
Early Results with Precision Abstraction: Using Data-flow Analysis to Improve
the Scalability of Model Checking

Adam Brown James C. Browne Calvin Lin

Department of Computer Sciences
The University of Texas at Austin, Austin, TX 78712, USA,

{abrown,browne,lin}@cs.utexas.edu

Abstract

This paper presents a new state space reduction tech-
nique that applies to model checking of software. The new
technique, precision abstraction, borrows ideas from data-
flow analysis to identify procedures that can be analyzed
context-insensitively without affecting the accuracy of the
verification of a given property. These context-insensitive
procedures can then be represented with fewer states than
would be needed context-sensitive analysis. Preliminary re-
sults indicate that the number of transitions in the analysis
prescribed by our approach is at least 155 times fewer than
the exhaustive analysis a model checker would otherwise
perform.

1 Introduction

Model checking is an important means of verifying prop-
erties of software. Model checking is computationally ex-
pensive because its cost depends on the number of states in
the model being checked, which for complex systems can
be quite large. Thus, previous work has explored ways to
reduce the size of the model by abstracting away [5, 13]
or simply removing states [1, 6, 7, 17, 23] that cannot af-
fect the satisfiability of the property being checked. This
paper introduces a novel method, which we call precision
abstraction, for dramatically reducing the number of states
in a model without sacrificing the accuracy of property ver-
ification.

The key observation is that current model checkers as-
sume a fixed level of precision with respect to all procedure
invocations, but this level of precision is not always needed.
In particular, model checkers currently obey the semantics
of procedure calls, effectively creating a model in which all
procedure calls have been inlined. By contrast, the com-
piler community has long recognized that analysis can be

1-4244-0910-1/07/$20.00 c©2007 IEEE.

performed at different levels of precision, so analysis time
can often be reduced at the expense of precision. For ex-
ample, an analysis that obeys the semantics of procedures
calls is referred to as a context-sensitive analysis, while an
analysis that blurs the distinction among different call sites
and blurs the distinction among different calling contexts is
known as a context-insensitive analysis.

Recently, the notion of adaptive analysis has been intro-
duced [9]. Rather than analyzing every procedure with the
same precision, a fast analysis is performed to identify those
procedures that must be analyzed context-sensitively to pro-
duce an accurate result. All other procedures can be ana-
lyzed context-insensitively. Because typically only a hand-
ful of procedures require context-sensitive analysis [9], this
adaptive analysis is extremely efficient. In this paper, we
use the notion of adaptive analysis to identify those proce-
dures that can be analyzed context-insensitively without af-
fecting the accuracy of the verification of the given property.
This information is then be used to construct a model that
has significantly fewer states than one that uses full context-
sensitivity.

This paper presents preliminary results that this idea,
which we refer to as Precision Abstraction, can significantly
reduce the number of states required for model checking.
This work is part of a larger effort to unify model check-
ing and data-flow analysis techniques to produce precise yet
scalable verification tools. In some cases, data-flow analy-
sis can be used to prove that a particular property holds for
a given program, so more expensive model checking can
be forsaken completely. In other cases, as described above,
data-flow analysis can be performed to greatly reduce the
cost of the subsequent model checking effort. Because our
work attempts to fuse ideas from the model checking and
static analysis communities, we also propose an empirical
evaluation methodology that reports state space size, actual
analysis time, and a measure of accuracy.

2 Related Work

Existing solutions for state space reduction broadly fall
into three categories: control abstraction, data abstraction,
and unnecessary state removal. Control abstraction removes
states by abstracting the control flow in the original pro-
gram. Data abstraction removes states by abstracting the
values that variables can take. Finally, unnecessary state
removal techniques remove states which cannot affect the
property being checked.

Control abstraction

Control abstraction techniques recognize that not all con-
trol flow in the original program affect the satisfiability
of the property being checked. Partial order reduction
(POR) [18], and by extension static partial order reduc-
tion (SPOR) [15], are primarily used when analyzing asyn-
chronous systems. These techniques reduce the state space
by combining states whose only difference is the relative or-
dering of changes. For example, assume that multiple pro-
cesses in an asynchronous system may modify “local” vari-
ables, that is variables only visible to one process, and those
variables do not affect the satisfiability of the property be-
ing checked. Then it suffices to only check one path through
the state space containing all of the changes to those vari-
ables, instead of needing to examine all possible ordering
of those updates. A primary difference between POR and
SPOR is that the former is done during the execution of a
model checker and the latter is performed when generating
the input to a model checker and thus requires no changes
to an existing model checker.

Abstraction refinement techniques, such as CEGAR [5]
and lazy abstraction [13], assume an overly simplified
model. Then, as the system finds potential errors, it in-
crementally refines the model by adding back in states and
transitions of the more complete model. Predicate abstrac-
tion [2, 8] generates an abstracted model given a finite set
of predicates over the variables in the model. Within the
context of data-flow analysis, these techniques are compa-
rable to path-sensitive analysis, wherein the path taken to a
particular statement is considered when analyzing the state-
ment.

Existing control abstraction techniques fit into a larger
category that we will call precision abstraction. With pre-
cision abstraction, we aim to identify portions of the pro-
gram/model that do not require the full precision of flow-
and context-sensitivity. In general, existing control abstrac-
tion techniques only focus on flow-sensitivity, in that they
operate on a fully context-sensitive representation of a pro-
gram. We discuss our proposal for precision abstraction in
Section 3.

Data abstraction

Data abstraction techniques reduce the state space by re-
stricting or abstracting the data values that variables in the
program may assume. For example, it may suffice for a loop
count variable to be constrained modulo some integer, or a
variable’s value may only matter based on its sign (positive,
negative, or zero). Similarly, the contents of a queue may
only be significant if they contain an element of a certain
type and all other values are equivalent and indistinguish-
able.

In general, data abstraction techniques are not limited by
the property being examined. However, these techniques
are not easily automated. It is possible that the approxima-
tion generated by the data abstractions obscures the validity
of the model checking result.

Unnecessary state removal

Unnecessary state removal techniques include slicing [7,
17, 23] and cone of influence (COI) [1, 6] techniques. These
techniques rely on the insight that states that do not affect
state mentioned in the specification cannot affect the va-
lidity of the property. Slicing and COI primarily differ in
the representation to which they are applied. Slicing typ-
ically occurs on a description of the model (for example,
Promela), whereas COI is performed on the actual model,
even as it is being generated in an on-the-fly model con-
struction. The literature often uses “slicing” in place of
“cone of influence”.

Both of these techniques suffer from two main shortcom-
ings. These shortcomings arise because the property be-
ing checked may contain several atomic propositions. First,
slicing and COI must retain any state which affects any
of the atomic propositions without considering the other
atomic propositions. If that state does not belong to any
path affecting the other atomic propositions, then it will
have been needlessly included in the model.

Adaptive Analysis

Iterative flow analysis [19] is an analysis technique that
adjusts its precision automatically in response to the qual-
ity of the results. Plevyak and Chien use this algorithm to
determine the concrete types of objects in programs written
using the Concurrent Aggregates object-oriented language.

More recently, Guyer and Lin [9] describe an adaptive
pointer analysis algorithm—the Client Driven algorithm—
that generalizes this approach to apply to typestate prob-
lems [22], which include the type of flow-sensitive prob-
lems that are typically necessary for verifying deep prop-
erties about software. In addition, Guyer and Lin’s algo-
rithm can provides adaptivity to the pointer analysis, which

is often the most costly aspect of static analysis. Our work
uses the initial phase of Guyer and Lin’s Client Driven
algorithm to identify procedures that should be analyzed
context-insensitively. We then use this information in model
construction.

3 Precision Abstraction

Analogous to the client-driven analysis technique, our
notion of precision abstraction first identifies the portions
of a program that require context-sensitivity based on the
needs of the property to be model checked. Our compiler
then generates a model that matches the determined preci-
sion policy. Finally, this property-specific model is model
checked using an existing state-of-the-art model checker.

In our compiler, the property to be verified is specified
using a simple annotation language [11] that defines a fairly
general class of typestate problems. There is a straightfor-
ward translation from these property specifications to Lin-
ear Time Logic [6].

Implementation

We have implemented precision analysis using the
Broadway and C-Breeze compiler infrastructures [10, 16].
As such, we are currently limited to those properties that
can be expressed as a typestate problem [22]. We use the
first pass of the client-driven analysis in Broadway to iden-
tify the procedures that require context-sensitive analysis.

Then, we use this information to generate a SPIN [14]
model that encodes the context-sensitivity information. Be-
cause Promela, SPIN’s modeling language, does not pro-
vide a way to represent this information directly, we must
generate a model that encodes our intentions. At the sim-
plest level, procedure calls to context-insensitive procedures
are turned into gotos to the single copy of code represent-
ing the procedure.

For context-sensitive procedures, we include a copy of
the procedure’s code at each callsite. In this way, we emu-
late inlining, which is commonly used to perform context-
sensitive analysis.

However, this approach of inlining procedures presents
a problem with context-sensitive, recursive (or mutually-
recursive) procedures. To deal with these procedures,
we employ the technique of creating a new Promela
proctype for the recursive procedure and using a lo-
cal chan to return values. In this way, we can repre-
sent the recursive procedure call by running the gener-
ated proctype, and SPIN will analyze each invocation of
the procedure’s proctype separately, achieving context-
sensitivity. With few exceptions [2], this work is in contrast
to most existing model extractors for software which do not
support recursion [7, 3, 4, 12].

CI CDA CS CS / CDA
blackhole 959 1239 >219999 >177.56
bind 311 551 >379999 >689.65
pfinger 43 43 7003 162.86
muh205 41 41 8930 217.80

Table 1. Comparison of Broadway procedure
locations

4 Evaluation

4.1 Methodology

Our work combines ideas from both data-flow analy-
sis and model checking. Thus, it requires comparison to
work in both of these areas. Unfortunately, these two ar-
eas have different evaluation criteria. The data-flow anal-
ysis community is concerned with runtime characteristics
and number of potential errors (violations of the specifica-
tion) identified. However, the model checking community
evaluates a solution based on the number of states in the
generated model used to verify that there are no violations
of a property. Additionally, most model checkers terminate
once they have identified the first violation of a property.

The model checking community’s choice to present state
space size as their primary metric prevents the ability to
make qualitative comparisons. As with any exhaustive
search technique, the cost of the search heuristic affects the
overall performance. In order to make informed compar-
isons between state space reduction techniques, the model
checking community needs to report empirical results that
include running time, both total running time and the over-
head of the individual heuristic or state space reduction
technique.

In general, we feel that the model checking commu-
nity should adopt a methodology in which all violations
are identified and reported. Within the context of checking
software, simply identifying the first error places a heavy
burden on the user to continuously re-run the analysis after
each individual violation has been identified and resolved.

4.2 Preliminary Results

We are currently finishing our implementation of preci-
sion abstraction. Thus, we cannot provide direct compari-
son of the running time and state space. However, using the
Broadway compiler, we have obtained a measure of the size
of the resulting models.

We first present a measure of the number of procedure
contexts that are analyzed with three different precision
policies: context-insensitive (CI), context sensitive (CS),
and client-driven analysis (CDA). In Broadway parlance,

CI CDA CS CS / CDA
blackhole 3865 5265 >819997 >155.74
bind 1273 2061 >1449996 >703.54
pfinger 150 150 24361 162.40
muh205 157 157 30114 191.80

Table 2. Comparison of Broadway statement
locations

every time a procedure is analyzed in a new context, it is
referred to as a procedure location. Table 1 presents this in-
formation for a sample of analyses present in Broadway.
Guyer’s thesis on Broadway presents descriptions of the
programs and analyses used [10].

Analogous to procedure locations, in Broadway par-
lance, a statement location represents a statement in the
original program, along with a calling context. Table 2
presents a similar result for statement locations for the same
set of programs and analyses. The number of statement lo-
cations corresponds to the number of transitions in the re-
sulting model.

5 Conclusions

Precision abstraction provides a promising approach to
combining model checking and data-flow analysis. Using
adaptive analysis, we have preliminary results that indicate
that the number of transitions in a software program’s anal-
ysis can be reduced by three orders of magnitude. It still
remains to show how this reduction relates to the number of
states in the resulting model and to the cost of model check-
ing.

Context-sensitivity presents just one possible approach
to reducing the precision of an analysis without impacting
the accuracy of the result. We plan to extend this work to
support flow-insensitive analysis, which does not respect the
order in which program instructions are executed.

In general, the model checking and data-flow analysis
communities are increasingly finding common ground in
the types of software properties that they wish to verify.
Unfortunately, while the theoretical similarities between the
two approaches has been recognized [20, 21], there has been
too little cross-pollinization of ideas between the two com-
munities. Precision abstraction presents our first contribu-
tion in combining the best of model checking techniques
and static analysis techniques.

Acknowledgments. This work is supported by the Na-
tional Science Foundation under grant # CNS-0509354
(“Collaborative Research: CSR-AES: Unification of Verifi-
cation and Validation Methods”) and grant # ACI-0313263

(“ITR/SW: Compiler Techniques for Improving Software
Quality”).

References

[1] F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative
approach to language containment. In CAV ’93: Proceed-
ings of the 5th International Conference on Computer Aided
Verification, pages 29–40, London, UK, 1993. Springer-
Verlag.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Au-
tomatic predicate abstraction of c programs. In PLDI ’01:
Proceedings of the ACM SIGPLAN 2001 conference on Pro-
gramming language design and implementation, pages 203–
213, 2001.

[3] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in c. IEEE Trans. Softw.
Eng., 30:388–402, 2004.

[4] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SA-
TABS: SAT-based predicate abstraction for ANSI-C. In
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2005), volume 3440 of Lecture Notes in
Computer Science, pages 570–574. Springer Verlag, 2005.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV ’00:
Proceedings of the 12th International Conference on Com-
puter Aided Verification, pages 154–169, 2000.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, 1999.

[7] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Păsăreanu, Robby, and H. Zheng. Bandera: extracting finite-
state models from java source code. In ICSE ’00: Proceed-
ings of the 22nd international conference on Software engi-
neering, pages 439–448, 2000.

[8] S. Graf and H. Saı̈di. Construction of abstract state graphs
with pvs. In CAV ’97: Proceedings of the 9th International
Conference on Computer Aided Verification, pages 72–83,
London, UK, 1997. Springer-Verlag.

[9] S. Guyer and C. Lin. Client-driven pointer analysis. In In
International Static Analysis Symposium, 2003.

[10] S. Z. Guyer. Incorporating Domain-Specific Information
into the Compilation Process. PhD thesis, The University
of Texas at Austin, 2003.

[11] S. Z. Guyer and C. Lin. An annotation language for opti-
mizing software libraries. In PLAN ’99: Proceedings of the
2nd conference on Domain-specific languages, pages 39–52,
New York, NY, USA, 1999. ACM Press.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, , and G. Sutre. Soft-
ware verification with blast. In Proceedings of the Tenth
International Workshop on Model Checking of Software
(SPIN), Lecture Notes in Computer Science 2648, pages
235–239. Springer, 2003.

[13] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Symposium on Principles of Programming
Languages, pages 58–70, 2002.

[14] G. J. Holzmann. The Spin Model Checker: Primer and Ref-
erence Manual. Addison-Wesley, 2004.

[15] R. P. Kurshan, V. Levin, M. Minea, D. Peled, and
H. Yenigün. Static partial order reduction. In TACAS ’98:
Proceedings of the 4th International Conference on Tools
and Algorithms for Construction and Analysis of Systems,
pages 345–357. Springer-Verlag, 1998.

[16] C. Lin, S. Z. Guyer, and D. Jimenez. The c-breeze compiler
infrastructure. Technical Report TR-01-43, The University
of Texas at Austin, November 2001.

[17] L. Millett and T. Teitelbaum. Slicing promela and its appli-
cations to protocol understanding and analysis. In 4th Inter-
national SPIN Workshop, 1998.

[18] D. Peled. Ten years of partial order reduction. In CAV
’98: Proceedings of the 10th International Conference on
Computer Aided Verification, pages 17–28. Springer-Verlag,
1998.

[19] J. Plevyak and A. A. Chien. Precise concrete type inference
for object-oriented languages. In OOPSLA ’94: Proceedings
of the ninth annual conference on Object-oriented program-
ming systems, language, and applications, pages 324–340,
New York, NY, USA, 1994. ACM Press.

[20] D. Schmidt. Data-flow analysis is model checking of ab-
stract interpretations. In Proc. 25th ACM Symp. Principles
of Programming Languages, San Diego, 1998.

[21] D. Schmidt and B. Steffen. Program analysis as model
checking of abstract interpretations. In G. Levi, editor,
Proc. 5th Static Analysis Symposium, volume 1503 of Lec-
ture Notes on Computer Science. Springer, September 1998.

[22] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
Trans. Softw. Eng., 12(1):157–171, 1986.

[23] S. Vasudevan and J. Abraham. Static program transforma-
tion for efficient software model checking. In WCC 2004,
2004.

