

The TMO Scheme for Wide-Area Distributed Real-Time Computing

and Distributed Time-Triggered Simulation

K. H. (Kane) Kim and Stephen F. Jenks
University of California, Irvine

Dept. of EECS
Irvine, CA, 92697 U.S.A.
{khkim,sjenks}@uci.edu

Abstract

Some parts of our recent efforts on establishing a
technical foundation for wide-area distributed real-time
computing (DRC) and distributed time-triggered
simulation (DTS) are briefly reviewed. The basic
building-block of our technology framework is the Time-
triggered Message-triggered Object (TMO) specification
and programming scheme. The TMO scheme for local-
area DRC has been established in a sound form and its
practicality and attractiveness have been extensively
demonstrated. However, its extension to fit into wide-
area-network based DRC is in an early stage. The
distributed time-triggered simulation (DTS) scheme is a
new type of an approach to real-time simulation based on
parallel / distributed computing. The TMO scheme
facilitates DTS in efficient forms. Recent developments in
TMO-structured wide-area DRC and DTS and the
supporting tools are briefly reviewed.

1. Introduction

While local area distributed real-time computing (DRC)
is a steadily advancing technology field with many
immature aspects in its core at this time, wide-area DRC is
in its infancy. Efforts to create wide area network (WAN)
environments in which bounds on communication delay
jitter are significantly smaller than those in most segments
of the current Internet, started appearing only in recent
years. The OptIPuter research sponsored by the National
Science Foundation (NSF) is a good example [13].

In recent years, we have attempted to extend the DRC
technology established for use in local area network
(LAN) environments to fit into the WAN environments.
The basic building-block of our technology framework is
the Time-triggered Message-triggered Object (TMO)
specification and programming scheme [4][5][6]. The
TMO scheme includes establishment and use of a global
time base which provides consistent real-time information

 1-4244-0910-1/07/$20.00 ©2007 IEEE

available in all distributed computing nodes [12]. The
TMO scheme facilitates easy exploitation of the principle
of global-time-based coordination of distributed actions
(TCoDA) which has been promoted the most effectively
for more than 20 years by Kopetz [12].

The TMO scheme for local-area DRC has been
established in a sound form and its practicality and
attractiveness have been extensively demonstrated.
However, its extension to fit into wide-area-network based
DRC is in an early stage. In this paper, we present a brief
review of the progresses made recently in extending the
TMO scheme for use in WAN environments with the
support of NSF.

A brief review of the progresses made in our research
on advancing the technical foundation for real-time
simulation is also given here. Major improvements in the
validation technology for embedded systems and other
types of DRC systems are under increasing demands from
industry. Not only description but also simulation of non-
computer parts and application environments of DRC
systems is needed in validating many DRC system
software designs and implementations. Here the desired
types of simulators are real-time simulators which exhibit
the timing behavior that are the same as or sufficiently
close to the timing behavior of the simulation targets.
Such simulators can enable highly cost-effective testing of
the DRC software and such testing can be a lot cheaper
than the testing performed in actual application
environments while being much more effective than the
testing based on non-real-time simulators of environments.

As the complexities of RT simulators grow, the use of
distributed and parallel RT simulation approaches become
imperative. However, practical distributed RT simulation
techniques have not been established in sufficiently
reliable forms for use in practicing fields. In recent years,
a new direction for RT simulation which is conceptually
simple and easy to use but widely applicable, has been
formulated. This theme called the distributed time-
triggered simulation (DTS) scheme [4][7] is highly
promising in enabling attractively simple practical
approaches to parallel and distributed RT simulation. The

DTS scheme is a byproduct of our past
research on the TMO specification and
programming scheme.

A number of challenging research issues
exist in optimal application of DTS. In
particular, maximizing the concurrency in
RT distributed simulation while
maintaining the consistency of distributed
RT simulator nodes is a fundamental
challenge. Also, to establish DTS as an
economic technology, middleware and
application programming interfaces (APIs)
that support DTS and simulator
programming must be developed in sound
forms. The middleware support and APIs
associated with the TMO scheme have
advanced steadily in the past decade.
However, further research is needed to
exploit multi-processor systems efficiently.
Graphic support is also of great importance
and is a subject for much further study.

In this paper, we briefly summarize the
progresses achieved by us and our
collaborators in the research areas
mentioned above. Section 2 deals with the
field of wide area DRC while Section 3
deals with DTS. Section 4 is a conclusion.

2. The TMO Scheme for Wide-Area
Distributed Real-Time Computing (DRC)

2.1 The basic building-block of the technology
framework: the Time-triggered Message-triggered
Object (TMO) scheme

The TMO scheme is a general-style DRC extension of
the conventional OO design / programming approach. It
has been established to facilitate RT distributed software
engineering in a form which software engineers in the vast
business software field can adapt to with small efforts. It
supports a high-level style of DRC programming above
the level of abstractions such as processes, threads, and
priorities.

TMO structure and design paradigms. A graphical
depiction of TMO is given in Figure 1. The key features
are as follows.

(TM1) All time references in a TMO are references to
global time [12] in that their meaning and correctness (e.g.,
10am) are unaffected by the location of the TMO.

(TM2) TMO is a distributed computing component.
Non-blocking types of remote method calls are supported.

(TM3) TMO has been devised to contain only high-
level intuitive and yet precise expressions of timing
requirements. Start-time-windows and completion
deadlines for object methods and time-windows for output
actions are used but no specification in indirect terms (e.g.,
priority) are required. Deadlines for result arrivals can
also be specified in the client's calls for service methods.

(TM4) TMO is also an autonomous active DC
component. Its autonomous action capability stems from
one of its unique parts, called the time-triggered (TT)
methods or the spontaneous methods (SpMs), which are
clearly separated from the conventional service methods
(SvMs). The SpM executions are triggered upon reaching
of the global time at specific values determined at the
design time whereas the SvM executions are triggered by
service request messages from clients. For example, the
triggering times may be specified as "for t = from 10am to
10:50am every 30min start-during (t, t+5min) finish-by
t+10min". By using SpMs, global time based
coordination of distributed actions (TCoDA), a principle
pioneered by our international collaborator Hermann
Kopetz [12], can be easily designed and realized.

(TM5) TMOs can use another interaction mode in
which messages can be exchanged over logical multicast
channels of which access gates are explicitly specified as
data members of involved TMOs. The channel facility is
called the Real-time Multicast and Memory-replication
Channel (RMMC) [6].

(TM6) A major execution rule intended to enable
reduction of the designer's efforts in guaranteeing timely

ODSS
1

ODSS
2

Name of TMO

Object Data Store (ODS)

Time-triggered (TT)
Spontaneous Methods

(SpM's)

Message-triggered
Service Methods

(SvM's)

Service Request
 Queues

Client
TMO's

Capabilities for accessing
other TMO's and network
environment incl . logical
multicast channels, and
I/O devices

EAC

Reservation Q

SvM 2

SpM 2

SvM 1

SpM 1

concurrency
control

AAC

Deadlines From SvM's , SpM's

AAC

•
•

•
• "Absolute time

domain"

"Relative time
domain"

• •

• • •

Figure 1. Structure of the TMO (adapted from [4])

service capabilities of TMOs is the basic concurrency
constraint (BCC) that prevents potential conflicts between
SpMs and SvMs. The full set of data members in a TMO
is called an object data store (ODS). An ODS is declared
as a list of ODS segments (ODSSs), each of which is thus
a subset of the data members in the ODS and is accessed
by concurrently running object-method executions in the
concurrently-reading and exclusive-writing mode.
Basically, activation of an SvM triggered by a message
from an external client is allowed only when potentially
conflicting SpM executions are not in place. Thus an SvM
is allowed to execute only if no SpM that accesses the
same ODSSs to be accessed by this SvM has an execution
time-window that will overlap with the execution time-
window of this SvM. The BCC does not reduce the
programming power of TMO in any way.

(TM7) An underlying design philosophy of the TMO
scheme is that an RT computer system will always take
the form of a network of TMOs, which may be produced
in a top-down multi-step fashion, called the TMO Network
Development Methodology (TMONDeM) [4][10]. Also,
TMO is capable of representing all conceivable practical
RT and non-RT applications.

Middleware and APIs that support DTS and simulator
programming. We have been enabling TMO
programming without creating any new language or
compiler. Instead, a middleware architecture called the
TMOSM (TMO Support Middleware) provides execution
support mechanisms and can be easily adapted to a variety
of commercial kernel+hardware platforms compliant with
industry standards. TMOSM uses well-established
services of commercial OSs, e.g., process and thread
support services, short-term scheduling services, and low-
level communication protocols, in a manner transparent to
the application programmer. Prototype implementations
running on three major OS kernel platforms, Windows XP,
Windows CE, and Linux v2.6, exist
(http://dream.eng.uci.edu/TMOdownload/) [1].

A friendly programming interface wrapping the
execution support services of TMOSM has also been
developed and named the TMO Support Library (TMOSL)
[6] (http://dream.eng.uci.edu/eecse123/serious.htm). It
consists of a number of C++ classes and approximates a
programming language directly supporting TMO as a
basic building-block. The programming scheme and
supporting tools have been used in a broad range of basic
research and application prototyping projects in a number
of research organizations and also used in an
undergraduate course on DRC programming at UCI for
about four years.

A GUI (graphic user interface) approach to designing
an initial skeleton of each TMO and letting a tool generate
a code-framework for each TMO, has been formulated and
some experiments have been conducted with successful

results [10]. The GUI based tool has been named the
Visual Studio for TMO (ViSTMO). A study on a cost-
effective method for realizing high-quality graphic display
of the dynamically changing states of TMOs in DTS has
also been performed [2].

While devising the TMOSM architecture, an emphasis
was on making both the analysis of the worst-case time
behavior of the middleware and the analysis of the
execution time behavior of application TMOs as easy as
possible without incurring any significant performance
drawback. In spite of that, our recent efforts were devoted
to much further enhancing the modularity and
analyzability of the TMOSM. As a result, a newly
enhanced architecture for TMOSM has been developed.
Use of mechanisms such as semaphore which leads to
frequent blockings of threads inside the middleware was
avoided completely and instead, a new extension of the
Non-Blocking Writer mechanism invented by Hermann
Kopetz [12], called the Non-Blocking Buffer (NBB)
mechanism [9], was used extensively. Also, TMOSM
now consists of the main part which is independent of the
OS kernel platform and a small part, called the Kernel
Adaptation Layer (KAL), which depends on the OS kernel
platform chosen.

2.2 Distance-aware TMO (DA-TMO) for use in
WAN environments

We recognized that the following issues need to be
addressed in order to extend the TMO scheme and
establish an efficient approach for designing wide area
DRC systems.

With the current TMOSM architecture optimized for
use in LAN environments, TMOSM instantiations running
on different distributed computing nodes cooperate and
interact frequently among themselves. The current
TMOSM is expected to show rather poor performance
when it is ported to WAN environments without
substantial refinement. This is due to the large
communication latency inherent in an RT DVC occupying
a large geographical region.

As building-blocks of local-area DRC systems, TMOs
are treated as all equal neighbors. We decided to extend
this notion of a distance-unaware TMO into a newly
extended TMO model called the distance-aware TMO
(DA-TMO) in order to establish an effective building-
block for wide-area DRC systems. DA-TMO
programmers should expect that TMOSM instantiations
supporting nearby TMOs will interact with a relatively
high frequency whereas TMOSM instantiations supporting
TMOs separated by long distances will interact less
frequently. They should also expect that a call by a client
TMO for a service offered by a remote TMO can involve
searches for information not readily available in the local
TMOSM instantiation. TMOSM can now be aware of

when an RMMC covers a large geographical area.
TMOSM contains a component called the TMO

Network Configuration Manager (TNCM) which is
responsible for maintaining the information on the
interconnections of distributed computing nodes and the
distribution of TMOs on those nodes. Efforts to extend
TNCM and other parts of TMOSM to support DA-TMO
are underway.

The clock synchronization module of TMOSM has
been enhanced to take advantage GPS facilities which
serve as a source of global time of micro-second
precision. In addition, middleware support components
for dynamic creation and destruction of TMOs have
been incorporated into TMOSM.

Member sites of a WAN are often machines of PC
cluster types. We have thus been developing a version
of TMOSM for such a cluster. The clock
synchronization module of TMOSM/cluster has been
refined to incorporate a broadcast-based clock
synchronization algorithm, which provides global time of
around 50 microsecond precision to all the nodes in the
same cluster. The communication module of
TMOSM/cluster has also been enhanced to use multiple
plug-in communication facilities, (UDP on
Myrinet/Ethernet, MPI on Myrinet/Ethernet).

2.2 High-quality multimedia streaming service

An approach for realizing high-quality tele-audio
services over networks by applying the global time based
coordination of distributed actions (TCoDA) principle was
realized. The goal is to play the audio stream at a remote
site with minimal loss of the temporal relationship among
the audio data units in spite of the jitters in the
transmission delays over networks. The effective
programming tool used was the TMO programming tool.
Based on this service, a TMO-based audio streaming
application over heterogeneous platforms, e.g., Windows
XP, Windows CE.NET, and Linux 2.6, was constructed.
In LAN-based experiments, the maximum intra-stream
jitter was merely 17ms. Further experiments involving
both LANs and WANs are under way.

A video streaming service of a similar kind was studied,
too, with highly promising results and demonstrations.

2.3 Establishment of wide-area DRC testbeds

A small "robot" car named the TMO Turtle which is
driven by a remote human user operating a joystick
connected to a local PC in the driver's site, has been
constructed. Two ITX single-board PCs, one equipped
with 802.11 wireless LAN capabilities and the other for
future incorporation of additional sensors, have been
installed on the car. As depicted in Figure 2, the command
messages from the joystick travel via wired networks to a

wireless access point near the car and continue through an
802.11 wireless link to reach the ITX PC onboard the car.
The remote driver sees the car and its environment via
video-streaming from the camera located near the car to
the driver's PC station.

The first version of TMO Turtle was used last year in
demonstrations of remote driving over the distance of 90
miles between the driver and the car (a video clip available
in http://dream.eng. uci.edu/demo/). The car was located
at UCSD and the driver was at UCI and a broadband
optical network (OptIPuter, http://www.optiputer.net/)
connecting the two sites with the 1Gb bandwidth and the
low jitter was involved. Application software has been
structured as a network of TMOs running on ITX PCs and
nearby desktop machines. Measured data showed that
application-to-application transmission delays of both the
video stream (20 frames of 640 x 480 pixels per second)
and the joystick commands (sent every 40 milliseconds)
were always less than 60 milliseconds. The car ran at the
speed of about 5 - 10 miles per hour. An experiment
involving the distance of 6,000 miles will be conducted,
starting in January of 2007.

Efforts to increase the autonomous navigation
capabilities of TMO Turtle will be stepped up in the near
future. We also plan to establish a fleet of three TMO
Turtle's in the future.

3. TMO-structured DTS

3.1 Basic requirements in real-time simulation
and the DTS scheme

Since a real-time simulator must exhibit the timing
behavior which is the same as or very close to that of the
simulation target, the simulator clock must "tick" at a

OptIPuter

Network

UCSD UCI

GPS

GPS

Wireless
LAN

Webcam

Joystick

Video stream

Control cmd

90 miles away

Figure 2. A setup for remote driving of the car,
TMO Turtle

steady rate. The simulator clock must thus be based on a
real-time clock. Making a global time base available to
distributed computing nodes economically, whether in
local area network or wide area network environments, has
become by and large a non-issue due to emergence of GPS,
TTP hardware, and other hardware solutions in recent
years. Each tick of the simulator clock is commenced and
administered by referencing a real-time clock in the
simulation execution engine (a computer running the
simulation program). All computational activities taking
place during a ticking interval of the simulator clock may
be viewed as one simulation-step.

Object Data Store

In distributed real-time simulation, simulator objects
(or processes) are distributed among multiple nodes.
Synchronization of the simulation-steps of distributed
simulator objects is then a key challenge. A simulation-
step executed by the distributed nodes as a group must
include the activities necessary to keep the executions of
the simulation-step by the nodes synchronized. A
simulation-step executed by a member of the distributed
simulator object group must be synchronized with the
corresponding simulation-step executed by any other
member. The simulator clock for one simulator object
must commence the n-th tick neither before the (n-1) - th
tick by the clock driving another simulator object nor after
the (n+1) - th tick by the latter clock.

The essence of the distributed time-triggered
simulation (DTS) approach is the following:

(1) Every node is equipped with a real-time clock and
executes each simulation-step upon reaching of the real-
time clock at the predetermined value; and

(2) Every simulation-step is designed to be completed
within one ticking interval.

The DTS approach has major advantages over other
distributed simulation approaches, even if we assume that
the latter approaches can be adapted somehow to enable
real-time simulation. This is because synchronization of
simulation-steps executed by distributed simulator objects
under the DTS scheme does not require message
exchanges among the host nodes (not counting the
message exchanges which may be needed at a certain low
frequency for re-synchronizing the real-time clocks of the
nodes). The advantages become decisive in heavy-load
distributed simulation situations.

However, even with the DTS approach, exchanges of
messages that represent movements of certain simulation
targets from the territory covered by one simulator node to
the territory covered by another node are inevitable. Even
such message transmissions can be performed
simultaneously (to be more exact, with no serialization or
dependency) by all N simulator nodes, provided that the
topology of the DRC platforms permit it. For example, in
a mesh-connected DRC system, all nodes can
simultaneously send data messages to their left neighbors
(as well as to right, upper, or lower neighbors). Therefore,

the ticking interval must be long enough to cover this kind
of message exchanges.

The DTS approach facilitated by the TMO
programming scheme uses distributed TMOs of which
SpMs execute simulation-steps [4][11]. For example, a
freeway-segment can be represented at a high level and
simulated by the TMO in Figure 3.

The object data store (ODS) in this TMO contains state
representations of the cars, the meters on entry-ramps, and
the freeway structure. Each TT method or SpM, when
executed, updates a variable-set in the ODS representing
the state of some simulation target item (i.e., physical item
such as car, ramp meter, etc) to reflect the current state of
the target item. Ideally the TT methods should be
activated continuously and each of their executions be
completed instantly. However, the limited power of the
execution engine dictates the activation frequency of any
TT method to be a fraction of the ticking rate of the real-
time clock in the execution engine. The activation
frequency of the TT method may be viewed as the ticking
rate of the target item simulator clock. Each execution of
a TT method must be completed within one ticking
interval of the target item simulator clock. Therefore, TT
methods are the mechanisms for approximately simulating
continuous state changes that occur naturally in the target
items in the environment.

A fundamental obstacle in parallel / distributed
execution of real-time simulation actions is the update-
dependency. When a simulation target item covered by
one simulator node is update-dependent on another
simulation target item covered by another simulator node,
update activities of the two nodes must be serialized. In
the case of Figure 3, it is a usual practice to sort cars and
update them in the sorted order. If the order is to update
front cars first and rear cars later, then whenever a value

 (0 - m) cars
 Ramp meters
 Freeway structure / geometry

Methods
- SpM: (driven by an RT simulator clock)
 Update car status (e.g., position,

acceleration, driving plan, etc.)
 Update ramp meter status

 TT
invocation

- SvM:
 Accept cars from the upstream
 Accept cars from entry-ramps
 Accept ramp meter commands

Figure 3. TMO-structured simulation model
for freeway segment (Adapted from [Kim04a])

for the new state of a car is calculated, a check is made
whether it is in conflict with the already calculated new
states of the cars in the front. If a conflict is detected (i.e.,
if the value is such that it leads the simulator to
inconsistency), the value is discarded and a try is made to
produce a new value until a conflict-free value is produced.
Two simulator objects, e.g., car simulators B and D, in
such update-dependent relationship, cannot be updated
independently. The update-dependency can make the
distributed simulation to become worse in performance
than the single-node simulation.

Our recent research dealt with the techniques for
minimizing the impacts of the update-dependency among
distributed simulator objects. Basic approaches were
formulated [7] and experimental research is under way.

3.2 CAMIN testbed

One of the DTS applications developed in the DREAM
Lab at UC Irvine is the Coordinated Anti-Missile
Interceptor Network (CAMIN) simulation. The application
scenario in this low-cost military C3 (command, control,
and communication) distributed computing simulation is
that of detecting and intercepting hostile reentry vehicles
to protect a commander ship. Army which operates radars,
ground-based interceptor launchers, and a command-
control center cooperates with Navy which operates the
important commander ship with self-defense capabilities.
Fighter airplanes are also used to launch airborne
interceptors. The cooperative computing TMOs, the real-
time simulator TMOs, and the programs for graphic
display of the status of the application environment can be
distributed over the LAN of one to five computing nodes.

In addition to the basic simulation of this military C3
distributed computing scenario, a fault tolerance feature
called the primary-shadow TMO replication (PSTR) is
accommodated into this simulation. A set of major
components such as radar data queue (RDQ), flying object
tracking (FOT), and intercept plan data structure (IPDS)
TMOs are actively replicated to tolerate a logical or timing
fault. Fig. 3 shows the configuration of CAMIN
simulation in a four-node setup with replicas of the above
three TMOs. Also, the supervisor-based network
surveillance (SNS) scheme detects a failure of a primary
node and notifies the associated shadow TMO of the
failure of its primary so that the shadow can take over the
job of the primary in a bounded time.

4. Conclusion

The TMO scheme for wide area DRC is promising,
especially with the advent of a new-generation network
infrastructure such as OptIPuter. Nevertheless, this field is
in an early stage. The TMO-structured DTS has been
demonstrated in reasonably convincing forms but its

optimal use requires much further research.

Acknowledgment: The work reported here was supported
in part by the NSF under Grant Numbers 02-04050 (NGS)
and in part by the NSF under Cooperative Agreement
ANI-0225642 to UCSD for "The OptIPuter".

References
[1] Jenks, S.F., et al., “A Linux-Based Implementation of a

Middleware Model Supporting Time-Triggered Message-
Triggered Objects”, Proc. 8th IEEE Int'l Symp. on Object-
Oriented Real-Time Distributed Computing (ISORC 2005),
Seattle, May, 2005, pp. 350-358.

[2] Kadavil, Anish, 'An enhanced GUI approach for
programming real-time distributed systems with graphical
interfaces', MS Thesis, EECS Dept., UCI, Dec. 2003.

[3] Kim, K.H. et al., "Distinguishing Features and Potential
Roles of the RTO.k Object Model", Proc. WORDS '94
(IEEE CS '94 WS on Object-Oriented Real-Time
Dependable Systems), Oct. 1994, Dana Point, pp.36-45.

[4] Kim, K.H., "Object Structures for Real-Time Systems and
Simulators", IEEE Computer, August 1997, Vol. 30, No.8,
pp. 62-70.

[5] Kim, K.H., Ishida, M., and Liu, J., "An Efficient
Middleware Architecture Supporting Time-Triggered
Message-Triggered Objects and an NT-based
Implementation", Proc. ISORC '99 (IEEE CS 2nd Int'l
Symp. on Object-oriented Real-time distributed Computing),
May 1999, pp.54-63.

[6] Kim, K.H., "APIs for Real-Time Distributed Object
Programming", IEEE Computer, June 2000, pp.72-80.

[7] Kim, K.H., and Paul, R., "The Distributed Time-Triggered
Simulation Scheme Facilitated by TMO Programming",
Proc. ISORC 2001 (4th IEEE CS Int'l Symp. on OO Real-
time distributed Computing), Magdeburg, Germany, May
2001, pp. 41-50.

[8] Kim, K.H., "Commanding and Reactive Control of
Peripherals in the TMO Programming Scheme", Proc.
ISORC ’02 (5th IEEE CS Int'l Symp. on Object-Oriented
Real-time Distributed Computing), Crystal City, VA, April
2002, pp.448-456.

[9] Kim, K.H., "Basic Program Structures for Avoiding Priority
Inversions", Proc. ISORC 2003 (IEEE CS 6th Int'l Symp.
on Object-oriented Real-time distributed Computing),
Hakodate, Japan, May 2003, pp. 26-34.

[10] Kim, K.H., and Kang, S.J., "A GUI Approach to
Programming of TMO Frames and Design of Real-Time
Distributed Computing Software", Proc. ISADS 2003 (IEEE
CS 6th Int'l Symp. on Autonomous Decentralized Systems),
Pisa, Italy, April 2003, pp.53-60.

[11] Kim, K.H., "The Distributed Time-Triggered Simulation
Scheme : Core Principles and Supporting Execution
Engine", Real-Time Systems - The International Journal of
Time-Critical Computing Systems, Vol. 26, 2004, pp.9-28.

[12] Kopetz, H., 'Real-Time Systems: Design Principles for
Distributed Embedded Applications', Kluwer Academic
Publishers, ISBN: 0-7923-9894-7, Boston, 1997.

[13] Smarr, L.L., Chien, A.A., Defanti, T., Leigh, J., and
Papadopoulos, P.M., "The OptIPuter", Comm. ACM, Nov.
2003, Vol. 46, No. 11, pp.59-67.

	1. Introduction
	2. The TMO Scheme for Wide-Area Distributed Real-Time Computing (DRC)
	2.1 The basic building-block of the technology framework: the Time-triggered Message-triggered Object (TMO) scheme
	2.2 Distance-aware TMO (DA-TMO) for use in WAN environments
	2.2 High-quality multimedia streaming service
	2.3 Establishment of wide-area DRC testbeds

	3. TMO-structured DTS
	3.1 Basic requirements in real-time simulation and the DTS scheme
	3.2 CAMIN testbed

	4. Conclusion

