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Abstract— We consider memory subsystem optimizations for
improving the performance of sparse scientific computation while
reducing the power consumed by the CPU and memory. We first
consider a sparse matrix vector multiplication kernel that is at
the core of most sparse scientific codes, to evaluate the impact of
prefetchers and power-saving modes of the CPU and caches. We
show that performance can be improved at significantly lower
power levels, leading to over a factor of five improvement in the
operations/Joule metric of energy efficiency. We then indicate that
these results extend to more complex codes such as a multigrid
solver. We also determine a functional representation of the
impacts of such optimizations and we indicate how it can be used
toward further tuning. Our results thus indicate the potential for
cross-layer tuning for multiobjective optimizations by considering
both features of the application and the architecture.

I. INTRODUCTION

Sparse scientific algorithms and codes enable the linear
scaling of the computational costs of modeling and simula-
tion applications when the problem size is increased through
refinements required to capture phenomena of interest [7],
[12]. However, the performance of such codes depends to a
large extent on the memory subsystem design of the computer.
Unlike dense codes [13], which inherently have a large
number of floating point operations per data access, sparse
codes are typically dominated by data access operations [8].

In this paper, we consider in detail the interactions between
sparse code features, as represented by the sparse-matrix vec-
tor multiplication kernel (SMV), and memory optimizations.
We discuss how memory optimizations that we have developed
earlier [11], [15], [16] can affect the performance of tuned
and un-tuned versions of sparse matrix vector multiplica-
tion. We consider the use of such optimizations with power-
saving modes of the hardware such as Dynamic Voltage and
Frequency Scaling (DVFS) [5] to improve performance at
significantly lower power levels. We next develop a functional
representation of metrics, such as performance and power,
for parameters of the application and the hardware. We then
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indicate how this functional form could be used to select
optimal feature sets for multiple objectives. This is particularly
important because the impacts of multiple optimizations on
multiple metrics are not independent of each other. Such anal-
ysis captures interactions between all parameters, including
those representing code features and hardware optimizations,
to enable the determination of minimal feature sets to maxi-
mize impact.

Section II discusses our methodology, Section III contains
our main results and we end with brief concluding remarks in
Section IV.

II. METHODOLOGY

We use instruction-level simulation with SimpleScalar [3]
and Wattch [2] to model our memory subsystem optimizations.

We use a standard sparse matrix vector kernel (SMV-
U) and its tuned form (SMV-O) from Sparsity [8], and the
multigrid code MG from the NAS benchmark [1]. Both SMV
kernels compute y ← A×x which requires one floating-point
multiplication and addition per nonzero element in A; x, y

are N−vectors and A is a sparse N × N matrix. In both
cases, re-use of elements of x can be enhanced by reordering
A, as shown in Figure 1. We use such reordered forms for
our test matrices with both SMV-U and SMV-O; SMV-O
includes optimizations that increase floating-point operations
while decreasing loads from memory.

The sparse kernels are emulated by SimpleScalar3.0 [3] and
Wattch1.02d [2] with extensions to model memory subsystem
enhancements. We use SimpleScalar configured to accept
PISA compiled programs to model a single-core processor
(such as the one in BlueGene [18]), starting from a Pow-
erPC440 embedded core. We use Wattch [2] to calculate the
power consumption with extrapolations for .13 um technol-
ogy [11], [15], [16]. We also developed a DDR2 type memory
performance and power simulator for use with our modified
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Fig. 1. The location of nonzeroes in a sparse matrix in the original order (left)
and in the reordered matrix (right). Nonzeroes in a horizontal box indicate
the access pattern in the source vector for processing a row of the matrix.
Observe the nearly random access pattern in the original form (left) and the
more localized pattern in the permuted form (right).

versions of SimpleScalar and Wattch.

Our base architecture has two floating-point units (FPUs)
and two integer arithmetic-logic units (IALUs). Each FPU
has a multiplication/division module and other arithmetic-logic
modules. Thus, our base system can issue four floating-point
instructions at each cycle. The data paths between memory
and L3 cache are 64 bit wide with cache lines of 64 bytes,
i.e., 8 double precision operands or 16 integer operands. We
model a cache hierarchy with three levels on chip, including a
32KB data/32KB instruction level 1 cache (L1), a 2KB level
2 cache (L2), and a 4MB unified level 3 cache (L3). Wattch
is configured to model only two levels of cache, but we added
new functions to model our hierarchy. More details of our
system can be found in [11], [15].

Starting with the base architecture (B) we consider the
effects of (i) doubling the width of the data paths (W), (ii)
Memory page policy: open (MO) or closed (default), (ii)
memory prefetching at the memory controller (MP), and (iii)
L2-cache prefetching (LP). Many of these optimizations have
been considered in other contexts [9], [10], [14], [17], [19]–
[21]. All prefetchers are stride-1 and we simulate utilizing
power control modes of caches by simply varying cache sizes.

III. EMPIRICAL RESULTS AND ANALYSIS

We now evaluate the impact on performance (time),
power, and energy, of memory subsystem optimizations
(W,MO,MP,LP) for SMV-U, SMV-O and MG as discussed in
Section II. We first indicate how we can significantly improve
the energy efficiency in terms of the number of floating-point-
operations/Joule by improving performance at reduced power
levels. Next, we consider how we can use our observed data
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Fig. 2. Impact of code tuning of sparse matrix vector multiplication for the
base B at 1 GHz with a 4MB L3-cache, with a 64-bit memory bus (left) and
the wider bus (W) (right). Observe that SMV-O trades-off fewer loads, and
total number of instructions (IC) for an increase in floating point operations
and a 10% decrease in total cycles over SMV-U.

to derive a functional representations which can be used for
constrained multi-objective optimizations.

Figure 2 indicates the benefits of code tuning when com-
bined with a wider bus (B) for increased memory bandwidth.
Observe that SMV-O with a 2 by 1 blocking increases the
floating point operations (useful work) by operating on known
zeroes inserted into the matrix in order to reduce the number
of loads. However, both SMV-U and SMV-O benefit from the
increased memory bandwidth.

Figure 3 indicates that L3 cache miss rates remain nearly
unchanged as L3 size is decreased from 4MB to 256KB for
a given set of optimizations at two different CPU frequencies
(1GHz and 600MHz). Among the optimizations, the wider
bus (W) and the L2-cache prefetcher (LP) result in the most
dramatic decreases in L3-miss rates.
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Fig. 3. SMV-U and SMV-O: Impact of optimizations on L3 cache miss rates
for 4MB, 2MB, 1MB, 512KB and 256KB cache sizes.

In Figure 4, we illustrate the impact on average load store
queue latencies, i.e., memory clock cycles per instruction
(memory CPI), as the optimizations are added in the sequence
W, MO, MP and LP to the base with a 256KB L3 at either
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Fig. 4. SMV-U and SMV-O: Impact of optimizations on average load-store queue latency (effective memory CPI) at 1GHz 4MB L3 cache (left) and at
600MHz 256KB L3 cache (right) configurations, as optimizations are added in the order (W, MO, MP, LP). Thus, all optimizations are included in the
configuration labeled +LP.
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Fig. 5. SMV-U and SMV-O: Impact of optimizations on time (seconds) at 1GHz 4MB L3 cache (left) and at 600MHz 256KB L3 cache (right) configurations,
as optimizations are added in the order shown with all included at label +LP.

1GHz or 600MHz. We thus show the combined impacts of
memory subsystem optimizations with power saving modes of
the caches and DVFS. Observe that the memory CPI is lower
for the base B at 600MHz indicating a better balance between
CPU and memory service times. Memory CPIs decrease
dramatically when the optimizations are added, with greater
benefits for the faster CPU at 1GHz. As indicated in Figure 5,
these reductions in memory CPI translate to faster execution
(time, in seconds). Furthermore, with even just a few of the
optimizations, execution is faster at 600MHz compared to the
base at 1GHz.

We indicate the impact of optimizations (at 1GHz with
4MB L3, and at 600MHz with a 256KB cache) on: power
in Figure 6, energy in Figure 7, and energy efficiency, i.e.,
floating point operations/J, in Figure 8. Observe that most
optimizations result only in small increases in power with MO

reducing power (as expected, when the data layout is selected
to reduce bank conflicts). The power reductions from DVFS
and a smaller cache are particulary impressive, translating to
reduced energy levels and over factors of 5 improvements in
energy efficiency. For SMV-U, the energy efficiency scales
from .75 × 107 at B, 1GHz, 4MG L3 to 4.2 × 107 with all
optimizations at 600MHz, 256KB L3. Likewise, the energy
efficiency of SMV-O scales from .9 × 107 at B, 1GHz, 4MG
L3 to 6.7×107 with all optimizations at 600MHz, 256KB L3.

We consider in summary (see Figure 9), the impact on
performance and energy delay product (EDP, energy × time)
for SMV-U, SMV-O (L3 cache size 256KB), and MG (with L3
cache size of 512KB, the smallest size without performance
degradations) across the frequency range from 300 MHz to
1GHz. The values (shown relative to the B at 1GHz, 4MB
L3 at 1) indicate faster execution than at the base starting at
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Fig. 6. SMV-U and SMV-O: Impact on power (in Watts) at 1GHz 4MB L3 cache (left) and at 600MHz 256KB L3 cache (right) configurations, as optimizations
are added in the order shown with all included at label +LP.
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Fig. 7. SMV-U and SMV-O: Impact of optimizations on energy (in Joule), at 1GHz 4MB L3 cache (left) and at 600MHz 256KB L3 cache (right)
configurations.
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Fig. 8. SMV-U and SMV-O: Impact of optimizations on energy efficiency, i.e., floating point operations/Joule, at 1GHz 4MB L3 cache (left) and at 600MHz
256KB L3 cache (right) configurations.
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Fig. 9. SMV-U, SMV-O and MG: Time and EDP (energy x time) at each CPU frequencies from 300MHz to 1GHz, with all optimizations (W, MO, MP,
LP) and a 256KB L3 cache (512KB L3 cache for MG). Values are shown relative to 1 at B.

600MHz, with the minimal EDP observed at 700MHz.

Functional Representations and Optimization. The data
represented in the earlier figures, provides a sampling of the
parameter space of codes and architecture and their relation-
ship to metrics such as time, power and energy. We can use
data-fitting techniques [6] to derive a functional representation
to model the metrics in terms of their parameters. We used
a least-squares scheme to derive (as simple approximations),
functions of the form P = c0Vdd

2f × ∑k
i=i ciπi and T =

b0f × ∑q
i=i biπi, where f is the CPU frequency and Vdd

its supply voltage, πi represent parameters, and ci and bi

represent constants. Such data-fitting can help determine the
relative impact of each optimization and their combinations,
independent of the order in which they are considered.
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Fig. 10. SMV-O: Relative time, power and energy at 600MHz, 4MB L3 for
(i) B (at 1), at (ii) optimal energy 3 feature set B+W+MO+MP, and (iii) with
all optimizations (B+W+MO+MP+LP).

The functional representations can be used with a mixed
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Fig. 11. MG: Relative time, power and energy at 600MHz, 4MB L3 for (i)
B (at 1), at (ii) optimal energy 3 feature set B+MO+MP+LP, and (iii) with
all optimizations (B+W+MO+MP+LP).

integer program (for optimization), to select, for example, a set
of exactly 3 optimizations that minimize energy at execution
times no slower than at the base B (at 600 MHz, 4MB L3). Our
analysis indicated that such an optimal configuration is given
by B+W+MO+MP for SMV-O and B+MO+MP+LP for MG.
Figures 10 and 11 show relative time, power and energy for
these configurations, the base B, and the configuration with all
optimizations. Observe that these optimal configurations per-
form just as well as the configuration with all features, at equal
or lower power levels. Such analysis indicates the potential of
numeric techniques for multiobjective optimizations.

IV. CONCLUSIONS

The results in this paper indicate the significance of memory
subsystem optimizations for power-aware high performance of
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sparse codes. We conjecture that such codes will be impose
even greater demands on the memory subsystem of emerging
chip multiprocessor (CMP) architectures, especially as they
scale to larger numbers of CPUs. We plan to extend our
work to evaluate performance and power trade-offs of sparse
computations on such CMPs, with particular attention on
developing accurate functional representations for efficient
exploration of the high dimensional space of multiobjective
optimizations. Such functional representations will necessarily
be more complex than the ones indicated here. Additionally,
they need to be incorporated into a numerical optimization
framework to model the effect of uncertainties in the param-
eters and observed metrics [4].
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