tens of thousands
of concurrent users. Many of these applications are multi-
media applications, which usually present bandwidth and/or
latency requirements. These are known as quality of service
(QoS) requirements.

Several cluster switches with QoS support have been
proposed. All of them incorporate VCs in order to provide
QoS support. Among the most recent ones are the industry
standards InfiniBand and PCI Express Advanced Switching
(AS). InfiniBand [7] can support up to 16 VCs. On the other
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hand, AS architecture [2] incorporates up to 20 VCs.
Therefore, recent proposals incorporate 16 or even more

VCs, devoting a different VC to each traffic class. This
increases the switch complexity and required silicon area.
Moreover, it seems that, when the technology enables it, the
trend is to increase the number of ports instead of increasing
the number of VCs per port [11].

On the other hand, there have been proposals which use
only two VCs. For instance, the Avici TSR [4] is a well-
known example of this. It is able to segregate premium traf-
fic from regular traffic. However, it is limited to this clas-
sification and cannot differentiate among more categories.
In the recent IEEE standards, it is recommended to con-
sider seven traffic classes [6]. So, although being able to
differentiate two categories is a big improvement, it could
be insufficient.

In [10] we have proposed a strategy to use just two VCs
at each switch port for the provision of QoS, emulating
many more VCs. The idea consists in having a strict pri-
ority between traffic classes, such as the end-nodes would
always inject packets with high priority before packets with
low priority. This order of injection could be reused at the
switches, producing an efficient design with good perfor-
mance. However, inevitably, the end-nodes would inject
some low-priority packets before packets with higher pri-
ority, leading to order-errors that would be propagated by
the switches and would degrade performance.

The second weakness of that proposal is the require-
ment of strict priority among traffic classes, which is not the
case in modern interconnects such as InfiniBand or PCI AS.
Moreover, users usually require more sophisticated guaran-
tees on latency that just the priority precedence.

In this paper, we review this proposal and fix these is-
sues. In the next section, we present a switch design that
offers complete QoS support using just two VCs. It does
not require strict priority among traffic classes and allows
to provide latency guarantees. Moreover, it is based in the
table schedulers present both in the specifications of Infini-
Band and PCI AS and, thus, can be implemented seamlessly
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in those network architectures.
The remainder of this paper is structured as follows. In

Section 2 we explain our strategy to provide QoS support
with only two VCs. Details on the experimental platform
and the performance evaluation are presented in Section 3.
Finally, Section 4 summarizes the results of this study.

2 Providing full QoS support with only 2 VCs

In modern interconnection technologies, like InfiniBand
or PCI AS, the obvious strategy to provide QoS support
consists in providing each traffic class with a separate VC.
Only devoting a VC per traffic class at the switches is not
enough to provide adequate QoS and other techniques and
mechanisms are necessary.

More specifically, it is necessary to employ some kind
of regulation on the traffic to provide strict guarantees on
throughput and latency. Toward this end, a connection ad-
mission control (CAC) can guarantee that at no link the load
will be higher than the available bandwidth.

Providing QoS with the scheduling at switches is not
enough, there must be some scheduling at the output of the
network interfaces as well. Thereby, these devices also need
to implement VCs to separate the traffic classes.

Head-of-line (HOL) blocking and buffer hogging must
be dealt with. There may be HOL blocking among the
packets of a given VC if they are heading towards different
destinations. This can be solved using virtual output queu-
ing (VOQ) [4]. In this case, each input port has a queue
per global destination of the network. However, this ap-
proach is generally an inefficient solution. A usual solution
is to provide a separate queue per output of the switch. Al-
though this could not solve completely the HOL blocking,
it is an intermediate compromise between performance and
cost. In that case, the number of queues required at each
input port would be the number of traffic classes multiplied
by the number of output ports of the switch.

We have observed that, once the previous conditions are
met, traffic flows seamlessly through the network; conges-
tion, if any, only happens temporarily. Therefore, regulated
traffic flows with short latencies through the fabric. There-
fore, to devote a different VC to each traffic class might be
redundant.

On the other hand, when using store and forward or vir-
tual cut-through switching, the minimum buffer space that
is needed to achieve maximum throughput is one packet size
plus a round-trip time (RTT) of data. However, depending
on the characteristics of traffic, like burstiness or locality
(hot-spots), more memory at the buffers is necessary to ob-
tain acceptable performance.

VCs produce a static partition of buffer memory. That
means that traffic of one VC cannot use space devoted to
another VC, even if it is available. For that reason, although

VCs provide traffic isolation, they may degrade overall per-
formance under bursty traffic. We will see this at the perfor-
mance evaluation section.

Based on all the previous observations, we propose that
all the regulated (QoS) traffic that arrives at a switch port
uses the same VC. We need a second VC for unregulated
traffic, which should also be supported.

At the end-points, there are schedulers that take into ac-
count the QoS requirements of traffic classes. More specifi-
cally, in InfiniBand and PCI AS it is proposed to use a table
based weighted round robin algorithm [8]. In [1] we pro-
posed a sophisticated strategy to fill the table in such a way
that we can guarantee both throughput and maximum la-
tency. Briefly, we tune the table with two parameters: num-
ber of table entries per traffic class and maximum separation
between the entries of that traffic class.

When the end-nodes implement this table-based sched-
ulers, packets leaving the interfaces are ordered by the in-
terface’s scheduler. Therefore, if packet i leaves earlier than
packet i + 1, it is because it was the best decision to guar-
antee the QoS requirements of both packets, even if packet
i + 1 was not at the interface when packet i left. There-
fore, we can assume that the order in which packets leave
the interfaces is correct and there is no need for take-overs
between packets coming from the same end-node.

For the purposes of the switches, it is safe to assume that
in all the cases packet i has more priority than packet i + 1.
In this case, the switch is receiving at its input ports or-
dered flows of packets. Now, the switch’s task is analo-
gous to the sorting algorithm: it inspects the first packet at
each flow and chooses the one whith the shorter arrival time,
building another ordered flow of packets. Thereby, by us-
ing this scheduler, the switches achieve some reutilization
of the scheduling decisions made at end-nodes. Note that
we are talking about regulated traffic.

A drawback of our technique is that the switches are not
able to reschedule traffic as freely as they would be with a
technique where a different VC for each traffic class were
implemented. This problem is attenuated by the connec-
tion admission, because connections are only allowed if we
can guarantee their bandwidth and latency requirements all
along the path of packets. That means that the connections
are established as if all the VCs were implemented at the
switches and there were also enough resources to attend
the flows’ requirements. In this way, we ensure that the
required QoS load is feasible. We will not obtain exactly
the same performance, but it will be very similar.

Another potential problem is that if an end-node is mal-
functioning and injecting more than allowed by the CAC, it
could disrupt the entire cluster. This could be solved by an
adequate traffic policing and failure detection mechanism.

On the other hand, the best-effort traffic classes only re-
ceive coarse-grain QoS, since they are not regulated. How-



(a) Switch organization (b) Switch input port organization

Figure 1. Switch architecture.

ever, the end-nodes are still able to assign the available
bandwidth to the highest priority best-effort traffic classes
and, therefore, some differentiation is achieved among
them.

Note that this proposal does not aim at obtaining a better
performance but, instead, at drastically reducing buffer re-
quirements while achieving similar performance and behav-
ior of systems with many more VCs. In this way, a complete
QoS support can be implemented at an affordable cost.

2.1 Switch architecture

In this section, we describe the proposed switch architec-
ture. We propose a single-chip, virtual cut-through switch
intended for clusters/SANs. We assume QoS support for
distinguishing two traffic categories: QoS-requiring and
best-effort traffic. Credit-based flow control is used to avoid
buffer overflow at the neighbor switches and end-nodes. For
the rest of the design constraints, like packet size, routing,
etc., we take PCI AS [2] as a reference model.

The block diagram in Figure 1 (a) shows the switch orga-
nization. We use a combined input/output queued (CIOQ)
switch architecture because it offers line rate scalability
and good performance [3]. In the CIOQ architecture, out-
put conflicts (several packets requesting the same output)
are resolved by buffering the packets at the switch input
ports. Packets are transferred to the switch outputs through
a crossbar whose configuration is synchronously updated
by a central scheduler. To cope with the inefficiencies of the
scheduler and packet segmentation overheads1, the crossbar
core operates faster than the external lines (internal speed-
up). Thus, output buffers are needed, resulting in the CIOQ
architecture.

The organization that we propose for a switch input port

1Crossbars inherently operate on fixed size cells and thus external pack-
ets are traditionally converted to such internal cells.

can be seen in Figure 1 (b). There are only two VCs at
the switch input ports: VC 0 is intended for QoS traffic,
while VC 1 is intended for best-effort traffic. Each VC is
further divided into several queues, which correspond to
each switch output port (usually 8 or 16). These are logi-
cal queues which share the same physical memory and im-
plement virtual output queuing (VOQ) at the switch level.
The output ports of the switch are simpler: there are only
three queues, one per VC plus one for the outgoing credits.
These three queues, although sharing the same memory, are
implemented in a static partition.

The switch is scheduled as follows. There is a strict
precedence of VC 0 (QoS traffic) over VC 1 (best-effort
traffic). Among packets belonging to the same VC, a simple
FIFO scheduling is applied. Note that this cannot introduce
starvation on the regulated traffic because the CAC assures
that there is enough bandwidth for all the connections.

CAC may be a time-consuming task, not suitable for
all traffic connections. However, for long communications
(which take a significant amount of time to complete) it is
feasible. Moreover, the CAC is contemplated and specified
for popular cluster technologies, like InfiniBand and PCI
AS.

Since we want to provide virtual cut-through switch-
ing, our scheduling decisions are made for whole packets
(packet-mode scheduling [9]). In this way, once a packet
is selected by the scheduler, the crossbar connection is kept
until all cells of the packet have been delivered to the output.
This allows the output port to start transmitting the packet
on the line as soon as the first cell of the packet arrives at
the switch output.

3 Performance evaluation

In this section, we show the behavior of our proposal.
We have considered four switch architectures, varying two



Table 1. Traffic injected per host.
TC Name % BW Packet size Regulated? Notes

7 Network Control 1 [64,512] bytes No self-similar
6 Audio 16.333 128 bytes Yes CBR 64 KB/s connections
5 Video 16.333 [64,2048] bytes Yes 750 KB/s MPEG-4 traces
4 Controlled Load 16.333 [64,2048] bytes Yes CBR 1 MB/s connections
3 Excellent-effort 12.5 [64,2048] bytes No self-similar
2 Preferential Best-effort 12.5 [64,2048] bytes No self-similar
1 Best-effort 12.5 [64,2048] bytes No self-similar
0 Background 12.5 [64,2048] bytes No self-similar

parameters: VCs and memory per port. Firstly, we have
evaluated a traditional switch design with 8 VCs. On the
other hand, we have evaluated our proposal of only 2 VCs.
Regarding buffers, we have tested two types of switches: 32
Kbytes/port and 16 ports/switch, and 64 Kbytes/port and 8
ports/switch. Therefore, we have four switch architectures
to compare: 8VC 16P, 8VC 8P, 2VC 16P, and 2VC 8P. The
four cases would translate in single-chip switches of sim-
ilar silicon area and, thus, implementation cost. However,
8VC cases are more complex to implement and would take
higher delays, but this is not taken into account in our per-
formance evaluation for the sake of clarity. Note that buffer
space per VC varies at each case. Besides, when using 16
ports switches, less switches and links are necessary to con-
nect the same number of end-points.

The network used to test our proposal is a butterfly multi-
stage with 64 end-points. We have also tested other topolo-
gies, including direct networks, with similar results. The
switches use a combined input and output buffer architec-
ture, with a crossbar to connect the buffers. The CAC we
have implemented is a simple one, based on average band-
width. Each connection is assigned a path where enough
resources are assured. No packets are dropped because we
use credit-based flow control.

The scheduling at the 8 VC switches and at the end-
nodes is weighted round robin based on a scheduling table.
We provide enough entries and maximum entry separation
to satisfy bandwidth and maximum requirements of regu-
lated traffic classes. Moreover, we guarantee some band-
width to best-effort traffic.

In Table 1, the characteristics of the traffic injected in
the network are included. We have considered the traffic
classes (TCs) defined by IEEE standard 802.1D-2004 [6]
at the Annex G, which are particularly appropriate for this
study. However, we have added an eighth TC, preferential
best-effort, with a priority between excellent-effort and reg-
ular best-effort. It is possible that this mix of traffic is not
actually present in a real-life cluster, but it serves perfectly
to show the differences of the architectures we are testing.
This evaluation follows the recommendations of the Net-

work Processing Forum Switch Fabric Benchmark Specifi-
cations [5].

3.1 Simulation results

In this section, the performance of our proposals is
shown. We have considered three traditional QoS indices
for this performance evaluation: Throughput, latency, and
jitter. Note that packet loss is not considered because no
packets are dropped due to the use of credit-based flow
control. We also show the cumulative distribution function
(CDF) of latency and jitter, which represents the probabil-
ity of a packet achieving a latency or jitter equal to or lower
than a certain value. These results are obtained with an in-
put load of 100% the capacity of links.

Firstly, we evaluate an initial scenario where the input
QoS load is equal to the best-effort load. Afterwards, we
will study which amount of QoS traffic can be allowed at
each architecture before its performance is unacceptable.
We consider QoS performance to be unacceptable when
the bandwidth and maximum latency guarantees are not
achieved.

We first study the results of QoS traffic. In Figure 2,
we show the performance of Network Control, Audio, and
Video traffic. The Network Control traffic demands very lit-
tle bandwidth but a latency as short as possible. In this case,
average results are very similar in the four cases. Maximum
latency (which can be seen at the CDF plot) is 50 µs for 8
VC architectures and 200 µs for 2 VC architectures. Both
results are acceptable, but, obviously, the first is better. Note
that the guaranteed maximum latency by the table scheduler
is approximately 400 µs according to [1], which is achieved
in all cases.

Regarding Audio, and Video traffic, results are very sim-
ilar in terms both of average and maximum latency. More-
over, jitter results (not shown) are also very similar.

Regarding Controlled Load and the best-effort traffic
classes, results are almost the same in the four cases. How-
ever, we can see at Figure 3 (left) that maximum throughput
is achieved with the 2VC 8P architecture while worst results
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Figure 2. Latency of QoS traffic.
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Figure 3. Latency and throughput of two best-
effort traffic classes.

correspond to the 8VC 16P case.
We can conclude at this point that the four architec-

tures offer similar performance: 8 VC architectures have
some advantage on the latency of Network Control traffic

due to their better traffic isolation, whereas 2 VC archi-
tectures reduce the number of VCs required and increase
global throughput due to the improved buffer management
(shared space is larger).
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Figure 4. Performance of QoS traffic, varying
QoS load.

In Figure 4 we vary the proportion of QoS traffic, from
10% to 90% of the total available network load. We fill the
remaining bandwidth with best effort-traffic. The propor-
tions among both groups are mantained (i.e. same amount
of Audio and Video). We can see that the different traffic
classes saturate at different points when using the four ar-
chitectures.

We can see at Table 2 which is the maximum QoS load
at which the different architectures yield acceptable results.
We consider QoS performance to be unacceptable when



Table 2. Maximum QoS load with acceptable
performance.

Traffic 8VC 8VC 2VC 2VC
Class 16P 8P 16P 8P

Network Control 90% 90% 80% 80%
Audio 70% 70% 80% 80%
Video 70% 80% 80% 80%

Controlled Load 60% 70% 80% 90%
All QoS 60% 70% 80% 80%

the bandwidth and maximum latency guarantees are not
achieved. For instance, performance of Audio traffic with
the architecture 8VC 16P is only acceptable up to a QoS
load of 70%.

The last row of the table contains the minimum of the
column, which means the maximum load where all the QoS
requirements can be satisfied. We can see that both 2 VC
architectures can accept up to 80% of QoS traffic, whereas
the 8VC 16P and 8VC 8P cases can only accept 70% and
60% respectively.
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Figure 5. Comparison between 8VC 8P and
2VC 16P.

This is not the only advantage of our proposal. The 2VC
16P case, since has 16 ports per switch, offers many advan-
tages when compared with the 8VC 8P architecture. This is
summarized at Figure 5.

According to these results, we can conclude that our
proposal can provide an adequate QoS performance. Us-
ing our switches, we greatly decrease the cost and power-
consumption of the interconnection with excellent results.

4 Conclusions

In [10] we presented a proposal to use only two VCs
at each switch port to provide QoS support. The first VC

is used for QoS traffic and the other for best-effort traffic.
In this way, we obtained a drastic reduction in the number
of VCs required for QoS purposes at each switch port. In
this paper, we improve that proposal in order to guarantee
throughput and maximum latency. Moreover, we do so with
the resources available at modern interconnection specifica-
tions like PCI AS and InfiniBand.

Therefore, we propose in this paper an efficient switch
architecture for clusters with QoS support. It offers per-
formance comparable to that of more complex switches but
at the same time, reduces sillicon area requirements and is
able to cope with more QoS requiring traffic.

References

[1] F. J. Alfaro, J. L. Sánchez, and J. Duato. QoS in InfiniBand
subnetworks. IEEE Transactions on Parallel Distributed
Systems, 15(9):810–823, Sept. 2004.

[2] ASI SIG. Advanced switching core architecture specifica-
tion, 2005.

[3] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar.
Matching output queueing with a combined input output
queued switch. In INFOCOM (3), pages 1169–1178, 1999.

[4] W. Dally, P. Carvey, and L. Dennison. Architecture of the
Avici terabit switch/router. In Proceedings of the 6th Sym-
posium on Hot Interconnects, pages 41–50, 1998.

[5] I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro, and
A. Poursepanj. The network processing forum switch fab-
ric benchmark specifications: An overview. IEEE Network,
pages 5–9, Mar. 2005.

[6] IEEE. 802.1D-2004: Standard for local and metropoli-
tan area networks. http://grouper.ieee.org/
groups/802/1/, 2004.

[7] InfiniBand Trade Association. InfiniBand architecture spec-
ification volume 1. Release 1.0, Oct. 2000.

[8] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis.
Weighted round-robin cell multiplexing in a general-
purpose ATM switch. IEEE J. Select. Areas Commun.,
pages 1265–1279, Oct. 1991.

[9] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and
F. Neri. Packet-mode scheduling in input-queued cell-based
switches. IEEE/ACM Trans. Netw., 10(5):666–678, 2002.

[10] A. Martı́nez, F. J. Alfaro, J. L. Sánchez, and J. Du-
ato. Providing full QoS support in clusters using only
two VCs at the switches. In Proceedings of the 12th
International Conference on High Performance Com-
puting (HiPC), pages 158–169, Dec. 2005. Available at
http://investigacion.uclm.es/portali/
documentos/it 1131561750-HiPC05.pdf.

[11] C. Minkenberg, F. Abel, M. Gusat, R. P. Luijten, and
W. Denzel. Current issues in packet switch design. In ACM
SIGCOMM Computer Communication Review, volume 33,
pages 119–124, Jan. 2003.


